Table 2.
Classifier | Predictive method | Accuracy (%) | Sensitivity (%) | Specificity (%) | AUC |
---|---|---|---|---|---|
SVM | ROI uptake | 74.8 ± 2.41 | 82.2 ± 1.72 | 66.7 ± 2.51 | 0.829 ± 0.035 |
MCI pattern | 76.7 ± 2.48 | 83.7 ± 4.46 | 67.1 ± 6.29 | 0.831 ± 0.026 | |
Connectome | 85.2 ± 2.34 | 88.1 ± 3.17 | 81.2 ± 4.28 | 0.933 ± 0.014 | |
| |||||
LR model | ROI uptake | 72.4 ± 2.73 | 81.1 ± 5.99 | 60.7 ± 4.83 | 0.748 ± 0.037 |
MCI pattern | 74.8 ± 4.36 | 82.3 ± 2.49 | 66.8 ± 5.91 | 0.829 ± 0.036 | |
Connectome | 82.3 ± 3.29 | 80.9 ± 3.14 | 84.3 ± 6.64 | 0.867 ± 0.043 | |
| |||||
Random forest | ROI uptake | 70.8 ± 4.73 | 81.1 ± 3.75 | 59.3 ± 6.23 | 0.725 ± 0.045 |
MCI pattern | 73.1 ± 4.02 | 85.4 ± 2.86 | 61.4 ± 8.84 | 0.787 ± 0.032 | |
Connectome | 76.2 ± 3.19 | 87.6 ± 2.99 | 62.9 ± 7.48 | 0.807 ± 0.031 |
The predictive performance of MCI participants was not involved in the training dataset.