Skip to main content
. 2020 Aug 18;2020:2825037. doi: 10.1155/2020/2825037

Table 2.

Predictive performance of different methods among MCI groups.

Classifier Predictive method Accuracy (%) Sensitivity (%) Specificity (%) AUC
SVM ROI uptake 74.8 ± 2.41 82.2 ± 1.72 66.7 ± 2.51 0.829 ± 0.035
MCI pattern 76.7 ± 2.48 83.7 ± 4.46 67.1 ± 6.29 0.831 ± 0.026
Connectome 85.2 ± 2.34 88.1 ± 3.17 81.2 ± 4.28 0.933 ± 0.014

LR model ROI uptake 72.4 ± 2.73 81.1 ± 5.99 60.7 ± 4.83 0.748 ± 0.037
MCI pattern 74.8 ± 4.36 82.3 ± 2.49 66.8 ± 5.91 0.829 ± 0.036
Connectome 82.3 ± 3.29 80.9 ± 3.14 84.3 ± 6.64 0.867 ± 0.043

Random forest ROI uptake 70.8 ± 4.73 81.1 ± 3.75 59.3 ± 6.23 0.725 ± 0.045
MCI pattern 73.1 ± 4.02 85.4 ± 2.86 61.4 ± 8.84 0.787 ± 0.032
Connectome 76.2 ± 3.19 87.6 ± 2.99 62.9 ± 7.48 0.807 ± 0.031

The predictive performance of MCI participants was not involved in the training dataset.