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There is a striking age-related disparity in the prevalence and
severity of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2)-induced coronavirus disease 2019 infections,
which might be explained by age-dependent immunological
mechanisms. These include age-related physiological differences
in immunological responses, cross-neutralizing antibodies, and
differences in levels and binding affinity of angiotensin-
converting enzyme 2, the SARS-CoV-2 target receptor; antibody-
dependent enhancement in adults manifesting with an
overexuberant systemic inflammation in response to infection;
and the increased likelihood of comorbidities in adults and the
elderly. Emerging immunological phenomena such as Pediatric
Multi-System Inflammatory Disorder Temporally associated
with SARS-CoV-2 or Multisystem Inflammatory Syndrome in
Children are now being observed, though the underlying
mechanisms are still unclear. Understanding the mechanisms
through which pediatric patients are protected from severe novel
coronaviruses infections will provide critical clues to the
pathophysiology of coronavirus disease 2019 infection and
inform future therapeutic and prophylactic interventions.
Asymptomatic carriage in children may have major public health
implications, which will have an impact on social and health care
policies on screening and isolation practices, school reopening,
and safe distancing requirements in the community. © 2020
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BACKGROUND

Severe acute respiratory syndrome (SARS) coronavirus 2
(SARS-CoV-2), which causes coronavirus disease 2019
(COVID-19), is the newest human coronavirus (HCoV) that
first emerged in December 2019 and has now spread to more
than 215 countries, with more than 13.2 million people infected
and approximately 575,663 deaths.' The spectrum of infection
ranges from asymptomatic or mild upper respiratory tract
symptoms to severe pneumonia and acute respiratory distress
syndrome.” Marked disparities in disease prevalence and severity
have been observed between pediatric and adult populations. In
this review, we summarize the age-dependent differences in
COVID-19 phenotypes, and postulate immunological mecha-
nisms that may explain these observations.

CLINICAL PRESENTATION OF COVID-19 IN
PEDIATRIC AND ELDERLY POPULATIONS

Although insufficient data exist on the incidence of SARS-
CoV-2 infection in children versus adults, particularly in
asymptomatic individuals, COVID-19 rates are clearly different
between these groups. Most patients with COVID-19 are aged
30 to 79 years (87%), and the highest fatality rate (14.8%) has
been reported in those older than 80 years. A systematic review
of all COVID-19 literature published between January 1, 2020,
and March 18, 2020, found that children accounted for just 1%
to 5% of all COVID-19 cases.’

A dlinically mild disease phenotype has been a consistent
finding in pediatric COVID-19 infection. In the largest study of
pediatric patients, the prevalence of severe pediatric cases (as
defined by the presence of hypoxemia <92%) was 5.9%, a third
of that in adules (18.5%).% Case reports indicate that infected
pediatric patients may demonstrate minimal symptoms and the
prevalence of asymptomatic infections may be up to 15.8%.’
Few pediatric patients with COVID-19 have required intensive
care or mechanical ventilation.” In contrast, the elderly have a
much higher risk of severe disease, intensive care and mechanical
ventilation requirements, and fatality.® Case-fatality rates in Italy
and China show an increasing trend with advancing age—from
3.5% to 3.6% (age 60-G9 years), 8.0% to 12.8% (age 70-79
years) to 14.8% to 20.2% (age 80 years and above).”

Several explanations for the relatively low rate and severity of
disease in children have been postulated. Low community
exposure alone would not explain this because children are
commonly exposed to large community gatherings such as school
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Abbreviations used
ACE- Angiotensin-converting enzyme
ACE-2- Angiotensin-converting enzyme 2
Ang- Angiotensin
ADE- Antibody-dependent enhancement
CoV- Coronavirus
COVID-19- Coronavirus disease 2019
HCoV- Human coronavirus
KD- Kawasaki disease
MIS-C- Multisystem Inflammatory Syndrome in Children
PMIS-TS- Pediatric Multi-System Inflammatory Disorder
Temporally associated with SARS-CoV-2
S protein- Spike protein
SARS- Severe acute respiratory syndrome
SARS-CoV-2- Severe acute respiratory syndrome coronavirus 2

and childcare. Inherent biological differences in immune re-
sponses between age groups that influence susceptibility to
infection and/or progression to disease and clinical manifesta-
tions and the higher prevalence of comorbidities in older adults
may potentially better explain the discrepant clinical observa-
tions. Figure 1 illustrates possible mechanisms contributing to
the differences in infection rates and disease severity between
children, adults, and the elderly.

POSTULATED MECHANISMS FOR THE
AGE-DEPENDENT DIFFERENCES IN
IMMUNOLOGICAL RESPONSES TO COVID-19
Cross-protective neutralizing anticoronavirus
antibodies

An intriguing possibility for the reduced susceptibility of chil-
dren may be cross-protection from previous exposure to endemic
coronaviruses (CoVs) implicated in the common cold. It is hy-
pothesized that seroconversion to HCoV-NL63 and HCoV-
OC43 (non—SARS-HCoVs) may produce antibodies to spike
protein (S protein) of CoVs that have some degree of neutralizing
and cross-protective activity against infection to another HCoV
from the same group.8 Thus, it is possible that high and sustained
seroconversion toward the common non—SARS-HCoVs, which
has been demonstrated in the pediatric population, may confer
protection against SARS-CoV-2 as well.

Seropositivity to HCoVs also increases gradually with age until
carly adulthood,” but subsequently wanes with increasing age. '’
Other studies have demonstrated high seroprevalence to NL63
and 229E in young children. Dijkman et al'' found that 75%
and 65% of the children aged 2.5 to 3.5 years were HCoV-NL63
and HCoV-229E seropositive, respectively. A study of seasonal
CoV infection in healthy children in the community found that
OC43 and NL63 were the most frequently implicated HCoVs.”
Hovi et al'* also showed that antibody titers to HCoV-OC43
increased rapidly up to age 14 years before tapering off and
decreasing after age 60 years. Because this protective cross-
neutralizing effect may be attenuated with the waning of
neutralizing antibody titers with age, this may possibly manifest
as higher infection rates and more severe disease presentation in

adulthood.
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Antibody-dependent enhancement in adults

An effective humoral response to infection is influenced by the
quality and magnitude of the antibody response, with high-
affinity antibodies specific to the virus important in achieving
viral neutralization.'”>'* SARS-CoV-2 infection is initiated by
the binding of surface S proteins on viruses to angiotensin-
converting enzyme 2 (ACE-2) receptors present on various
host cell types.'”'® This results in the production of SARS-CoV-
2—specific [gM and IgG antibodies.

However, cross-reactive antibodies from other similar virus
serotypes may have varying neutralizing abilities on SARS-CoV-
2, depending on antibody titers, isotypes, and specificity/affinity
for the ACE-2 receptor.

Antibody-dependent enhancement (ADE) occurs when an-
tibodies produced to one virus serotype interacts with a second
serotype (cross-reactive) without neutralizing it fully, resulting
in enhanced virulence and downstream inflammatory re-
sponses.’” The Fc receptor on monocytes/macrophages and
granulocytes has been implicated as the primary receptor to
which virus-antibody complexes bind.'® One of the postulated
mechanisms behind ADE in CoV infections involves a circu-
lating neutralizing antibody from a previous infection with a
closely related virus binding to a CoV’s virion spike, forming
an antibody-Fc receptor complex that mimics a viral receptor,
triggering a conformational change in the spike, which en-
hances viral entry into various cells, and an ensuing exuberant
inflammatory response.'”

Antibody concentrations appear to modulate the immune
response to SARS-CoV infection. /n vitro assays for SARS in
human cell lines showed that exposure to antisera diluted 10- to
100-fold demonstrated greater viral neutralization, whereas
antisera diluted 1000- to 2000-fold facilitated infection and
increased cell apoptosis.”’ This is similar to reports from dengue
infections where viral neutralization was observed in the presence
of high antibody concentrations, which saturated available
virion-binding sites, contrasting with low antibody concentra-
tions, which resulted in partial receptor binding facilitating viral
enhancement effects, mediated by interactions between the
virion-bound antibody and target cells’ Fc receptors.”’ These
anti—S-IgG and FcR interactions then trigger robust inflam-
matory responses akin to a cytokine storm, manifesting with
acute respiratory distress syndrome and respiratory failure.'
Higher titers of cross-neutralizing antibodies were linked to
lower odds of reinfection, whereas lower subneutralizing levels
were linked to ADE.”” It is thus possible that higher cross-
reactive antibody titers in children may be protective, whereas
low antibody titers in adults may facilitate ADE.

Differences in antibody isotype, specificity, and affinity also
influence the host response toward neutralization or ADE."” In
murine studies of viral vector vaccines encoding the SARS-CoV S
protein and nucleocapsid protein, respectively, nucleocapsid
protein—immunized mice showed significant upregulation of
proinflammatory processes and lung disease.”” In contrast, anti-
bodies to different epitopes of the S protein demonstrated differ-
ential immune responses, such as protective responses generated by
antibodies to the receptor-binding domain or the HR2 domain,
and ADE by antibodies specific to other S epitopes.”*

In addition, older adults and elderly may exhibit greater afu-
cosylation of IgG.”” Patients with dengue hemorrhagic fever or
dengue shock syndrome caused by ADE were found to produce
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FIGURE 1. Differences in physiological responses of children, adults, and elderly to SARS-CoV-2. Children generally experience infre-
quent, mild, and self-limiting infections, which may be due to (a) higher levels of cross-neutralizing antibodies, (b) lower levels of ACE-2
receptors in nasal epithelium, which lowers susceptibility to infection, (c) immature B and Tcells and higher regulatory T-cell response, and
(d) lower IL-6 and TNF-a production, limiting inflammatory response. Moreover, adults may experience ADE where the S protein enhances
entry into cells via Fc receptors, resulting in cytokine storms, which cause severe lung injury. Elderly may be even more susceptible to ADE
because they have more afucosylated IgG, which has a higher affinity with Fc receptors. Existing comorbidities in elderly also result in
upregulation of CD147, increasing viral entry as well as exacerbation of proinflammatory responses, which increase mortality risk.

greater quantities of afucosylated IgG with stronger affinity to Fc
receptors.”® A preprint by Larsen et al”’ also highlighted that
patients with severe COVID-19 expressed heightened afucosy-
lated IgG responses. The higher likelihood of increased afuco-
sylated IgG in adults and elderly may account for the higher
incidence of ADE and aggravated symptoms.

Finally, ADE may also arise de novo as a pathogenic process
unrelated to cross-reactive antibodies. The “multiple hit” model
of neutralization proposes that viral neutralization corresponds to
the number of antibodies coating the virion, which is influenced
by the affinity and concentration of antibodies.””

Physiological differences inimmunological responses
in children versus adults and elderly

Immature immune system in children compared with
adults. Children generally develop milder forms of viral dis-
ease, which may be due to their relatively immature immune
systems.29 Children exhibit predominantly T2, T17, and low
Tyl, IFN type 1 immune responses,”” as well as lower levels of
memory T and B cells due to reduced lifetime exposure to
foreign antigens.””’" Regulatory T cells, more abundant in
children, exert stronger immune regulatory effects than those in
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adults, which may protect them against severe disease
manifestations.””

Children also appear to exhibit limited proinflammatory re-
sponses. A study in 8 pediatric patients with SARS showed that
selective activation of the caspase I—dependent pathway in
infected macrophages resulted in a large increase in circulating
IL-1f levels but only marginal increases in other proin-
flammatory cytokines such as IL-6 and IL-12.” In clinical
studies, it has been observed that most children with COVID-19
also do not have increased inflammatory markers such as pro-
calcitonin, C-reactive protein, and IL-6.*

In contrast, adults manifest with heightened Tyl-
inflammatory responses are associated with increased disease
severity. SARS-infected adults demonstrated elevated IL-1, IL-
6, and IL-12 levels with activation of the nuclear factor kappa B
pathway.””*® The overproduction of proinflammatory cytokines
(cytokine storm) has been shown to result in severe inflammatory
lung damage in adult SARS fatalities.””

Although definitive immunophenotyping of pediatric and
adult immune responses to SARS-CoV-2 is yet to be published,
the SARS experience suggests that similar mechanisms may be
applicable in SARS-CoV-2 infections due to their high viral
sequence homology. A preprint by Rodriguez et al’® on longi-
tudinal immune profiling of adult patients with COVID-19
showed that proinflammatory IL-6 and IFN-y levels correlated
with severity of COVID-19.

The role of immunosenescence and inflamma-
ging. Aging is associated with 2 profound biological changes in
the immune system: Immunosenescence is a gradual decline in
the host ability to mount robust immune responses to pathogens,
while inflammaging is a chronic increase in low-grade inflam-
mation arising from an overactive yet ineffective alert system.””*
Immunosenescence has been shown to impair innate and hu-
moral immunity, whereby immune cells exhibit functional
impairment such as reduced migratory, phagocytic, and prolif-
erative capacity resulting in poorer responses and antibody gen-
eration along with ineffective clearance of the foreign
antigen.”""** Toll-like receptors (TLRs), T-cell receptor expres-
sion and diversity, as well as downstream c]tokine responses have
also been shown to decline with age.””** These changes may
thus increase disease susceptibility and hamper the mounting of
an effective immune response against SARS-CoV-2 in the
elderly. The interplay between immunosenescence and inflam-
maging has been hypothesized to be responsible for the phe-
nomenon of COVID-19 “cytokine storm” in the elderly.”” In
the aged immune system, an initial ineffective innate immune
response leads to poor viral clearance and greater viral replica-
%7 High levels of infected cells drive increased inflam-
matory cytokine signaling,”® resulting in sustained dysregulated
immune activation, which triggers the cytokine storm.

tion.

Balance in renin-angiotensin system pathways. The
renin-angiotensin system plays a crucial role in regulating host
cardiovascular and renal physiology.”” Two of the key enzymes
in the renin-angiotensin system are the angiotensin-converting
enzyme (ACE) and ACE-2. ACE converts angiotensin (Ang) I
to Ang II, and also binds to angiotensin receptor subtype la
AT1aR, which is responsible for driving lung injury through
production of proinflammatory cytokines.”"”"
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However, ACE-2 counteracts ACE activity by converting Ang
Il to Ang (1-7).””> Consequently, ACE-2 is protective against
severe acute lung injury, as depicted in murine models.”> ACE-2
is also shown to reduce hyperoxic lung injury in mice by
inhibiting the proinflammatory nuclear factor kappa B pathway
and promoting the Nrf2 pathway, which increases production of
antioxidants HO-1 and NQO1.™

In COVID-19, binding of SARS-CoV and SARS-CoV-2 virus
to cell surface ACE-2 receptors allows viral entry and down-
regulates ACE-2 expression.”” This results in reduced protection
against lung injury and upregulation of the proinflammatory Ang
IT pathway, manifesting as increased disease severity.”® Likewise,
increased serum Ang II levels correlating to viral load and lung
injury have been observed in individuals with COVID-19.”
Children (<10 years) were found to have lower ACE-2 expres-
sion (2.4 mean log,, counts per million) in the nasal epithelium,
one of the main points of entry of SARS-CoV-2. A marked in-
crease with mean log, counts per million of 2.77 and 3.02 were
seen in older children and young adults, respectively, which may
explain the lower incidence of COVID-19 in the younger age
group.”” Evidence from murine models also showed increased
expression of ACE-2 in olfactory epithelium with agesg; hence,
the elderly may be more susceptible to infection.

Impact of comorbidities on immunological responses
to COVID-19

Epidemiological studies show that the presence of comor-
bidities is a risk factor for COVID-19 infection and severe dis-
ease. A meta-analysis of 6 studies found that 17.1% of patients
with COVID-19 were hypertensive, 16.4% had cardiac/cere-
brovascular disease, and 9.7% were diabetic.”” In this study,
patients requiring intensive care were also 2 to 3 times more
likely to be hypertensive (28.8% vs 14.1% in non—intensive care
unit cases; relative risk, 2.03; 95% CI, 1.54-2.68), have cardio/
cerebrovascular disease (16.7% vs 6.2%; relative risk, 3.30; 95%
ClI, 2.03-5.36), or have diabetes (11.7% vs 4.0%; relative risk,
2.21; 95% CI, 0.88-5.57).

Cardiovascular disease. Several mechanisms have been
proposed for the increased cardiac morbidity in COVID-19: (1)
direct viral-induced myocardial damage, (2) indirect myocardial
injury through viral-mediated cytokine storm,”’ and (3) upre-
gulation of ACE-2 receptors by drugs.

Direct viral-induced myocardial damage. SARS-
CoV—infected mice demonstrated an ACE-2—dependent
myocardial infection, with downregulated ACE-2 protein
expression, which mediates increased pulmonary vascular
permeability resulting in pulmonary edema and respiratory
failure.”" Autopsy samples from deceased patients with SARS
also showed detectable viral RNA, marked macrophage
infiltration, and myocardial damage in myocardial samples,(’1
demonstrating the ability of SARS-CoV to mediate myocardial
inflammation and damage (myocarditis), which is likely
responsible for the high cardiovascular morbidity, particularly
in patients with preexisting cardiovascular disease.

Indirect cardiac injury due to cytokine storm. Severe
pneumonia or acute respiratory distress syndrome induces a
significant inflammatory response termed a cytokine storm,
producing high levels of proinflammatory cytokines, which in
turn induce myocyte damage and impairment of myocardial
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function,®> as well as exacerbare systemic hypoperfusion,
myocardial and multiorgan ischemia, and ventilation-perfusion
mismatch. Autopsy specimens from SARS-infected patients
demonstrated high levels of MCP-1TGE-B1, TNEF-a, IL-18,
and IL-6, along with dense infiltration of T cells, monocytes/
macrophages, and lymphocytes in pulmonary interstitial
tissues, and  significant  apoptosis of  pneumocytes,
demonstrating the viral cytopathic effect and immunologically
mediated cell damage, which may be due to a combination of
cytokine storm and ADE effects.”’

Upregulation of ACE-2 receptors by drugs. ACE-2
expression can be upregulated by drugs such as ACE inhibitors or
Ang 11 type I receptor blockers.”* ACE inhibitors block ACE
receptors from converting Ang I to Ang II, whereas ACE
inhibitors or Ang II type I receptor blockers prevent Ang II
from binding to Ang II type 1 receptors.”” Human intestinal
cells expressed higher levels of ACE-2 after treatment with
ACE inhibitors iz vitro.*°

Diabetes mellitus. Murine diabetes mellitus models have
demonstrated increased ACE-2 expression in the lung, kidney,
heart, and pancreas.”” Novel genetic epidemiology tools such as
phenome-wide Mendelian randomization study have enabled
investigation of association between genetic variants and disease
phenotypes.”® Phenome-wide Mendelian randomization study
demonstrated a tentative causal association between diabetes-
related traits and ACE-2 expression in the lung.”” Type 2 dia-
betes mellitus is characterized by increased proinflammatory Tyl
and Ty17 cells and decrease in anti-inflammatory regulatory T
cells,”” accentuating the systemic inflammatory responses in the
COVID-19—associated cytokine storm, which leads to more
severe end-organ damage and increased morbidity in patients
with diabetes mellitus.”"

In addition to ACE-2, CD147 has been identified as a second
receptor for SARS-CoV-2.”” CD147 and matrix metal-
loproteinase expression levels are often upregulated in inflam-
matory diseases, suggesting that the increased mortality in
patients with other comorbidities may be due to the high
expression of CDI147 and matrix metalloproteinase, hence
increasing susceptibility to infection.”*”*

Pediatric multisystem inflammatory disorder. Recent
reports of a new postinfectious pediatric multisystem inflam-
matory disorder have emerged from regions recovering from se-
vere COVID-19 outbreaks. This entity has been described as
PMIS-TS (Pediatric Multi-System Inflammatory Disorder
Temporally associated ~with  SARS-CoV-2) or MIS-C
(Multisystem  Inflammatory Syndrome in  Children).”">"”
The first published series of cases from London, United
Kingdom, described 8 children with a hyperinflammatory
syndrome akin to Kawasaki disease (KD) shock syndrome.
These children presented with fever, rash, conjunctivitis,
peripheral edema, and evidence of coronary artery
inflammation similar to that of KD, a well-known pediatric
autoinflammatory systemic vasculitis thought to be viral-
triggered. A second case series from Italy compared clinical,
laboratory, and immunological characteristics of 10 children
with PIMS-TS to a retrospective cohort of 19 patients with
KD. In contrast to the retrospective cohort, patients were
generally older (mean age, 7.5 years vs 3.0 years), more likely
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to present with incomplete KD, and had prominent
gastrointestinal and meningeal symptoms, with significant
lymphopenia and thrombocytopenia. There was a higher
incidence of severe disease manifesting with hypotension and
hypoperfusion, abnormal echocardiography, elevated cardiac
enzymes, and increased adjunctive steroid requirements.”” The
2 largest series of MIS-C to date reported clinical data on 91
cases from New York, and 186 cases from 26 other states.” "%’
Although features of KD were found in one-third of the
cohort, only 60% fulfilled criteria for typical or atypical KD,
with younger children (below 12 years old) being more likely
to present with KD. The course of illness was severe, with
80% requiring intensive care unit admissions, 50% with
hypotension requiring inotropic support, and a mortality rate
of 0.1% t 2%. Cardiac dysfunction, coagulopathy,
gastrointestinal ~ symptoms,  and  significantly  raised
inflammatory markers were prominent features consistent with
a systemic hyperinflammatory state. Most of the patients
received immunomodulatory treatment with intravenous
immunoglobulin, and  glucocorticoids, IL-6 inhibitors
(toculizumab and siltuximab), and IL-1Ra inhibitor (anakinra)
were used in a subset of patients.

The pathogenesis and immune mechanisms underlying
PMIS-TS/MIS-C are still poorly understood. The prevalent
hypothesis involves an abnormal immune response to SARS-
CoV-2 in genetically susceptible populations. There is a strik-
ingly higher incidence of typical KD in East Asian populations
compared with Western populations (239.6 vs 20.8 and 14.7 per
100,000 children <5 years in Japan, the United States, and Italy,
respectively),”"""” suggesting that genetic predisposition is an
important factor in the pathogenesis of KD. The case series from
the United States and the United Kingdom found a higher
proportion of PMIS-TS/MIS-C in black and Hispanic children
than in the general population, although this may also reflect the
higher incidence of COVID-19 in these communities.””"
Certain endemic HCoVs (in particular HCoV-229E) have pre-
viously been implicated as triggers of KD in Japanese children.*’
A novel CoV, New Haven HCoV, was also speculated to be a
trigger for KS in a cohort of children from the United States.™
This association was not found in a larger restrospective study
from Japan, which found an RNA sequence of HCoV-NH in
5% of controls, but none in children with KD.%’

Interestingly, no confirmed cases of PMIS-TS have been re-
ported in Asia so far, although many of these countries have
experienced similar large COVID-19 outbreaks, and earlier in
the pandemic due to proximity to China. This could be due to
under recognition, an increased genetic susceptibility to PMIS-
TS/MIS-C in non-Asian populations, and/or differing viral
strains in different countries, with a predominant viral strain in
Europe and the United States responsible for this geographically
limited immune phenomenon.

Further study is urgently required to delineate the clinical,
laboratory, and immunological features of PMIS and long-term
sequelae, establish causative links to COVID-19 infection, and
investigate the genetic, epigenetic, and immunological mecha-
nisms underlying PMIS-TS. Despite valid concerns about the
emergence of post-infectious PMIS as a cause of significant
morbidity in a small group of children, overall morbidity from
COVID-19 in children remains markedly low in comparison to
the adult population.’
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CONCLUSIONS AND SOCIAL IMPLICATIONS FOR
POLICYMAKERS

The pediatric population appears to be spared the brunt of
COVID-19 morbidity. The disparity between the pediatric and
adult populations might be explained by inherent biological
differences in immunological responses to CoV infections and
the presence of comorbidities in older adults. Understanding the
immunological differences between the young and the old could
potentially lay the groundwork for future therapeutics such as
convalescent  plasma infusions,’® mAbs,>” or
development.®®

In addition, the unique features of pediatric COVID-19 may
have an impact on clinical decision making and health care policy
frameworks addressing the growing threat of COVID-19. Most
pediatric COVID-19 cases are detected only in family cluster
screening, displaying very mild or no symptoms at all*’ and
demonstrating prolonged viral shedding in their nasopharynx
and stools for up to 2 to 4 weeks after infection.”’® In addition,
the detection of a high prevalence of asymptomatic/presymp-
tomatic carriage in children would strongly support screening
and quarantine of whole family clusters upon a positive diagnosis
in an adult to reduce the risk of perpetuating community spread.

The evidence on seroprevalence and changes in antibodies
with age suggest that natural immunity to SARS-CoV-2 may be
relatively short lived. Antibody titers in survivors of SARS, the
most closely related virus to SARS-CoV-2, have been shown to
decline after a few years.”"”” It is also possible that subsequent
SARS-CoV-2 infections could be more severe than the inital
infection. Moreover, because vaccine-induced immunity is
typically less potent and less enduring than naturally acquired
immunity, it might be postulated that vaccinated individuals
may be susceptible to more severe COVID-19 sooner than those
who acquire immunity through natural infection. Although this
is beyond the scope of the current review, it has potentially far-
reaching implications for vaccine development, which is
currently touted as the solution to the current global crisis.

Large-scale seroepidemiological studies will be required to
definitively characterize trends of transmissibility, infection,
asymptomatic carriage, and longevity of immunity across sepa-
rate age groups. Future research should also focus on identifying
predictors of clinical phenotypes, prognosis, and outcomes across
the different age groups and aim to elucidate protective immu-
nological mechanisms in patients with mild clinical phenotypes,
to guide therapeutics and vaccine development. Health policies
governing containment efforts such as social distancing, school
and workplace closures as well as plans for economic restoration
should also be made in careful consideration of the biological
differences in clinical manifestations, viral carriage, and trans-
missibility in pediatric versus adult populations.

vaccine
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