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The phenotypes of each breast cancer subtype are defined by
their transcriptomes. However, the transcription factors that
regulate differential patterns of gene expression that contribute
to specific disease outcomes are not well understood. Here,
using gene silencing and overexpression approaches, RNA-Seq,
and splicing analysis, we report that the transcription factor B-
cell leukemia/lymphoma 11A (BCL11A) is highly expressed in
triple-negative breast cancer (TNBC) and drives metastatic dis-
ease. Moreover, BCL11A promotes cancer cell invasion by sup-
pressing the expression of muscleblind-like splicing regulator 1
(MBNL1), a splicing regulator that suppresses metastasis. This
ultimately increases the levels of an alternatively spliced isoform
of integrin-a6 (ITGA6), which is associated with worse patient
outcomes. These results suggest that BCL11A sustains TNBC
cell invasion and metastatic growth by repressing MBNL1-
directed splicing of ITGA6. Our findings also indicate that
BCL11A lies at the interface of transcription and splicing and
promotes aggressive TNBC phenotypes.

Breast cancer subtypes are defined by unique transcriptomes
that are reflective of their developmental lineage and specify
distinct phenotypes. The luminal breast epithelial lineage
highly expresses estrogen receptor (ER), FOXA1, and GATA3,
and these factors drive more differentiated breast cancer phe-
notypes that are associated with good patient prognoses (1, 2).
In contrast, triple-negative breast cancers (TNBC), while heter-
ogeneous, are generally more primitive and are devoid of ER,
progesterone receptor (PR), andHER2 receptors. These tumors
convey the poorest prognoses because of the high incidence of
metastatic recurrence, with a median 5-year survival rate of
;68% depending on the patient population (3). Once metasta-
sis has occurred, patient prognosis is very poor, with a median

overall survival of only 13 months (4). Thus, there is a signifi-
cant need to understand the molecular mechanisms that drive
metastatic disease in TNBC patients.
Development of metastases requires tumor cells to disengage

their cellular adhesions, allowing them to dissociate from the
primary tumor, migrate, and invade the basement membrane,
providing vascular access. After extravasation, tumor cells
invade secondary sites and reinitiate growth pathways. Only a
small percentage of cells that are shed from the primary tumor
possess these invasive and tumor-initiating properties and,
hence, are termed tumor-initiating cells (TIC) (5, 6). TIC are
more migratory and invasive than most cells within the tumor
bulk and exhibit a molecular profile that significantly overlaps
that of cells that have undergone epithelial-to-mesenchymal
transition (7). The rapid rate of metastatic recurrence in TNBC
is thought to be due, in part, to the high proportion of TIC
within these tumors compared with luminal breast cancers
(7–9). Several factors expressed in TNBC have been found to
drive the TIC phenotype such as SOX9, SOX10, ZEB, and SNAIL
(7, 10, 11). However, it is likely that additional, lineage-associated
factors also contribute tometastatic progression of this disease.
The zinc finger transcription factor, BCL11A, was initially

identified because of a chromosomal translocation site in
chronic B-cell lymphocytic leukemia (12, 13). However,
BCL11A has been more recently identified as being preferen-
tially upregulated in TNBC compared to all other breast cancer
subtypes and is critical for the maintenance of normal and ma-
lignant mammary epithelial stem/progenitor populations (14).
Most commonly characterized as a transcriptional repressor,
BCL11A has been implicated as a member of multiple core-
pressor complexes, including SWI/SNF, NURD, and RBB4/7
as well as DNMT1 (15–19). In the mouse mammary gland,
BCL11A is one of 22 genes defining an embryonic mammary
signature that is silenced in adult epithelia and reactivated in
mouse and human TNBC (20). BCL11A silencing also reduces
the TIC population in TNBC xenografts, and ectopic BCL11A
expression in nontransformed immortalized mammary epithe-
lial cells can promote xenograft tumor formation (14, 21).
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Whereas these studies have implicated BCL11A as a key driver
of stem cell fate in the mammary epithelium that controls pri-
mary tumor growth, it is unknownwhether this factor also con-
tributes to metastatic progression. The potential for BCL11A
to contribute to the metastatic cascade is supported by it being
a component of an 11-gene expression signature that is prog-
nostic for breast cancer metastasis to the bone (22) and a recent
report demonstrating its importance in in vitro migration and
invasion assays (23). In addition to a lack of clarity regarding its
role in metastasis, the downstream transcriptional targets of
BCL11A and the factors that preclude its expression in luminal
tumors remain to be discovered. Here, we define a new pathway
involving BCL11A that controls TNBC metastasis. Elucidation
of the BCL11A-regulated transcriptome, followed by genetic
modulation studies, further revealed that BCL11A is necessary
for sustained expression of extracellular matrix and adhesion
genes as well as the RNA splicing regulator, muscleblind-like
protein 1 (MBNL1), and its downstream targets.

Results

BCL11A sustains optimal invasion and metastatic outgrowth
of TNBC cells

Basal breast cancer is the most abundant subtype of TNBC.
Consistent with prior reports, we found that BCL11A expression
is highly upregulated in basal breast cancer compared with the
more differentiated luminal tumors in a publicly available data set
(24) (Fig. 1A, left). Further confirming its differential expression,
the level of BCL11A is also significantly higher in TNBC than in
all other breast cancer subtypes in the TCGA data set (Fig. 1A,
right) (14, 24, 25). BCL11A has been reported to be necessary for
maintaining TNBC stem cell properties (14). Because increased
stem cell activity can promote metastatic disease in various can-
cers, we postulated that BCL11A is essential for breast cancerme-
tastasis. To test this, we first assessed the impact of altering
BCL11A levels on in vitro surrogates of metastatic behaviors in
cell lines representing two TNBC subtypes: MDA-MB-231 (mes-
enchymal-like or claudin-low subtype of TNBC) and MDA-MB-
468 cells (basal-like 1) (26, 27). Transiently silencing BCL11A
(Fig. 1B) had no impact on cell migration for either cell line (Fig.
1C). However, invasion was significantly reduced with the loss of
BCL11A expression compared with the nonsilencing control
(Fig. 1D), in alignment with a previous report (23). Similar to pre-
vious reports (14, 26), no changes in cell growth occurred with
short-term suppression of BCL11A expression (Fig. S1, A and B),
indicating that the observed change in invasion was not simply a
result of decreased cell number. Together, these data indicate
that sustained BCL11A expression is necessary to maintain the
invasive phenotype of TNBC cells and may ultimately control
theirmetastatic potential.
To directly assess the impact of BCL11A on metastatic out-

growth, we transduced luciferase-expressing MDA-MB-231
cells (MDA-MB-231-FFluc) with lentiviral vectors expressing
an shRNA targeting BCL11A or a nonsilencing control. Upon
confirmingBCL11A silencing (Fig. 1E), these cells were injected
into the left ventricles of the hearts of immunocompromised
mice to assess their ability to colonize the body. After 18 days,
BCL11A-silenced cells were significantly compromised in their

Figure 1. BCL11A sustains optimal metastatic outgrowth of TNBC cells.
A, BCL11A expression in basal-like (n = 16) versus luminal (n = 43) invasive
breast cancers from the Farmer data set (23) (left) and TNBC (n = 49) versus all
other subtypes (n = 300) in the TCGA data set (38) (right). B, BCL11A expres-
sion in MDA-MB-231 or MDA-MB-468 cells was measured by qPCR 48 h after
transient silencing. C and D, fold change of migration (C) or invasion (D) after
48 h of BCL11A silencing in the MDA-MB-231 or MDA-MB-468 cell lines. E,
BCL11A expressionmeasured by qPCR in theMDA-MB-231-FFluc cell line 2–4
passages after stable transduction with control (shNS) or BCL11A-targeted
shRNA (shBCL)-expressing lentiviruses. F, bioluminescence quantitation of
mice 18 days after intracardiac injection of shNS or shBCL11A stable cell lines
(n = 5/group). Significance of differences was calculated in panels A–E using
an unpaired t test and in panel F using a Mann-Whitney test. *, p, 0.05; ***,
p, 0.001.
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ability to establish metastatic disease compared with control
cells (Fig. 1F). Combined, these data suggest that sustained
expression of BCL11A is necessary for invasion and metastatic
outgrowth inmodels of TNBC.

BCL11A enhances metastatic outgrowth of TNBC cells

To determine whether BCL11A is also sufficient to induce
metastasis within the context of TNBC, we overexpressed
BCL11A in a cell line of low metastatic potential. Compared
with the MDA-MB-231 cell line, SUM149PT cells (BSL2
TNBC subtype) have a lower incidence of cancer stem cells and
are less invasive in vitro and in vivo (26, 28–30). Thus, we stably
overexpressed BCL11A (xL isoform [31]) in luciferase-labeled
SUM149PT cells (SUM149PT-FFluc) and assessed its impact
on metastatic behaviors. Similar to BCL11A-silenced cells,
overexpression of BCL11A had no impact on cell growth (Fig.
2, A and B). However, BCL11A overexpression significantly
increased metastatic outgrowth in the lungs 31 days after intra-
cardiac injection compared with cells transduced with an
empty vector (Fig. 2C). Whereas no macroscopic metastases
were observed in control mice, 4/9 mice injected with
BCL11A-overexpressing cells had visible macrometastatic
lesions (Fig. 2D and Fig. S2).

BCL11A governs the spliced transcriptome of TNBC cells

Given the function of BCL11A as a transcriptional regulator,
we expected that its impact on invasion and metastatic out-

growth would be mediated by changes in target gene expres-
sion. Therefore, we used RNA-Seq to identify candidate
BCL11A target genes. To identify early proximal targets of
BCL11A, rather than downstream changes, that corresponded
to invasion changes in vitro, MDA-MB-231 cells were transi-
ently transfected with siRNAs against BCL11A or a nonsilenc-
ing control (Fig. 3A), and changes in RNA expression were eval-
uated. This revealed 183 and 395 genes that were up- or
downregulated, respectively (Table S1), with transient BCL11A
silencing. The top 25 most significantly changed genes are
shown in Fig. 3B. The downregulated gene set was most
strongly enriched in pathways involved in extracellular matrix
organization and integrins in angiogenesis (top 4 enriched
pathways are shown in Fig. 3C, left), which was consistent with
the loss of invasion and metastatic behaviors that occurs with
BCL11A silencing. In contrast, the upregulated gene set was
enriched in cell cycle and mitosis-associated genes (top 4
enriched pathways shown in Fig. 3C, right). This was surprising
because we, and others, have observed an absence of changes in
cell number following BCL11A silencing (Fig. 1 and Fig. S1)
(14). Notably, Bcl11a-null mice die shortly after birth, and we
were unable to generate homozygous BCL11A-null clones in
theMDA-MB-231 cell line using CRISPR/Cas9, suggesting that
there is a critical threshold or time dependence for BCL11A
expression that is required for long-term cell viability/growth.
Regardless, the downregulated gene set identified several
potential candidates that may collaborate to modulate meta-
static behaviors.
In addition to changes in absolute expression of various

genes, we also observed a striking change in the spliced iso-
forms for many genes. To determine whether BCL11A is asso-
ciated with splicing in human basal breast cancers, we interro-
gated publicly available gene expression datasets to identify the
set of genes that are most positively correlated with BCL11A
(25, 32). Evaluation of these genes for functionality revealed
that the highest ranked gene ontologies (GO) were “mRNA
splicing” (GO 0000398; p = 2 3 1024) and “mRNA splice site
selections” (GO 0006376; p = 9.44 3 1024), suggesting that
BCL11A is a major regulator of the spliced transcriptome in ba-
sal breast cancers. Analysis of the RNA-Seq data set described
here revealed 415 significant alternative splicing events, includ-
ing 256 alternatively spliced cassette (cass) exons occurring in
response to BCL11A silencing (Fig. 3D). We identified cassette
exons for which the change in the percent exons spliced in
(DPSI) was �10. This yielded 107 differentially spliced cassette
exons that occur when BCL11A is repressed (Table S2). In
alignment with the group of genes whose expression is downre-
gulated with BCL11A silencing, genes that were alternatively
spliced were also enriched in pathways controlling cell adhe-
sion (adjusted p , 0.0421), as well as other ontologies. These
data suggest that BCL11A controls the transcriptome, particu-
larly that associated with cell adhesion, through at least two
processes: gene expression andmRNA splicing.
Given that BCL11A-correlated genes are associated with

mRNA splicing functions in basal breast cancer, our observa-
tion that BCL11A silencing results in a significant shift in splic-
ing events inMDA-MB-231 cells, and that these splicing events
are also enriched in pathways governing extracellular matrix

Figure 2. BCL11A enhancesmetastatic outgrowth of TNBC cells. A, stable
overexpression of BCL11A mRNA (compared with empty vector [EV]) in
SUM149PT-FFluc cells was measured by qPCR. B, cell growth was assessed
over 6 days using the Cyto-X colorimetric cell counting reagent. C, quantita-
tion of bioluminescence 31 days after intracardiac injection of stable cell lines
(EV = 8 mice/group and BCL11A = 9 mice/group). D, number of mice with
macrometastases. Significance of differences was calculated in panel A using
an unpaired t test, in panel C using a Mann-Whitney test, and in panel D using
chi-square test. *, p, 0.05; **, p, 0.01.
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(ECM) remodeling, we interrogated the RNA-Seq data set for
genes that encode splicing factors that are differentially
expressed in response to BCL11A silencing. One of the genes
whose expression was most significantly induced was the
RNA-splicing regulator muscleblind-like protein 1 (MBNL1),
an established suppressor of TNBC invasion and metastasis
(Fig. 3E).

MBNL1 is a key target of BCL11A that controls the TNBC
spliced transcriptome and invasion

MBNL1 promotes cellular differentiation by repressing em-
bryonic stem and iPS cell-specific alternative splicing programs
(33–35). Thus, we proposed that BCL11A regulation of
MBNL1 contributes to the alternative splicing events that
occur when BCL11A expression is altered. We first confirmed
that BCL11A represses the expression of MBNL1 in indepen-
dent samples of MDA-MB-231 and MDA-MB-468 cells. As
expected, transient silencing of BCL11A increased MBNL1
mRNA and protein expression in both cell lines (Fig. 4, A and
B, and Fig. S3A). MBNL1 was also upregulated in MDA-MB-
231-FFLuc cells that had undergone stable silencing of BCL11A
using 5 independent shRNAs (Fig. S3B). Conversely, MBNL1
protein expression was reduced in SUM149PT cells upon tran-
sient overexpression of BCL11A (Fig. S3C). These data confirm
that BCL11A is both necessary and sufficient to suppress

MBNL1 expression in TNBC. To determine whether BCL11A
directly binds to theMBNL1 gene to repress its expression, we
examined publicly available genome-wide ChIP-Seq data for
BCL11A in human lymphoblastoid (GM12878) and embryonic
stem cell lines (h1-hESC) available in the Encyclopedia of DNA
Elements (ENCODE) (36, 37). This analysis revealed multiple
BCL11A binding sites in the MBNL1 gene and suggests that
BCL11A is a general repressor of MBNL1 gene expression in
multiple cell lineages.
We then determined if the changes in the spliced transcrip-

tome that occur with BCL11A silencing could be ascribed to
alterations in established MBNL1 splicing events. To accom-
plish this, we intersected the list of alternatively spliced exons
in the BCL11A RNA-Seq data set with a list of MBNL1-binding
sites reported in a publically available HITS-CLIP data set from
the MDA-MB-231 cell line (38). This revealed that MBNL1
directly binds to the majority (92 of 107, Table S2) of cassette
exons that are alternatively spliced in response to BCL11A
silencing.
MBNL1 suppresses invasion andmetastasis inmousemodels

of TNBC (38). To determine whether the loss of invasion that
occurs with BCL11A silencing is because of an induction of
MBNL1 expression, we used RNAi to impede this induction in
BCL11A-silenced cells. As expected, transient BCL11A silenc-
ing in MDA-MB-231 cells (Fig. 4C) caused an increase in

Figure 3. BCL11A controls the spliced transcriptome of TNBC cells. MDA-MB-231 cells were transiently transfected with SMARTpool siRNA targeting
BCL11A or a nonsilencing control (siNS) for 48 h, and changes in the transcriptome were analyzed by RNA-Seq. A, confirmation of BCL11A silencing using
qPCR. B, heatmap of the 25most significantly altered genes (62-fold change and adjusted p, 0.01; RPKM. 2). C, pathway analysis of differentially expressed
genes using ConsensusPathDb (total expressed genes in MDA-MB-231 as a comparative background list). D, RNA-Seq reads were mapped and measured for
differential splicing of cassette exons (cass), tandem exons spliced in a coordinated or mutually exclusive manner (taca ormutx, respectively), differences in 59
and 39 splice site (SS) selection (alt5 or alt3, respectively), and changes in intron retention (iret). The numbers of AS genes are in parentheses. Shown is a violin
plot of statistically significant splicing changes (p, 0.05; FDR, 0.05). Gray lines are positioned at DPSI of610%. E, volcano plot of all differentially expressed
genes with adjusted p value of,0.01, and dotted lines indicate genes with fold change of,2. Red dot, MBNL1.
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MBNL1 mRNA and protein (Fig. 4D and Fig. S3D), but
MBNL1 silencing alone had no impact on BCL11A expression
(Fig. 4C and Fig. S3D). Likewise, BCL11A silencing decreased
invasion ofMDA-MB-231 cells, butMBNL1 silencing alone was
insufficient to alter invasion (Fig. 4E). Most importantly, blocking
the induction of MBNL1 that occurs in the context of BCL11A
silencing restored the invasive capacity of MDA-MB-231 cells
(Fig. 4E). In contrast to the changes in invasion, no differences in
cell viability were observed following the silencing of BCL11A,
MBNL1, or their combination (Fig. 4F). Nearly identical results
were observed in theMDA-MB-468 cell line (Fig. S3, E–H), indi-
cating that BCL11A modulation of invasion depends upon its
regulation ofMBNL1 inmultiplemodels of TNBC.
To determine whether combined BCL11A and MBNL1

expression is associated with breast cancer patient outcomes,
we interrogated the METABRIC gene expression data set. Pri-
mary breast cancers with combined high BCL11A and low

MBNL1 expression (BCL11A high1MBNL1 low) were prognos-
tic of significantly shorter disease-free survival than those with in-
termediate expression of both genes (intermediate) or to those
that had low BCL11A and elevated MBNL1 expression (Fig. 4G)
(39). Moreover, patients whose tumors expressed low MBNL1
and low BCL11A had intermediate outcomes, suggesting low
MBNL1 expression alone does not drive aggressive TNBC phe-
notypes (Fig. S3I). Together, these data indicate that the suppres-
sion of MBNL1 is required for BCL11A to promote TNBC inva-
siveness andmay contribute to worse patient outcomes.

BCL11A suppression of MBNL1 leads to an accumulation of the
stem cell-driving alternative splice form of ITGA6 (ITGA6B)

The specific targets of MBNL1 that control various stages
of metastasis are not well understood. Because MBNL1 sup-
pression is an integral step in BCL11A-induced invasion,

Figure 4. MBNL1 is a key target of BCL11A that controls the TNBC spliced transcriptome and invasion. A, MBNL1 mRNA expression was assessed by
qPCR. B, MBNL1 protein was quantified by western blotting following transfection with BCL11A or nonspecific control siRNA in MDA-MB-231 or MDA-MB-468
cells. Both bands correspond toMBNL1 protein, as determined by using siRNA toMBNL1. C, MBNL1, BCL11A, or both were transiently silenced inMDA-MB-231
cells, and the relative mRNA expression of BCL11A (C) andMBNL1 (D) was evaluated by qPCR. E, fold change in invasion was assessed after BCL11A andMBNL1
silencing in the MDA-MB-231 cells. F, fold change in viable cells 4 days after BCL11A andMBNL1 silencing was determined using the Cyto-X colorimetric assay.
G, disease-specific (DSS) survival was determined using the METABRIC data set (39). Samples (all subtypes) were divided into BCL11A high andMBNL1 low (n =
148), BCL11A low1MBNL1 high (n = 345), or intermediate (n = 1478). For panels A–F, significance of differences was calculated using an unpaired t test: *, p,
0.05; ***, p, 0.01; ***, p, 0.001; n.s., not signficant. For panel G, significance of difference between the survival curves was calculated using a log-rank test:
green versus red line, p = 0.0002; red versus black line, p = 0.04; green versus black line, p = 0.004.
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we sought to identify direct targets of MBNL1 whose alterna-
tive splicing may contribute to BCL11A-induced invasion. We
first used RNA-Seq coupled with MBNL1 silencing, alone and
in the context of siBCL11A (Fig. 5A and Fig. S4), to discover
alternatively spliced exons controlled by both BCL11A and
MBNL1. We identified 107, 110, and 146 cassette exons with
altered splicing patterns following transient transfection with
siBCL11A, siMBNL1, or the combination of siBCL11A and
siMBNL1 (Fig. 5A).
To determine which alternatively spliced mRNAs are direct

targets of MBNL1, we reexamined the publicly available HITS-
CLIP data of biologically reproducible MBNL1-RNA interac-
tions identified in the MDA-MB-231 cell line (38). In all cases,
the majority of the affected genes were previously shown to
bind MBNL1 within the affected exon and/or the flanking
intron sequences (86 to 88%) (Fig. S5). We next compared the
three datasets (siBCL11A, siMBNL1, or both) and identified 14
cassette exons that were differentially spliced under all condi-

tions and could bind to MBNL1 in close proximity (Fig. 5A).
We interrogated each of these to discover which exons were
impacted in opposite fashion with BCL11A silencing versus
MBNL1 silencing alone or in combination with BCL11A loss.
This resulted in two candidate genes, kinesin family member
13A (KIF13A) and integrin subunit alpha 6 (ITGA6), with alter-
native mRNA splicing patterns that were sensitive to MBNL1
levels in the MDA-MB-231 cell line. In BCL11A-silenced cells
(elevated MBNL1), KIF13A displayed increased inclusion of
exon 28, a 39-bp cassette encoding 13 amino acids that is
located between the 2 noncontinuous coiled-coil domains
(CC2 and CC3) in the motor protein stalk. These are proposed
to function as points of dimerization in the Kinesin-3 family
of monomeric proteins. Silencing of MBNL1 (alone or in com-
bination with BCL11A silencing) reversed the effects of
siBCL11A and further reduced splicing of exon 28 compared
with the siRNA control (Fig. S6). Similarly, ITGA6 displayed
increased inclusion of exon 27 with BCL11A silencing that was

Figure 5. BCL11A increases expression of the ITGA6B stem-like splice form. A, alternatively spliced (AS) cassette exons identified using RNA-Seq of MDA-
MB-231 cells after transiently silencing BCL11A, MBNL1, or both were intersected with HITS-CLIP data for MBNL1-bound transcripts (37). AS events induced by
BCL11A silencing that were then reversed by cosuppression of MBNL1 were selected as candidates for further analysis. B, top, CLIP reads fromMBNL1-binding
libraries; library 1, red; library 2, blue.Middle, diagram of AS ITGA6 isoforms6 exon 27 (red outline). Bottom, corresponding RNA-Seq tracks for each siRNA con-
dition and conservation across species (Cons, blue). C, top, representative agarose gel image examining changes in the expression of ITGA6 exon 27 AS iso-
forms following silencing of BCL11A, MBNL1, or both in MDA-MB-231 cells using RT-PCR. Bottom, quantitation of ITGA6 AS in 3 independent experiments,
each performed in either duplicate or triplicate. D, top, representative western blot assessing changes in the levels of the ITGA6 stem-like splice form (ITGA6B)
that occur with changes in BCL11A, MBNL1, or both. Bottom, quantitation of protein expression of the ITGA6B splice form from 3 independent experiments,
each performed in either singlet or duplicate. E, PSI for ITGA6 exon 27 was obtained from the TCGA data set for normal breast, n = 114 or invasive BRCA,
n = 1081. Significance of differences was calculated for panels C–E using an unpaired t test. F, ITGA6 exon 27 expression in basal breast cancers from the TCGA
data set were stratified into groups with high expression (upper 15th percentile, n = 25) and low expression (remaining 85th percentile, n = 24) and overall sur-
vival compared by log-rank test, p = 0.005, HR = 0.148. *, p, 0.05; **, p, 0.01; ***, p, 0.001.
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reversed and further reduced by MBNL1 loss compared with
the control (Fig. 5B). Differential splicing of ITGA6 exon 27
generates protein isoforms with distinct C-terminal sequences
(35 or 53 amino acids, exon 27 included or excluded, respec-
tively) that are predicted to affect ITGA6 intracellular signaling
(40).
Whereas KIF13A is a microtubule-based motor protein, its

function and splicing in normal breast biology or breast cancer
has not been reported. In contrast, ITGA6 encodes an integral
cell surface protein that is a well-established biomarker and
regulator of cancer stem cell biology, particularly in the breast
(41–44). Notably, prior studies have shown that alternative
splicing of the ITGA6 cytoplasmic tail dictates the fate of breast
cancer stem cells and tumorigenicity of TNBC (44). Ectopic
expression of ITGA6 lacking exon 27 (ITGA6B) promotes
tumor formation and mesenchymal/stem-like phenotypes,
whereas the contrary is true for the epithelium-specific splice
form in which exon 27 is incorporated (ITGA6A) (44). Thus,
inclusion of exon 27 promotes a more differentiated epithelial
cell state, whereas reduction in exon 27 expression drives stem-
like properties and tumor formation.
Using semiquantitative RT-PCR, we confirmed that the per-

centage of ITGA6 transcripts with inclusion of exon 27
(ITGA6A PSI) is elevated with the loss of BCL11A, and that
this was reversed (ITGA6B) with combined silencing of
MBNL1 and BCL11A in both MDA-MB-231 (Fig. 5C) and
MDA-MB-468 cells (Fig. S7, A and B). Moreover, the loss of
BCL11A resulted in differential protein expression with a
decrease in the levels of the stem cell-associated ITGA6B (Fig.
5D and Fig. S7, C and D). These data indicate that BCL11A,
through its suppression of MBNL1 expression, causes the dif-
ferential splicing of ITGA6, resulting in the accumulation of the
ITGA6B protein isoform that lacks exon 27 and promotes stem
cell fate in TNBC cells. To assess the clinical significance of
ITGA6 differential splicing, we queried the TCGA data set (25)
and found that invasive breast cancers have a significantly
lower inclusion of exon 27 than normal breast tissue (Fig. 5E).
Most importantly, reduced expression of ITGA6 exon 27 is

associated with worse overall survival of patients with basal
breast cancer (Fig. 5F). These data support the postulate that
BCL11A suppression of MBNL1 promotes accumulation of the
ITGA6B stem cell-associated splice form and drives metastatic
outgrowth of TNBC (Fig. 6).

Discussion

Here, we report that the transcriptional repressor BCL11A is
a key driver of invasion of TNBC cell lines in vitro and meta-
static seeding and outgrowth in xenografted mouse models of
this disease. We also report that BCL11A governs both tran-
scriptional and posttranscriptional programs known to pro-
mote tissue remodeling, extracellular matrix signaling, and al-
ternative splicing (35, 45–48). Together, these data extend the
function of BCL11A beyond its roles in breast epithelial stem
cells and primary tumor formation identified by Khaled et al.
(14), nominating it as a potential drug target in the metastatic
setting. Supporting its critical role and therapeutic potential in
breast cancer cells, we were unable to fully disrupt the BCL11A
gene using CRISPR/Cas9, even though 4 heterozygous null
lines were generated. Thus, we anticipate that complete abla-
tion of BCL11A expression is incompatible with extended
TNBC cell viability. Khaled et al. demonstrated tumor volume
changes with altered BCL11A (14), supporting a role for
BCL11A in cancer stem cell self-renewal. Mechanistic studies
utilizing multicellular 3D cultures are needed to discern the
function of BCL11A in cell cycle and self-renewal in a context
that recapitulates components of the tumor microenviron-
ment. RNA-Seq analysis of stably silenced cells cultured in this
environment would aid in the identification of BCL11A tran-
scriptional targets driving proliferation and self-renewal. As a
transcription factor, BCL11Awould traditionally be considered
undruggable, although PROTAC strategies (49) may be effec-
tive. An alternative approach is to identify its downstream tar-
gets or upstream regulators with the goal of discovering addi-
tional therapeutically targetable intermediates.

Figure 6. BCL11A drives invasion andmetastatic outgrowth by suppressingMBNL1 and is associated with expression of the stem-like splice form of
ITGA6 (ITGA6B). Reduced expression relieves repression of MBNL1 and promotes alternative splicing of ITGA6. Inclusion of exon 27 is associated with
reduced TNBC invasion in vitro, reducedmetastatic outgrowth inmice, and extended overall survival of patients with basal breast cancer.
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BCL11A is a well-established regulator of differentiation,
including formation of hematopoietic stem cells, repression of
fetal hemoglobin expression, stimulating neuronal polarity and
migration, and establishment of the epidermal permeability
barrier (50–54). The specific function of BCL11A in each of
these contexts likely involves its regulation of a series of global
and cell-specific target genes. Here, we used a transient silenc-
ing paradigm to identify the BCL11A-regulated transcriptome
in TNBC that is changed within 48 h. Because BCL11A does
not impact proliferation within this window, we could leverage
the timing of this study to identify changes that were more
associated with the invasion phenotype. This revealed that
BCL11A controls the expression of many genes involved in
remodeling of cellular adhesions and the extracellular matrix.
Given the mechanistic similarities in neuronal migration and
cancer cell migration/invasion, it is likely that at least some
of these BCL11A effector genes have overlapping functions
between these two processes.
Although BCL11A controls the gene expression for many

proteins involved in ECM remodeling, and these factors them-
selves are associated with metastatic progression, the suppres-
sion of MBNL1 is essential for maximal BCL11A-induced inva-
sion and metastatic outgrowth. While we did not examine the
possibility that dysregulation of ECM components by BCL11A
would also play a core role in invasion and metastatic out-
growth, it is likely that BCL11A regulation of multiple path-
ways, including splicing and the ECM, together contribute to
its ability to regulate these processes. Importantly, we also
found that BCL11A broadly controls alternative splicing events,
andmany of these are the downstream consequence of changes
in the expression of MBNL1, a context-dependent enhancer
and suppressor of alternative splicing. Extending this finding,
we postulate that MBNL1 also is a key intermediate for at least
some of the differentiation processes controlled by BCL11A.
Notably, recent studies have shown that cytoplasmic accumula-
tion of MBNL1 promotes neurite morphogenesis (48), a pro-
cess that is also controlled by BCL11A. Although the data pre-
sented here demonstrate that BCL11A represses the expression
of theMBNL1 gene, it is unclear if this is direct or indirect. We
could not identify BCL11A binding to theMBNL1 gene using 6
sites identified in lymphoblastoid cells in ENCODE (data not
shown). This could indicate that BCL11A does not directly
bind to and regulateMBNL1, or it could reflect the use of differ-
ent BCL11A binding sites in TNBC cells compared with lym-
phoblastoid cells. Whole-genome BCL11A ChIP-Seq analyses
in TNBC cells will be necessary to definitively identify the
cohort of genes directly bound and regulated by BCL11A in
this cell lineage.
Targeting MBNL1 for therapeutic benefit in TNBC or any

cancer will likely prove difficult. However, we more specifically
found that BCL11A dictates the splicing pattern of ITGA6.
Global ITGA6 protein expression is independently prognostic
of adverse outcomes in ER-negative breast cancer (41) but is
only detectable in a minority of breast cancer cells, presumably
cancer stem cells. When combined with low EpCam expres-
sion, ITGA6 has also been widely used to isolate a stem cell sub-
population within normal and malignant breast epithelial cells
(43, 55–58). Our data suggest that BCL11A stimulates alterna-

tive splicing of ITGA6 and provides another level of regulation
for this integrin. BCL11A induces the exclusion of the terminal
exon of ITGA6 to form ITGA6B protein, a variant associated
with stem cell phenotypes (44). In contrast, when BCL11A lev-
els are low, the epithelial isoform (ITGA6A) is expressed.
ITGA6B has a functional role in breast cancer cells where prior
studies have demonstrated that its increased expression enhan-
ces the formation of colonies in soft agar and mammospheres
over several passages. Moreover, ectopic expression of ITGA6B
increases tumor formation in xenografted mice (44). ITGA6B
is also elevated in tissues that are enriched in stem cells, such as
embryonic mouse kidney, undifferentiated endoderm, and,
most notably, embryonic stem cells (59–61). Mechanistically,
loss of the terminal exon of ITGA6 results in an altered amino
acid sequence at the cytoplasmic tail, which is a critical site for
integrin signaling. The PDZ-binding motif in the cytoplasmic
tail shifts from the canonical SDA amino acid sequence to an
atypical SYS motif, and a previous study suggests that these dif-
fering sequences confer differential binding affinities to down-
stream effector proteins (62; reviewed in reference 40). Given
the impact of BCL11A on ITGA6 splicing, we propose that
altering the expression of BCL11A has profound effects on the
integrin signaling pathways in TNBC stem cells. Further analy-
sis of clinical samples will be necessary to determine the inter-
play between BCL11A protein expression and ITGA6 splicing
in TNBC.
It is now well established that cancers undergo changes in

splicing behaviors (63, 64), yet mechanistic studies elucidating
which splicing changes contribute to invasion and metastasis
have lagged behind. This is because of the complexity of RNA
splicing events driven by RNA binding proteins that both co-
operate with and compete for transcript binding (65). This
includes MBNL1 and RBFOX, which cooperate to promote al-
ternative splicing events. Relevant to this particular study,
ITGA6 splicing is not uniquely controlled by MBNL1. ESRP1
(epithelial splicing protein 1) controls ITGA6 splicing in the
nontransformed mammary epithelial cell line, MCF10A, and
its activity is regulated by VEGF (vascular endothelial growth
factor) signaling (44). Notably, our assessment of the BCL11A-
regulated transcriptome in TNBC failed to reveal any changes
in the expression of ESRP1 and RBFOX. However, a modest
change in the expression of PTPB3 (log2 fold change = 20.7,
adjusted p = 3 3 10210), a gene encoding another splicing
protein, was observed. Additional studies focusing on PTPB3-
driven splicing changes may uncover an even greater transcript
complexity driven by BCL11A than that reported here. It is also
important to note that MBNL1 regulates additional targets
beyond ITGA6 that also control invasion and metastasis of
TNBC. Fish et al. reported that TACC1 (transforming acidic
coiled-coil-containing protein 1) and DBNL (drebrin-like pro-
tein) are also direct targets of MBNL1 that can modulate inva-
sion and metastatic colonization of MDA-MB-231 cells (38).
Surprisingly, we did not detect alternative splicing of these
genes with transient BCL11A silencing, and we could not
detect differences in steady-state protein expression (data not
shown). It is possible that the alternative splicing of TACC1
and DBNL is an adaptive process that occurs with sustained
MBNL1 manipulation, whereas our studies involved transient
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silencing. Clearly, additional studies are needed to identify the
full spectrum of alternative splicing events that drive metastatic
progression of cancers, including breast cancer.
In summary, prior studies identified BCL11A as a highly

expressed gene in TNBC that is critical for sustaining the tumor-
initiating cell population. The studies reported here reveal that
BCL11A is also a regulator of metastatic progression, the key de-
terminant in breast cancer patient survival. Although BCL11A is
a transcription factor and generally considered difficult to target
for therapeutic benefit, suppressing BCL11A expression using
lentiviral shRNA delivery and genetic deletion of BCL11A using
CRISPR-Cas9 editing are both in clinical trials for the treatment
of sickle cell disease and beta-thalassemia. Whereas these meth-
ods will prove challenging for the treatment of solid tumors, elu-
cidating pathways that regulate BCL11A expression as well as
those that mediate its downstream effects may prove beneficial
for improving patient outcomes. This work begins to unravel the
complex network of gene regulation governed by BCL11A that
contributes to the aggressive nature of TNBC.

Materials and methods

Cell culture and reagents

MDA-MB-231, MDA-MB-468, T-47D, and ZR-75-1 cells
were purchased from the ATCC and grown in RPMI 1640 sup-
plemented with 10% fetal bovine serum (FBS) and 1% penicil-
lin–streptomycin. T-47D cells were additionally supplemented
with 0.2 units/ml insulin. Cell lines were authenticated in 2018
by STR profiling (Genetica DNA Laboratories, Cincinnati,
OH). MDA-MB-231-FFluc cells were a kind gift from Drs.
Jenny Parvani and Mark Jackson, and stable expression of the
luciferase gene was achieved with Blasticidin selection.
SUM149PT cells were purchased in 2016 (BioIVT, Westbury,
NY) and grown in Ham’s F-12 medium supplemented with 5%
FBS, HEPES (10 mM), hydrocortisone (1 mg/ml), insulin (5 mg/
ml), and 1% penicillin–streptomycin. All cell lines were main-
tained in a humidified tissue culture incubator at 37 °C with 5%
CO2, tested for mycoplasma using the Mycoplasma detection
kit-quick test (Bimake), and weremycoplasma free.

Gene silencing and overexpression

a. RNAi—For transient gene silencing, MDA-MB-231 and
MDA-MB-468 cells were seeded into 6-well plates to achieve
;60% confluency the following day. SMARTpool siRNAs target-
ing BCL11A (Dharmacon, catalog no. L-006996),MBNL1 (Dhar-
macon, catalog no. L-014136), or a nontargeting siRNA directed
to firefly luciferase mRNA (U47296) (Dharmacon, catalog no.
D-001210-02-50) were transfected in Opti-MEM medium (Invi-
trogen, catalog no. 3195088) at a final concentration of 100 nM for
6 h. For stable gene silencing, transduction of BCL11A-targeted
shRNA lentiviral particles (TRCN000003349, Sigma-Aldrich)
was conducted with puromycin selection. Four additional shRNA
clones were individually transduced to confirm changes in
MBNL1 expression (TRCN0000033453, TRCN0000430666,
TRCN00000359207, and TRCN0000359144, Sigma-Aldrich).
b. Overexpression—BCL11A-xL-pCDNA3 expression plas-

mid was a kind gift fromDr. Haley Tucker (University of Texas,
Austin). BCL11A-xL-pcDNA3 or empty vector (pcDNA3) was

transfected into SUM149PT cells using Lipofectamine 2000. A
stable cell line was achieved using neomycin (Genetecin, 200
mg/ml) selection.

In vivo studies

All in vivo experiments were performed with approval from
the Institutional Animal Care and Use Committee at Case
Western Reserve University, which is certified by the American
Association of Accreditation for Laboratory Animal Care. For
both MDA-MB-231-FFluc and SUM149PT-FFluc studies,
200,000 cells in a total volume of 100 ml were injected into the
left ventricle of NOD Scid-g female mice that were anesthe-
tized with 2% isofluorane. Mice were imaged for biolumines-
cence signal as an indicator of metastatic outgrowth using a
Xenogen IVIS system. Mice were administered 150 mg/kg luci-
ferin-D via intraperitoneal injection and imaged after 10 min.
Bioluminescence was quantified as total flux (p/s) per mouse.

RNA isolation and real-time qPCR

RNA was isolated using either Invitrogen TRIzol reagent
(Life Technologies, Carlsbad, CA, USA) and DNase (Ambion
DNA-free kit; Life Technologies) or an RNeasy plus minikit
(Qiagen). Complementary DNA was generated using Super-
Script II reverse transcriptase with random hexamers (Life
Technologies) per the manufacturer’s protocol. Quantitative
real-time PCR (qPCR) was performed on a StepOnePlus real-
time PCR system using TaqMan gene expression assays
(Applied Biosystems, Foster City, CA, USA) for human
BCL11A (Hs01093197) or MBNL1 (Hs01582594).

Cell viability/counting

Cells were transfected with siRNAs and viable cells seeded
the following morning in quadruplicate in 96-well plates at ei-
ther 3000 cells/well (MDA-MB-231 and SUM149PT cells) or
6000 cells/well (MDA-MB-468 cells). Cyto-X (CELL Applica-
tions, Inc.) was used to determine the relative number of cells/
well each day by reading the optical density at 450 nm. Dupli-
cate wells were used to validate gene silencing using qPCR.

Western blotting

Cells were lysed in radioimmunoprecipitation assay (RIPA)
buffer and diluted in Laemmli buffer plus b-mercaptoethanol.
After boiling, 40–80 mg of protein lysate and molecular weight
marker (LI-COR, catalog no. 928-60000) were fractionated in a
4–20% Tris-glycine gel (Invitrogen, catalog no. XP04200BOX).
Proteins were then transferred to Immobilon-FL PVDF mem-
brane (catalog no. IPFL00010) by wet transfer. Blots were
stained using REVERT total protein stain (P/N, 926-11011) for
;5 min and then washed with 6.7% (v/v) glacial acetic acid,
30% (v/v) methanol in water twice for 30 s. After total protein
was detected using a LI-COR Odyssey Fc, blots were incubated
in a destaining solution (0.1% [w/v] sodium hydroxide, 30%
[v/v] methanol in water). Membranes were blocked using 5%
nonfat milk in TBS with 0.05% Tween-20 for 1 h and were
probed with anti-BCL11A (Abcam, catalog no. Ab19487; lot
GR3201086-3, 1:200), anti-MBNL1 (Millipore, catalog no.
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2883433, 1:1000), or anti-ITGA6b (stem-ITGA6, Millipore,
catalog no. MAB1358, 1:250 diluted in LI-COR buffer) antibod-
ies overnight. Blots were incubated for 1 h with fluorophore-
bound secondary antibody (IRDye 800CW goat anti-mouse
IgM, 1:10,000) or HRP-bound secondary (1:5000). Bound anti-
body was detected using either chemiluminescence (SignalFire
ECL reagent, Cell Signaling Technology, Danvers, MA, USA) or
the Odyssey Fc (OFC-1279) for fluorescent secondary antibodies.
Western blots were imaged using a LI-COR Odyssey Fc and
quantified using Image Studio v5.2 compared with total protein.
MBNL1 exists as two isoforms (66); thus, we included both in our
quantitation of MBNL1 expression. Quantitation was performed
onWestern blots from 3 independent experiments.

Migration and invasion

Cells were transiently transfected as described above with
100 nM SMARTpool siRNA for the following targets: BCL11A,
MBNL1, nontargeting control (siNS), or a combination of
siBCL11A and siMBNL1, each at 50 nM. After 48 h, cells were
plated for migration assays in modified Boyden chambers
(transwell permeable supports, catalog no. 3422, Corning Life
Sciences, Tewksbury, MA, USA) or invasion assays in transwell
inserts coated with Matrigel (BioCoat Matrigel invasion cham-
ber, catalog no. 354480, Corning Life Sciences). The upper
chamber contained cells in serum-free media, and the bottom
chamber contained 10% serum. Cells were allowed to migrate
or invade for 16–24 h. Filters were fixed and stained with Diff-
Quik. The number of migrated or invaded cells per filter was
calculated by averaging the number of cells per 103magnifica-
tion field in five independent fields. Three independent experi-
ments were performed with technical replicates, in triplicate
formigration assays and in duplicate for invasion assays.

RNA-Seq

MDA-MB-231 cells were transiently transfected with
SMARTpool siRNAs as indicated above. Total RNA was iso-
lated 48 h later using the RNeasy Plus minikit (Qiagen) and
evaluated using a Qubit fluorometer (Invitrogen) for quantita-
tion and Agilent 2100 Bioanalyzer to assess quality using a cut-
off of RNA integrty number. 7.0 to select samples for further
analysis. For library preparation, the Illumina TruSeq
stranded total RNA kit with Ribo Zero Gold for rRNA re-
moval was used. The Ribo Zero kit was used to remove
rRNA from 150 ng of total RNA. Illumina TruSeq libraries
were tagged with unique adapter indexes. Final libraries
were validated on the Agilent 2100 Bioanalyzer, quantified
via qPCR (KAPA Biosystems Illumina Library Quantifica-
tion Kit), and pooled at equimolar ratios. Pooled libraries
were diluted, denatured, and loaded onto the Illumina HiSeq
2500 using a paired-end Rapid Run flow cell.
Reads were mapped to the hg19 genome with Olego (67). The

Quantas pipeline was used to infer transcript structure and quan-
tify alternative splicing and gene expression (68). Genes that
expressed at an RPKM of.2 in one group and had a fold change
in expression of 2 or greater and adjusted p value of,0.01 were
considered significantly differentially expressed. Significant splic-
ing changes were defined as those with a false discovery rate

(FDR) of ,0.05, adjusted p value of ,0.05, and average RPKM
across biological replicates of.1 under both conditions. Cassette
(cass) exons were collapsed and filtered for events where DPSI�
10 (107, 110, and 146 significant cass exons in siNS versus
siBCL11A, siMBNL1, and dual silencing, respectively).
Pathway analysis was performed using the ConsensusPathDb

database (69, 70) using overrepresentation analysis and all
expressed genes in the MDA-MB-231 cell line as a background
list. Significance was determined using the hypergeometric test
and p values corrected for multiple testing using the FDR
method (expressed as a q value). The top 4 most strongly (most
significantly) enriched pathways were reported. Basal breast
cancer genes that were correlated with BCL11A in a meta-anal-
ysis of the TCGA (25), GSE81538 and GSE96058 (32), were
identified and assessed for enriched gene ontology (GO) path-
ways using bc-GenExMiner (71).

Splicing analysis and HITS-CLIP processing

Publicly available HITS-CLIP data for MBNL1 included
SRR3082411.sra and RR3082412.sra. Raw SRA files were
converted to fastq format using the fastqdump tool. After
trimming the 39 linker (RL3, 15 nt), reads were mapped to
the hg19 genome using Bowtie2, and PCR duplicates were
removed. To identify high-confidence MBNL1 binding sites
relative to alternatively spliced cassette exons, biologically
reproducible binding sites (BR2, reads contributed from
both CLIP libraries) were intersected with coordinates
flanking the significantly spliced exon to include the
upstream and downstream constitutive exons. CLIP reads
mapping to these regions were then collapsed and filtered
for binding events that occur within 500-bp regions flanking
the alternative exon splice sites as well as 500-bp regions up-
and downstream of the constitutive exons.

Splicing validation

ITGA6 alternative splice products were identified using rela-
tive RT-PCR as described above. The following primer pair was
used to amplify a region around ITGA6 exon 27: 59-CTAACG-
GAGTCTCACAACTC-39 and 59-ACTCTGAAATCAGTCCT-
CAG-39. PCR products were resolved on a 1% agarose gel and
identified with ethidium bromide. Quantitation of the PSI
was determined using either Image J or Image Studio Soft-
ware (LI-COR).

Kaplan-Meier analyses

Data from METABRIC (EGAS00000000083) were accessed
via Oncomine v4.5. The population was stratified by the upper
10th percentile (high) versus the remainder (low) expression
for BCL11A (ILMN_1752899) and by upper 25th percentile
(high) versus the remainder (low) forMBNL1 (ILMN_1807304)
expression. All remaining samples with intermediate expres-
sion of BCL11A and MBNL1 were designated intermediate.
Kaplan-Meier curves were generated for the resulting BCL11A/
MBNL1 expression groups, and disease-specific survival for
these groups was compared by the log-rank test. Splicing data
for ITGA6 exon 27 in the TCGA data set were downloaded
from TCGASpliceSeq and combined with PAM50 classi-
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fication and clinical outcomes in the same data set. The popula-
tion was partitioned into the upper 15% ITGA6 exon 27
expressing (high) and lower 85% expressing (low) tumors and
assessed for patient overall survival. Significance of differences
was determined by the log-rank test.

Statistical analyses

All data are expressed as means 6 standard deviations. Sta-
tistical analyses were performed using one-way analyses of var-
iance followed by unpaired Student’s t test, Fisher’s exact test,
Mann-Whitney test, or chi-square tests in GraphPad Prism
where indicated. Log-rank tests were used to calculate signifi-
cant differences in survival curves, and a minimum p value of
,0.05 was considered statistically significant. Assays were per-
formed in at least 3 independent (biological) experiments with
technical duplicates or triplicates.

Data availability

The RNA-Seq data were deposited in the Gene Expression
Omnibus, series GSE149435. All other data are present within
themanuscript.
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