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Abstract

Understanding the conformational ensemble of an intrinsically disordered protein (IDP) is of great 

interest due to its relevance to critical intracellular functions and diseases. It is now well 

established that the polymer scaling behavior can provide a great deal of information about the 

conformational properties as well as liquid-liquid phase separation of an IDP. It is, therefore, 

extremely desirable to be able to predict an IDP’s scaling behavior from the protein sequence 

itself. The work in this direction so far has focused on highly charged proteins and how charge 

patterning can perturb their structural properties. As naturally occurring IDPs are composed of a 

significant fraction of uncharged amino acids, the rules based on charge content and patterning are 

only partially helpful in solving the problem. Here, we propose a new order parameter, sequence 

hydropathy decoration (SHD), which can provide a near quantitative understanding of scaling and 

structural properties of IDPs devoid of charged residues. We combine this with a charge patterning 

parameter, sequence charge decoration (SCD), to obtain a general equation, parameterized from 

extensive coarse-grained simulation data, for predicting protein dimensions from the sequence. We 

finally test this equation against available experimental data and find a semi-quantitative match in 

predicting the scaling behavior. We also provide guidance on how to extend this approach to 

experimental data, which should be feasible in the near future.

Graphical Abstract

wenweizheng@asu.edu; jeetain@lehigh.edu. 

Supporting Information Available
Supporting methods, figures and tables.

This material is available free of charge via the Internet at http://pubs.acs.org/.

HHS Public Access
Author manuscript
J Phys Chem Lett. Author manuscript; available in PMC 2021 May 07.

Published in final edited form as:
J Phys Chem Lett. 2020 May 07; 11(9): 3408–3415. doi:10.1021/acs.jpclett.0c00288.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pubs.acs.org/


Intrinsically disordered proteins (IDPs) are of great interest in biology due to their 

involvement in important intracellular functions and pathological diseases.1–4 These proteins 

lack a well-defined three-dimensional structure and are more appropriately described by a 

conformational ensemble in contrast to folded proteins with a single folded structure.5,6 It is, 

therefore, nontrivial to study IDPs via the traditional structure-function relationship 

considering the heterogeneous nature of an IDP conformational ensemble. However, one still 

expects that the function of an IDP is determined by its sequence,7,8 as observed in 

numerous cases.9–13 It is important to identify sequence-dependent structural ensemble 

features capable of bridging the gap between sequence and function of an IDP, so that the 

structure-function paradigm can still be applied to IDPs.14

A variety of fundamental features ranging from average residue-level structural details to 

overall protein dimensions can be important for characterizing the conformational properties 

of an IDP. Nuclear magnetic resonance (NMR) experiments alone or coupled with all-atom 

simulations arguably provide the most detailed information on residual secondary structure 

properties and inter-residue interactions.5,12,15–19 These data can help generate knowledge 

of how specific amino acids20 and interactions between pairs of amino acid types may 

dictate the IDP properties.19,21,22 Such empirical rules are significant for understanding the 

behavior of low complexity IDP sequences that are composed of only a few types of amino 

acids.23 On the other hand, small-angle X-ray scattering (SAXS)24 and Förster resonance 

energy transfer (FRET)25 experiments provide estimates of global protein dimensions such 

as the radius of gyration (Rg). The interpretation of these experiments in terms of the 

polymer scaling behavior of proteins is helpful in applying existing analytical theories.26–33

Polymer scaling exponent (ν) is commonly used to characterize the relationship of the 

polymer size in solution with its chain length N as Rg ∝ Nν. This variable also provides 

information on the solvent quality in terms of good, bad, or ideal solvent.26,27 Despite the 

sequence heterogeneity of IDPs that contain twenty naturally occurring amino acids (and 

possibly many other non-canonical amino acids), there is increasing evidence that a single ν 
value may be used to characterize the conformational properties of disordered proteins. For 

instance, we recently showed that a ν-dependent distance distribution function based on a 

self-avoiding random walk model could help interpret experimental data from FRET34 and 
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SAXS.31 All-atom simulation data for more than 30 protein sequences further strengthened 

the understanding that on average IDPs display ideal chain behavior (ν=0.5) in aqueous 

solution, though the ν value is highly dependent on the protein sequence,35 as expected. We 

also found that the θ-temperature (Tθ) of a single chain, the temperature at which ν=0.5, is 

strongly correlated with the critical temperature (Tc) of liquid-liquid phase separation 

(LLPS) of disordered proteins,36,37 a result consistent with previous work from 

homopolymers.28,38 This relationship provides a rapid method for approximating the 

behavior of IDPs in the context of LLPS, and aided in the development of a novel 

temperature-dependent interaction potential that explained upper- and lower critical solution 

temperature phase transitions based on temperature-dependent solvent-mediated 

interactions.39

Given the role of polymer scaling properties in dictating the conformational behavior of 

IDPs, there have been significant efforts to predict ν as a function of the protein sequence or 

order parameters representing important sequence characteristics. A protein’s net charge and 

average hydropathy can help distinguish foldable sequences from disordered ones,40 but it is 

essential also to consider other features such as the fraction of charged residues, and their 

patterning within the chain.41–44 It is likely that the patterning of all amino acids, including 

uncharged ones, can contribute to the behavior of IDPs. Up to this point, however, this has 

not been studied in the context of twenty different amino acid types, even though it could be 

expected to be quite crucial, particularly for natural IDP sequences that contain a significant 

fraction of uncharged residues.45–47

In this work, we use our recently developed coarse-grained model of IDPs48 to study the role 

of sequence patterning of uncharged residues in an extensive data set containing 5130 

sequences. As expected, average hydropathy alone is not able to explain the sequence-

dependent scaling behavior well, which leads us to develop a new sequence hydropathy 

decoration (SHD) parameter motivated by the extensively used sequence charge decoration 

(SCD) parameter.43 The new SHD parameter reproduces the polymer scaling properties of 

these sequences, demonstrating the importance of patterning of twenty amino acids, beyond 

just charge patterning, in characterizing the size of the IDPs. We further find that the 

combination of SHD and SCD can capture the scaling properties of a more extensive data set 

(10260 sequences) containing all twenty amino acids remarkably well. Based on these 

results, we propose that a combination of SHD and SCD can be used to rapidly predict the 

scaling behavior of the disordered proteins and pave the way for high throughput screening 

of disordered sequences before wet lab investigation. We demonstrate this in the context of 

disordered protein sequences using the Disprot (disordered) database23 and Top8000 

(folded)49 database as a control. We finally test predictions from our equation against 

existing experimental measurements of the size of several disordered proteins.

Computational estimation of polymer scaling exponent ν of IDPs.

The advantage of using ν as opposed to Rg to characterize a protein’s size is to eliminate the 

chain length dependence and to provide meaningful information on the solvent quality that 
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can be useful in predicting protein LLPS.36 We have recently shown that Rg of a single 

protein can be used to estimate the scaling exponent νRg : 34,50,51

Rg = γ(γ + 1)
2 γ + 2νRg γ + 2νRg + 1

bNνRg, (1)

where γ ≈= 1.1615,52 b = 0.55 nm,29,34 and N is the number of peptide bonds (i.e., one less 

than the number of residues). Alternatively, when analyzing molecular simulation data, νfit 

can be obtained using the following equation, which is based on the mean intrachain 

distance Ri,j as a function of sequence separation |i − j|,41,53

< Ri, j
2 >1/2 = b i − j

νfit , (2)

where b = 0.55 nm as in the Eq. 1. In practice, Eq. 1 provides a more convenient way of 

estimating ν from simulation data set, and more importantly, from experimentally 

determined Rg. However, its validity over the whole range of compactness of IDPs has not 

yet been established. Thus, it is important for us to test whether these two definitions give 

consistent results in predicting ν.

For this purpose, we generated a large set of 10,260 random protein sequences, having chain 

lengths in the range from 30 to 200 residues, and with amino acid probabilities set equal to 

their relative abundance in natural IDPs (see database A in Fig. S1).54 We then conducted 

simulations of all of these sequences using our recently developed coarse-grained (CG) 

model, which represents each amino acid as a single interaction site (See Supporting 

Methods and original literature48). We find that the two methods of calculating ν are highly 

correlated, as shown in Fig. 1. Slight deviations are observed at low and high ν values, 

which suggests that the two methods will yield somewhat different scaling exponents. We 

asked if these deviations are related to an easily identifiable source in terms of protein’s 

sequence properties, such as the chain length. As shown in Fig. S2, chain length does seem 

to cause some discernible differences in the ν estimates based on the two methods. Further 

analysis suggests that for low ν values, the νfit estimate may not be appropriate as the 

intrachain distance fits are not optimal over the whole range of sequence separation (see Fig. 

S3). For higher ν values, one may have to use a different prefactor b while using the 

intrachain distance fits to obtain νfit. The parameters used in Eq. 1 (i.e. γ and b) are almost 

optimal for minimizing the averaging deviations between νfit and νRg for the whole range of 

ν values as shown in Fig. S4. For simplicity and keeping in mind that the relative errors 

across the whole database are mostly less than 5%, we suggest using Eq. 1 to reliably 

estimate a protein’s scaling behavior in this and future studies.

Sequence hydropathy decoration (SHD) parameter describes properties of 

uncharged IDPs.

Significant previous work has already highlighted the role of sequence charge patterning on 

the properties of IDPs and important order parameters, such as sequence charge decoration 

(SCD) and κ, are available to describe such effects.42–44,55,56 Given the success of such 
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strategies, we focus on developing a descriptor for the patterning of uncharged residues. 

Here we start with an amino-acid specific hydropathy value (λ),57 normalized to a value 

between 0 and 1 (Table S1), as the relevant feature to describe or predict a protein’s 

compactness, and equivalently the polymer scaling properties. To isolate the effects of non-

electrostatic interactions on chain dimensions, we generated an additional protein database 

of 5130 sequences in which the charged residues are not incorporated, and otherwise 

preserving the relative abundance of the uncharged amino acids (database B in Fig. S1). 

Interestingly, in the absence of charged residues, the average hydropathy (< λ >) of the 

sequence does not predict its ν very well (Fig. 2A) with only a weak trend showing that 

higher < λ > values are generally more compact. Thus, additional considerations are needed 

in order to better capture the sequence-dependent properties originating from the patterning 

of uncharged residues.

Motivated by the success of the SCD parameter in capturing the charge patterning effects on 

protein behavior,36,43,58,59 we propose a similar strategy to describe effects of hydropathy 

patterning, terming the new parameter sequence hydropathy decoration (SHD). To derive 

SHD, we adopt the theoretical approach presented in detail by Sawle and Ghosh43 for 

charged polymers. The excluded volume contribution to the end-to-end distance of a 

polymer can be expressed as Ω (see Eq. 13 of Ref.43)

Ω = N−1ΣiΣjωi, j i − j −1/2 , (3)

where ωi,j is the excluded volume interaction parameter between the two residues i and j. In 

our IDP model, such interactions arise from the short-range pairwise interactions with the 

interaction strength of (λi +λj) for a pair of residues i and j. The simplest assumption, 

namely, ωi,j = λi + λj, then leads to the following equation,

SHD = N−1ΣiΣj, j > i λi + λj j − i β
(4)

in which β = −1/2 accounts for the contribution of sequence separation. This choice of the 

exponent shows much greater predictive ability than just < λ > with a much higher negative 

Pearson correlation coefficient (−0.974) between ν and SHD values (see Fig. S5). In 

general, a high value of SHD corresponds to sequences with higher < λ >, and more 

clustering (patchiness) of hydrophobic residues together, resulting in a more collapsed 

conformation.

Next, we ask if the correlation can be improved by changing the β value to account for 

factors not considered in Eq. 4. We find that SHD provides the best description of our data 

for the β value ranging from −1.1 to −1 as shown in Fig. 2B and Fig. S5. This β value 

suggests that ωi,j can also be sequence separation dependent. Since the two residues will be 

less likely in contact when the average distance between them becomes large, we can 

assume ωi,j is inversely proportional to the average distance between the two residues. We 

can, therefore obtain
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ωi, j ∝ λi + λj
ri, j

∝ λi + λj
i − j ν , (5)

where the last part of the equation makes use of the expected distance dependence from the 

polymer scaling law. This leads to β = −ν − 1/2, where for IDPs with 0.45 ≤ ν ≤ 0.6, one 

gets −1.1 ≤ β ≤ −0.95, which is in excellent agreement with β obtained from the simulation 

data (see Fig. 2C and Fig. S5). Therefore in principle β can be ν dependent and vary slightly 

depending on the selection of the sequences. Considering the minimal differences among β 
values between −1.1 and −1 (Fig. 2B), we set β = −1 for simplicity. Of course, a different 

value with a slightly better correlation can be used if one chooses so. This SHD is in good 

correlation with ν from simulations (R = −0.991) as shown in Fig. 2C. This is a huge 

improvement over the average hydropathy (R = −0.249).

Considering a reasonable correlation (R = −0.950) obtained using SHD with β = 0 (Fig. S5), 

which is equivalent to rescaling the average hydropathy value by the chain length, it is clear 

that the average hydropathy does not work well due to not properly taking into account the 

chain length dependence. We have further tested two mean-field descriptions of SHD in 

which average hydropathy instead of residue specific hydropathy is used (Fig. S6). Both give 

similar correlation coefficients in comparison to the SHD with β = −0.5, suggesting for a 

well-mixed sequence mean-field approximation is reasonable. However, we want to note 

that such a mean-field description of SHD is not likely to be very useful for protein chains 

that are significantly more patterened. This can be easily seen in the data based on binary 

sequences with identical composition but different arrangement of amino acids (Fig. S7 and 

Table S2) We also find that this empirical approach to obtaining the sequence separation 

exponent (β in Eq. 4) recovers the known exponent value for SCD (0.5 as derived by Sawle 

and Ghosh;43 Fig. S8). The observed dependence of hydropathy patterning on the sequence 

separation is weaker (β = −1) as compared to the charge patterning (β = 0.5), which could be 

expected considering their differences in interaction range. Thus we find that by developing 

the SHD parameter, we are able to make accurate predictions of IDP scaling behavior simply 

from the sequence, assuming the absence of charged amino acids. There are many other 

hydropathy scales available in the literature60,61 that can potentially be used to compute 

SHD as well as to parameterize the CG model. The relative assessment of these different 

scales will be a topic of future study.

Predicting scaling behavior from sequence descriptors.

We then investigate how SHD compares with the other sequence descriptors (Table S3) to 

characterize ν, particularly in the case of sequences containing charged residues as well. We 

first look at the correlation between all sequence descriptors (independent of each other) and 

ν (Fig. S9A) and find that the most representative descriptors are SHD, < λ >, and SCD. 

The importance of < λ > is consistent with previous work showing that it can be used to 

categorize disordered proteins.40 However SHD and SCD stand out, which is probably due 

to the detailed nature of these two descriptors, accounting not only for the average value, but 

also patterning.
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We expect that at least two sequence descriptors – one relevant to the amino acid charges 

and the other describing amino acid hydropathy – will be needed to describe the properties 

of IDPs. To test whether these metrics can work cooperatively to predict ν, we scan every 

pair of sequence descriptors using multilinear regression. In Fig. 3A, we show the Pearson 

correlation coefficients between the predicted ν from each pair of sequence descriptors and 

the simulated ν using the sequence database A (which contains charged amino acids; Fig. 

S1). While < λ > scored higher than SCD in the single parameter regression (Fig. S7A), 

what it provides is redundant when used with SHD, so the combination of < λ > and SHD 

does not significantly improve predictions over just SHD. The pairing of SHD and SCD 
results in the highest Pearson correlation coefficient (0.966, Fig. 3B) between the predicted 

and simulated ν. The multilinear equation for using SHD and SCD to predict ν is,

ν = − 0.04233SHD + 0.00742SCD + 0.7012 (6)

in which the subscripts show the errors of the last digit. The errors were estimated by 

randomly splitting the sequences into five groups for obtaining the standard deviation of the 

fitting parameters and repeating the random selection 100 times for averaging the errors. A 

linear regression using only SHD gives similar fitting parameters in comparison to Eq. 6 for 

the SHD prefactor and the constant term (Fig. S9B). By combining this multilinear equation 

with the equation between ν and Rg (Eq. 1), we can therefore predict the Rg directly from 

the sequence as shown in Fig. 3C.

Eq. 6 should also work for IDP sequences without any charged amino acids since SCD goes 

to zero. However, when the fraction of charged amino acids (< |q| >) increases, we expect 

that the contribution of SCD to the compactness of the chain should also become more 

important. This can be verified by performing the multilinear regression for subsets of our 

IDP sequence database with different values of < |q| >. As shown in Fig. S10, we find that 

the three fitting parameters do not change that much for < |q| > values from 0.2 to 0.3. The 

SCD prefactor starts to increase when < |q| > is greater than 0.3, as expected. We further 

assess relative effectiveness of different sequence descriptors and ν for different ranges of < 

|q| > values (Fig. S11). We see that the charge patterning descriptors, SCD and κ, become 

increasingly important in determining the chain properties with increasing charge content (< 

|q| >). This is also consistent with previous literature that for sequences with all charged 

amino acids, charge patterning parameters are most important in characterizing the 

dimension of the chain.42,43,62 However, because a large fraction of disordered proteins have 

< |q| > smaller than 0.3, one needs for the role of hydropathy patterning, which we propose 

can be accomplished using SHD.

Experimental verification of the simplified equation based on SHD and 

SCD.

Since we find that SHD and SCD together can be used to predict ν from the simulation data 

set based on a simplified CG model of IDPs, we would like to test the model’s 

transferability by using known disordered and folded protein sequences. We select the 

disordered protein sequences from the Disprot database,23 excluding sequences having the 

disordered region shorter than 30 residues, as the polymer scaling law description may not 
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work well for shorter chain lengths. For each sequence, only the longest disordered region is 

selected resulting in a total of 557 disordered protein sequences. We select folded protein 

sequences from a protein database Top8000,49 in which the structure of every sequence has 

been solved with a high-resolution experimental method. We exclude the sequences in the 

database for which multiple chains are present, resulting in a total of 2360 folded protein 

sequences. We show in Fig. 4 that Eq. 6, using a combination of SHD and SCD obtains an 

average ν value close to 0.5 for the disordered proteins, consistent with previous knowledge 

in the field that disordered proteins in aqueous conditions on average behave similar to a 

Gaussian chain. It also suggests that there are half of the sequences with a scaling exponent 

of less than 0.5 and some are with values close to globular structures, similar to what a 

previous literature seen taking into account charge patterning of these sequences.63 As a 

control, the ν values for the folded proteins predicted using the model are generally smaller.

It is likely that the use of a simple CG model to parameterize Eq. 6 would introduce errors 

based on the limitations of the model. Thus, we would like to further ask if one can directly 

use experimental data to parameterize Eq. 6 and how many sequences with experimentally 

determined Rg are necessary to obtain such an optimal predictive equation. We estimate the 

number of experimental sequences needed by splitting our computational database into two 

sets–a training set for fitting ν and a test set for checking the accuracy of the resulting 

model. For consistency, the number of sequences in the test set is fixed at a quarter of the 

total number of sequences (2565 of 10260 sequences) in database A (Fig. S1) while 

reducing the number of sequences in the training set. The process of randomly selecting the 

sequences to form the training and test sets is repeated 100 times to obtain the averaging 

errors of the model. We observe a typical L-shape plot for the relative errors as a function of 

the number of sequences (Fig. S12), which suggests that about 100 sequences will be 

sufficient to obtain an accurate predictive model. We expect that the actual number of 

sequences may differ as the estimate above is based on randomly generated protein 

sequences that may not capture the diversity of naturally occurring protein sequences, which 

are not completely random due to pressure from natural selection. Still, one expects the 

number of protein sequences necessary to obtain an experimentally validated predictive 

model to be within reach, especially if these sequences are carefully designed. Interestingly, 

the relative error is still quite reasonable, even for considerably smaller training sets (Fig. 

S12). Data-driven methods may prove to be quite helpful in this regard.

We then test currently available data on IDPs from the existing literature to validate our 

predictions. There has been an increasing number of experimental measurements on the 

compactness of disordered proteins, using either FRET or SAXS. However, there is clear 

difficulty of directly using the available data for parameterizing an empirical equation due to 

difficulties in interpreting experimental measurements. Recent work has shown that 

interpreting Rg or ν from FRET or SAXS experiments is not trivial due to the heterogeneous 

conformations disordered proteins can adopt.64,65 FRET experiments tended to 

underestimate the Rg due to the assumptions about underlying distance distribution, whereas 

SAXS experiments overestimated the Rg due to a non-linearity in the Guinier plot.31,64 We 

have identified a list of disordered sequences from a series of recent publications (see details 

in Table S4)29,64,66–70 for assessing the computational model against the available 

experimental data. We reanalyzed the FRET data using our recently published method: 
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SAW-ν,34 in which a ν-dependent distance distribution function is used to adapt the 

variation of chain dimension. The included SAXS data have been analyzed using recent 

approaches that employ a wide range of SAXS intensity instead of only Guinier region.67–70 

As shown in Fig. 5, the predicted ν for these proteins using Eq. 6, which was solely 

parameterized based on a CG IDP model with simple electrostatic interactions and no 

backbone potentials, are in reasonable agreement with the experimental ν values. It is even 

more remarkable if we consider the simplicity of our linear model combined with the lack of 

parameterization to account for different ionic strengths in these experiments. We believe 

this can be a first step towards the future refinement of the model based on experimental data 

by accounting for solution conditions appropriately.

Conclusion

Intrinsically disordered proteins perform a myriad of biological functions and are also 

involved in several debilitating disease conditions, but the sequence-structure-(mis)function 

relationships of these proteins are not well understood. The first step in developing such 

relationships is to understand better how the conformational preferences of disordered 

proteins originate from their sequence. Previous work has highlighted the role of charge 

content and patterning in developing sequence-structure relationships of highly charged 

proteins to capture the effects of electrostatic interactions. There has been relatively little 

progress in accounting for the role of other types of interactions such as van der Waals 

interactions and hydrogen bonding, through which uncharged amino acids interact. We 

propose that the amino acid hydropathy value can serve as a useful proxy to capture the 

average interactions of different amino acids, and how it affects the protein dimensions as 

part of a chain. To describe the presence and arrangement of amino acids with varying 

values of hydropathy, we propose a sequence hydropathy decoration parameter that can 

quantitatively capture the sequence-structure relationship for an extensive set of disordered 

proteins (lacking charged residues) simulated using a coarse-grained model. We combine 

this new parameter with the existing sequence charge decoration parameter to quantitatively 

predict protein dimensions simply based on the protein sequence. We anticipate that the 

predictive equation can serve as a quick screening tool to design new protein sequences with 

tunable properties as well as allow for future rapid optimization of coarse-grained models to 

better reproduce experimental results. Most importantly, we can already describe the scaling 

behavior of many proteins for which experimental data are available from single-molecule 

FRET and SAXS. This work should significantly contribute towards a quantitative 

understanding of a disordered proteins’ sequence-structure relationship, which we expect to 

apply to a better understanding of protein function as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Comparison between the polymer scaling exponents obtained by fitting intramolecular 

distances (νfit) or by using Eq. 1 νRg .
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Figure 2: 
A) Using the mean hydropathy (< λ >) to capture the scaling exponents of random 

uncharged sequences. B) Pearson correlation coefficient between SHD and ν when varying 

β in Eq. 4. C) Using the hydropathy patterning parameter SHD with β = −1 to capture the 

scaling exponents. The dashed line show the linear fitting between SHD and ν and the 

legends show the Pearson correlation coefficients.
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Figure 3: 
Capturing the scaling exponents (ν) using linear models of two sequence descriptors. A) 

Pearson correlation coefficients between the linearly modelled and simulated ν. B) The 

comparison between the simulated ν and the predicted ν based on the best pair of sequence 

descriptors with the linear equation shown in labels of x-axis. C) The comparison between 

the simulated and the predicted Rg using the best pair of sequence descriptors.
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Figure 4: 
Using SHD and SCD to predict ν of disordered sequences from Disprot database (red).23 

The folded sequences using TOP8000 database49 are shown in blue as a control.
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Figure 5: 
Comparison between the Rg (A) and ν (B) from linear model using SHD and SCD and from 

FRET and SAXS experiments.
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