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Summary

Group 2 innate lymphoid cells (ILC2s) are an important component of

the innate immune system that execute important effector functions at

barrier surfaces, such as lung and skin. Like T helper type 2 cells, ILC2s

are able to release high amounts of type 2 cytokines that are essential in

inducing allergic inflammation and eliminating helminth infections. The

past few years have contributed to our better understanding of the inter-

actions between ILC2s and other cells of the immune system via soluble

factors or in a cell–cell contact manner. Myeloid cells, including mononu-

clear leukocytes and polymorphonuclear leukocytes, are excellent sensors

of tissue damage and infection and can influence ILC2 responses in the

process of allergic inflammation. In this review, we summarize recent

insights on how myeloid cell subsets regulate ILC2 activation with focus

on soluble factors in the context of allergic inflammation.

Keywords: allergic inflammation; group 2 innate lymphoid cells; myeloid

cell.

Introduction

Allergic diseases such as asthma and atopic dermatitis are

common inflammatory disorders characterized by the

dysregulated type 2 immune responses to environmental

antigens. It is known that type 2 cytokines including

interleukin-4 (IL-4), IL-5 and IL-13 from activated T

helper type 2 (Th2) cells are crucial for the emergence of

allergic outcomes, such as release of IgE, mucus produc-

tion, smooth muscle cell contraction and recruitment of

eosinophils, basophils and mast cells.1 Recently, evidence

is accumulating that group 2 innate lymphoid cells

(ILC2s) are a major source of type 2 cytokines and have

become one of the key effector immune cells in driving

allergic inflammation.2–4

The ILC2s, which resemble Th2 cells, rely on the

expression of transcription factor GATA binding protein

3 (GATA3) for their development and function. However,

ILC2s lack antigen-specific receptor but respond quickly

to epithelium-derived cytokines including IL-33, IL-25

and thymic stromal lymphopoietin (TSLP) during allergic

inflammation.5 Upon activation, ILC2s produce large

amounts of type 2 cytokines IL-5, IL-13 and IL-9, and

thereby contribute to allergic responses and clearance of

helminth infections.6 On the other hand, ILC2s secrete

amphiregulin, which promotes the restoration of dam-

aged tissues.7 Of note, ILC2s are recognized as tissue-resi-

dent cells and act as ‘early sentinel’ cells that elicit type 2

immune responses in lung, intestine, skin and adipose tis-

sue.8 Recently, numerous studies have demonstrated that
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ILC2 responses during allergic inflammation can be mod-

ulated by a variety of factors including cytokines, hor-

mones, lipid mediators, neuropeptides, nutrients and cell

surface molecules, as excellently reviewed elsewhere.6,9,10

Meanwhile, emerging data have indicated that ILC2s

communicate with cells of the innate and adaptive

immune systems and contribute to inflammatory pro-

cesses in the context of allergic diseases.11,12 Although

activated ILC2s are known to modulate the recruitment

and function of myeloid cells, the regulation of ILC2

responses by myeloid cells is of great interest in enhanc-

ing our understanding of how mediators from myeloid

cells influence type 2 immune responses during allergic

inflammation.

In mammals, myeloid cell development arises in a step-

wise fashion that begins in the yolk sac and ends in the

bone marrow.13 During myelopoiesis, myeloid progeni-

tors branch up into monocytic and granulocytic lineages

generating mononuclear leukocytes including monocytes,

macrophages (MΦ) and dendritic cells (DCs), as well as

polymorphonuclear leukocytes including neutrophils,

mast cells, basophils and eosinophils. They circulate

through the blood and lymphatic system and rapidly

migrate to sites of tissue damage and infection through a

variety of chemokine receptors.13 Then, they use various

pattern recognition receptors to recognize pathogen-asso-

ciated molecular patterns in tissues, and thereby display

innate immunity such as phagocytosis and production of

effector molecules (i.e. cytokines or lipid mediators). On

the other hand, like ILC2s, some myeloid cells are tissue-

resident cells and respond quickly to microbial and other

tissue-derived signals.14,15 Although ILC2-derived cytoki-

nes are critical in modulating the recruitment and activa-

tion of myeloid cells,11 acute and chronic tissue

inflammation is often accompanied by activation of local

myeloid cells followed by crosstalk with ILC2s.8,12,16 This

highlights the great importance of myeloid cells in regu-

lating ILC2-driven allergic inflammation.

Understanding the complex social networking of

immune cells with ILC2s in local tissues during health

and disease would definitely contribute to finding critical

checkpoints that can be used for developing therapeutic

strategies. To this end, we highlight how various myeloid

cells regulate ILC2-mediated type 2 immune responses,

focusing on their roles in allergic diseases such as asthma

and atopic dermatitis.

Mononuclear leukocytes and ILC2s

Monocytes/ MΦ

Monocytes develop from progenitors in the bone mar-

row and migrate into peripheral tissues such as lung via

the bloodstream under homeostatic and inflammatory

conditions.17 Recruitment of monocytes is important

for effective control and clearance of viral, bacterial,

fungal and protozoal infections, but they are also

involved in the pathogenesis of ILC2-mediated lung

inflammation. One study showed that Ly6c-positive

monocytes recruited to the lung can produce IL-33,

a key ILC2 activator, which may contribute to

the pathogenesis of house-dust-mite-induced airway

inflammation.18

MΦ, which are phagocytes that can originate from

monocytes, are critical effectors and regulators of inflam-

mation. Currently, three major classes of lung MΦ have

been recognized based on their ontogeny, mode of main-

tenance and location within the tissue.19 Two of these,

‘primitive’ interstitial MΦ and alveolar MΦ, originate

from hematopoietic progenitors arising from the yolk sac

and fetal liver, respectively. The third major population

of ‘definitive’ interstitial MΦ comes from circulating

monocytes and becomes the ‘primitive’ interstitial MΦ
over time. Of note, MΦ also play an essential role in lung

inflammation by regulating ILC2 responses. Alveolar MΦ
can activate ILC2s by producing IL-33 in a model of

influenza A virus-induced airway hyperreactivity,20

whereas one study showed that resident alveolar MΦ sup-

pressed allergic lung inflammation in house dust mite

and ovalbumin murine models.21 This discrepancy may

be the result of the use of different airway inflammation

murine models. Further, in a mouse model of hook-

worm-mediated lung injury, Nieves et al. demonstrated

that defective AMP-activated protein kinase activity in

alveolar MΦ and conventional DCs impairs ILC2

responses through increased IL-12/23p40 production.22

Another study, in an Alternaria-induced pulmonary

inflammation, found that macrophage-associated group V

phospholipase A2 (Pla2g5) enhances lung ILC2 activation

through the regulation of IL-33 induction and free fatty

acid production.16 Still, one recent study showed that

MΦ migration inhibitory factor (MIF) is required for

ILC2 responses and MΦ polarization into M2 phenotype

which is essential for the clearance of intestinal helminth

parasites.23 As MΦ can produce migration inhibitory fac-

tor, it may regulate ILC2 activation in allergic lung

inflammation. Moreover, IL-5 and IL-13 produced by

activated ILC2s can also promote the MΦ activation.24

Hence, concerted actions of monocyte/MΦ and ILC2s

may contribute to lung inflammation upon an allergen

challenge.

Dendritic cells

Dendritic cells, the most potent professional antigen-pre-

senting cells, act as key mediators at the interface of the

innate and adaptive immune systems. Human DCs are a

heterogeneous population of cells that can be divided into

myeloid DCs (mDCs) and plasmacytoid DCs (pDCs).25

The mDCs are thought to promote allergic inflammation

ª 2020 John Wiley & Sons Ltd, Immunology, 161, 18–24 19

Myeloid cells regulate ILC2 responses



by eliciting type 2 immunity to inhaled allergens;26 how-

ever, pDCs, the major source of type I interferon (IFN),

exert a negative regulation in airway inflammation by

dampening the Th2 responses.27 Similar to MΦ, mouse

bone marrow-derived DCs are found to produce IL-33

via Toll-like receptor/nuclear factor-jB signaling path-

ways, and CD11c+ DCs in ocular mucosal surface and the

draining cervical lymph nodes can produce IL-33,28

implying that DC-derived IL-33 may enhance ILC2

responses in allergic inflammation. One recent study

showed that mDCs from blood in patients with allergic

rhinitis promoted ILC2 proliferation and ILC2s secreting

IL-13 and IL-9 through the IL-33/ST2 pathway, whereas

activation of pDCs suppressed ILC2 activation via IL-6.29

However, whether mDCs can affect ILC2 responses

in vivo needs further investigation. Interestingly, studies

have found that both type I and type II IFNs suppress

ILC2 function, suggesting that IFN-secreting cells, includ-

ing DCs, serve as important negative regulators of ILC2

responses.30,31 Indeed, several studies demonstrated that

pDC-derived IFN negatively regulates ILC2 cells in mur-

ine asthma models.32–34 Furthermore, DCs are critical to

activate Th2 responses during ongoing airway inflamma-

tion.35 In a model of papain-induced lung inflammation,

one study demonstrated that ILC2-derived IL-13 activates

CD11b+ CD103� lung DCs to produce the chemokine

CCL17, promoting the recruitment of CCR4+ memory

Th2 cells to the lung.36 Taken together, DCs are key play-

ers in regulating ILC2s and Th2-driven allergic airway

inflammation, and modulating DC activity may have

great clinical implications in asthma treatment.

Polymorphonuclear leukocytes and ILC2s

Neutrophils

Neutrophils, a type of polymorphonuclear leukocyte,

originate from bone marrow myeloid precursors. Notably,

neutrophils are the first leukocytes that migrate to an

inflammatory site, where they contribute to eliminating

pathogens by multiple means, such as phagocytosis,

degranulation and neutrophil extracellular traps.37,38

Although neutrophils are undoubtedly key players of

acute infection, several lines of evidence show that they

are also major effectors of allergic airway inflammation.

Neutrophilic asthma is a typically non-Th2/type 2 asthma

that is prevalent among individuals with steroid-resistant

asthma.39 Interestingly, Patel et al. recently demonstrated

that the regulatory role of neutrophils on ILC2s may

rationally account for the failure of neutrophil-targeting

therapies for people with asthma.40 In a mouse model of

house-dust-mite-mediated allergic airway inflammation,

they found that depletion of neutrophils resulted in a

dramatic increase in systemic granulocyte colony-stimu-

lating factor (G-CSF) concentrations, which are ordinarily

negatively controlled in the periphery by transmigrated

lung neutrophils. G-CSF then functioned to augment

allergen sensitization either by activating ILC2s or acting

on bone marrow progenitors to drive monocytosis and

finally caused the exacerbated Th2 inflammation, epithe-

lial remodeling and airway resistance.40 Intriguingly, a

subpopulation of Lin– GATA3+ ST2+ ILC2s, in the pres-

ence of IL-33 and leukotrienes, was found to produce IL-

17 in vitro and in a mouse of model of IL-33 or papain-

induced lung inflammation,41 which suggests that some

ILC2s may promote the migration of neutrophils to the

lung by producing IL-17. Moreover, a recent study

showed that short-chain fatty acids derived from fermen-

tation of dietary fibers by the gut microbiota modulated

pulmonary ILC2s to secrete IL-17A, which is linked to

enhanced neutrophil recruitment to the lung.42 It is note-

worthy that IL-17 is typically not a signature cytokine for

ILC2s, the source and role of IL-17-producing ILC2s dur-

ing allergic inflammation requires further exploration.

Additionally, type 2 immune-associated neutrophil infil-

tration also requires the mouse RNase A homologue,

eosinophil-associated ribonuclease 11, which is secreted

by alternatively activated macrophages downstream of IL-

25-stimulated ILC2s.43 ILC2-derived IL-5 can also directly

initiate CXCR2+ neutrophils to produce IL-5 during trau-

matic injury.44 Altogether, these studies highlight the

complex regulatory role of neutrophils in asthma, at least

in part by affecting ILC2 function or being regulated

upon ILC2 activation.

Polymorphonuclear myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) are a heteroge-

neous population of immature myeloid cells with a

potent ability to suppress T-cell responses under various

pathological conditions, including cancer, inflammation,

trauma and infection.45 Based on morphology and speci-

fic cell-surface molecules, MDSCs can be classified into

two subpopulations: polymorphonuclear MDSCs (PMN-

MDSCs) and monocytic MDSCs (M-MDSCs).46 Two

studies have shown that ILC2-derived IL-13 can activate

M-MDSCs in cancers,47,48 suggesting the importance of

the ILC2–MDSC axis in pathological conditions. Mean-

while, given their remarkable immunosuppressive ability

towards Th2 cells, the negative regulation of MDSCs in

airway inflammation has been well demonstrated.49,50

Interestingly, Cao et al. recently found that PMN-MDSCs,

but not M-MDSCs, effectively inhibited ILC2 function

both in vitro and in vivo, which attenuated allergic airway

inflammation.51 They further showed that cyclo-oxyge-

nase-1, which is required for PMN-MDSCs to inhibit

Th2 responses,49 may mediate the suppressive effects of

PMN-MDSCs on ILC2 activation. Therefore, enhancing

PMN-MDSCs may be beneficial for treating ILC2-driven

allergic asthma.
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Mast cell

Mast cells, rich in cytoplasmic granules, originate from

bone-marrow-derived hematopoietic progenitors that can

traffic into all vascularized tissues where they complete

their development. They, especially IgE-primed mast cells,

regulate both the innate and the adaptive immune

responses in inflammatory disorders including allergic

inflammation.52 In particular, mast cells contribute to the

outcome of lung inflammation through the secretion of

mediators that act on other cell types, including ILC2s.

For instance, mast cells can express IL-33 upon IgE stim-

ulation.53 Using models of skin anaphylaxis, one study

showed that mast-cell-derived IL-33 can initiate neu-

trophilic inflammation by communicating with baso-

phils.54 Moreover, IL-33 can also potentiate IgE-mediated

human mast cell responses by increasing both mast cell

degranulation frequency and degranulation magnitude.55

Interestingly, IL-33 produced by mast cells is crucial for

the induction of IL-13-producing ILC2s and the clearance

of helminth infections.56 However, Morita et al. found

that IL-33-stimulated mast-cell-derived IL-2 enhances

expansion of numbers of regulatory T cells, thereby sup-

pressing papain-induced allergic inflammation,57 suggest-

ing that mast cells may impair type 2 immune responses

in the acute phase of allergic inflammation. Another

study found that IL-9 increases IL-2 production by mast

cells, which leads to expansion of CD25+ ILC2s and sub-

sequent activation of Th9 cells, which promotes lung

inflammation in cystic fibrosis.58 Notably, IgE-primed

mast-cell-derived prostaglandin D2 (PGD2) is an impor-

tant and potent activator of human ILC2s,59 whereas der-

mal ILC2-derived IL-13 may play a role in suppressing

mast cell activation.60 Taken together, the mast cell–ILC2
axis may display distinct actions in early and chronic

allergic inflammation, and a better understanding of the

role of mast cells in modulating human ILC2-driven

allergic airway inflammation requires further investiga-

tion.

Basophil

Basophils are the least common type of granulocyte that

mature in the bone marrow from myeloid stem cells and

then enter the circulation. Similar to mast cells, basophils

express high-affinity IgE receptors (FceRI), and secrete

histamine and Th2 cytokines after activation.61,62 How-

ever, basophils and mast cells are distinct cell lineages

and basophils display important and non-redundant roles

in protective immunity against parasitic infections, and in

allergic or autoimmune pathologies.61–63 In particular,

basophils are closely associated with allergic inflammation

by participating in Th2 skewing by producing IL-4, IL-6

and IL-13.64 Basophils derived from individuals with

asthma, which express ST2 (IL-33 receptor a chain), can

produce IL-4 and IL-13 upon IL-33 stimulation.65 Inter-

estingly, Motomura et al. reported that basophil-derived

IL-4 can enhance the expression of the chemokine

CCL11, as well as IL-5, IL-9 and IL-13 in ILC2s, resulting

in eosinophilic lung inflammation induced by protease

allergens in mice.66 In humans, the number of activated

basophils is enhanced in the sputum of people with

asthma and correlated with airway and blood eosino-

phils.67 Two studies also showed that IL-33 or TSLP can

induce basophils to produce IL-4, which enhanced ILC2

proliferation and their production of IL-5 and IL-13, and

exacerbated the atopic dermatitis-like inflammation.68,69

These results highlight the importance of basophils in

modulating ILC2 function during allergic inflammation.

Apart from IL-4, basophils secrete a variety of effector

molecules such as pro-inflammatory eicosanoids that con-

tribute to allergic diseases.61 As studies have demonstrated

that both murine and human ILC2s directly respond to

leukotrienes,70–72 it is possible that other mediators pro-

duced by basophils may act together with IL-4 to regulate

ILC2 function. Further, TSLP-elicited and IL-3-elicited

basophils display distinct responsiveness and functional

potential in response to IL-3, IL-18, or IL-33,73 whereas

how the distinct regulation of basophils impacts on ILC2

biology needs to be addressed.

Eosinophils

Eosinophils develop in the bone marrow and migrate to

inflammatory foci driven by pro-inflammatory chemoki-

nes, such as eotaxin. It is well established that eosinophi-

lia is one of the hallmarks in allergic diseases including

asthma.74 Lung ILC2-derived IL-5 plays a key role in the

activation and recruitment of eosinophils to the airways.75

In response to inflammatory stimuli, eosinophils degranu-

late and release active mediators, such as major basic pro-

tein or eosinophil peroxidase, which are critical for

eliminating parasites.76 Additionally, they also produce

type 2 cytokines (such as IL-4 and IL-13),77,78 suggesting

a role in promoting allergic inflammation.

Although the emergence of numerous eosinophils has

become an important parameter of ILC2 activation,

recent data showed that eosinophils can also influence

ILC2 responses. Depletion of eosinophils in IL-33 or oval-

bumin or house dust mite allergen-induced lung inflam-

mation caused a significant reduction of total and

activated pulmonary ILC2s,79 suggesting a critical role for

eosinophils in the maintenance of ILC2s. A recent study

found that eosinophil extracellular traps can induce the

lung epithelium to produce IL-33 and TSLP, and thereby

activated ILC2 responses and increased airway hyperre-

sponsiveness in mice,80 suggesting a critical role of eosi-

nophil extracellular traps in reinforcing the type 2

immune responses in severe asthma. In humans, the

number of eosinophils with extracellular traps is
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positively correlated with ILC2s in severe asthma.80 Addi-

tionally, as eosinophils are a major source of IL-4, a acti-

vator for human ILC2, it is possible that IL-4-producing

eosinophils can act on human ILC2s in eosinophil-associ-

ated inflammation.81 Together, these studies have shown

that eosinophils and ILC2s engage in reciprocal regula-

tion, and their crosstalk over inflammation remains to be

analyzed.

Concluding remarks

The ILC2s are a prominent source of type 2 cytokines in

both lymphoid and non-lymphoid organs, and play an

essential role in the onset and/or maintenance of allergic

inflammation, as well as in eliminating parasites. As

ILC2s are tissue-resident cells, it is becoming increasingly

evident that regulation of ILC2 responses during allergic

inflammation involves a variety of soluble factors,

immune cells and non-immune cells. Myeloid cells, with

their properties of rapid activation and recruitment, are

critical in tuning ILC2 proliferation and function by

releasing soluble mediators or possibly by a cell–cell con-
tact manner in the process of allergic inflammation

(Fig. 1). Meanwhile, emerging data also show that ILC2-

derived cytokines can act on the migration and activation

of myeloid cells, and thereby reinforce the type 2 immune

responses in allergic diseases.11,12 Defining the complex

interactions between myeloid cells and ILC2s during acute

and chronic inflammation will greatly advance our under-

standing of the contributions of the myeloid cell–ILC2
networks in the pathogenesis of allergic diseases. Further-

more, ILC2s can be divided into conventional ILC2s and

inflammatory ILC2s induced by IL-33 and IL-25, respec-

tively.82,83 Recent studies have also found IL-10-produc-

ing ILC2s,84 and IL-17-producing ILC2s41,85 in allergic

airway inflammation. However, whether myeloid cells can

affect ILC2 plasticity in health and disease remains to be

investigated. Finally, although mouse models are very use-

ful in addressing the relationships between myeloid cells

and ILC2s, future investigations on the human myeloid

cell–ILC2 regulatory axis may shed new light on critical

checkpoints that can be manipulated for treating ILC2-

Figure 1. The effect of myeloid cells on the group 2 innate lymphoid cell (ILC2) responses. The role of mononuclear leukocytes (left) and poly-

morphonuclear leukocytes (right) in the regulation of ILC2s are shown, along with key molecules involved in each. MΦ, macrophage. ‘?’ denotes

that the regulation remains to be investigated.
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driven allergic inflammation, as well as for improving

immunity against helminths.
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