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Long noncoding RNA (lncRNA) plays a critical role in the development of tumors. The aim of our study was construction of a
lncRNA signature model to predict breast cancer (BRCA) patient survival. We downloaded RNA-seq data and relevant clinical
information from the Cancer Genome Atlas (TCGA) database. Differentially expressed lncRNA were computed using the
“edgeR” package and subjected to the univariate and multivariate Cox regression analysis. Corresponding protein-coding genes
were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis. Finally, 521
differentially expression lncRNA were obtained. We constructed a ten-lncRNA signature model (LINC01208, RP5-1011O1.3,
LINC01234, LINC00989, RP11-696F12.1, RP11-909N17.2, CTC-297N7.9, CTA-384D8.34, CTC-276P9.4, and MAPT-IT1) to
predict BRCA patient survival using the multivariate Cox proportional hazard regression model. The C-index was 0.712, and
AUC scores of training, test, and entire sets were 0.746, 0.717, and 0.732, respectively. Univariate Cox regression analysis
indicated that age, tumor status, N status, M status, and risk score were significantly related to overall survival in patients with
BRCA. Further, the multivariate analysis showed that risk score and M status had outstanding independent prognostic values,
both with p < 0:001. The Gene Ontology (GO) function and KEEG pathway analysis was primarily enriched in immune
response, receptor binding, external surface of plasma membrane, signal transduction, cytokine-cytokine receptor interaction,
and cell adhesion molecules (CAMs). Finally, we constructed a ten-lncRNA signature model that can serve as an independent
prognostic model to predict BRCA patient survival.

1. Introduction

Breast cancer (BRCA) is the most commonly diagnosed can-
cer and the leading cause of cancer death among women
worldwide [1]. Although BRCA death is declining due to
early detection and improved treatment, significant variabil-
ity in patient outcomes remains. Almost 62667 died of this
malignancy in 2018 [2]. The prognosis of BRCA is affected
by multiple factors including age, tumor size, grade, lymph
node involvement, histology, hormone-receptor status,
HER-2 status, and positive margins [3]. Many clinical predic-
tion models for predicting patient prognosis and disease-free
survival have been proposed, mainly focusing on age at diag-
nosis; post-menopausal status; ER, HER-2, and ki-67 status;
tumor size; lymph node involvement; metastasis; and thera-
peutic strategy [4–7]. These models are difficult to implement

in clinical practice due to incomplete diagnostic characteris-
tics and model limitations.

Next-generation sequencing (NGS) allows continuing
identification of biomarkers for tumor diagnosis and progno-
sis. Such models increasingly focus on mRNA, miRNA, and
lncRNA. Li et al. [8] used NGS data available in several data-
bases, including the Geno Expression Omnibus (GEO), the
Cancer Genome Atlas (TCGA), the Human Protein Atlas,
and the International Cancer Genome Consortium, to con-
struct a six-gene model (SQSTM1, AHSA1, VNN2, SMG5,
SRXN1, and GLS) to assist clinicians in selecting personal-
ized treatment for patients with hepatocellular carcinoma.
Shi et al. [9], using the TCGA, identified a five-lncRNA sig-
nature model (AC069513.4, AC003092.1, CTC-205M6.2,
RP11-507K2.3, and U91328.21) to inform the prognosis of
patients with clear cell renal cell carcinoma. Lv et al. [10]
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constructed a six-mRNA signature model (TMEM252,
PRB2, SMCO1, IVL, SMR3B, and COL9A3) that may aid
prognosis for patients with triple-negative BRCA. Zhu et al.
[11] built a four-lncRNA signature model (PVT1, MAPT-
AS1, LINC00667, and LINC00938) to predict BRCA survival,
but the AUC value for the time-dependent receiver operation
characteristic (ROC) curve was only 0.64. To date, few stud-
ies of multi-lncRNA signatures in BRCA are available, and
functions and mechanisms of lncRNA in BRCA have yet to
be explored.

In this study, we deeply mined and analyzed high-
throughput sequencing data and clinical characteristics from
the TCGA. We subsequently developed a ten-lncRNA signa-
ture model that effectively predicts BRCA survival and dem-
onstrated its independence from clinical factors.

2. Material and Methods

2.1. Data Source. The RNA-seq data and corresponding
clinical information were mined from TCGA: http://

cancergenome.nih.gov/). As of December 2019, 1164 clinical
samples and relevant gene expression information were
obtained. BACA samples with repeated or incomplete prog-
nostic information were eliminated. Ultimately, 1035 BRCA
samples and 111 normal samples were collected for the con-
struction of the model and coexpression analysis. TCGA is an
open public database and, ethics approval was not needed for
the study.

2.2. Identification of Differentially Expressed lncRNA. RNA
count data were obtained from the TCGA data portal, and
expression levels of lncRNA and mRNA were determined
using Reads Per Kilobase of exons per Million mapped Reads
(RPKM). Potential lncRNAwere identified based on (1) tran-
scriptome sequences mapped in corresponding lncRNA
rather than protein-coding regions, (2) transcriptome
sequences annotated in GENCODE data, and (3) transcrip-
tion sequences expressed in at least half of BRCA tissues.
The expression profile of lncRNA was defined as mean
RPKM ≥ 0:1 of 1146 BRCA samples. Finally, a total of 6129
lncRNA were enrolled. Differentially expressed lncRNA were
identified using the R software “edgeR” package.

2.3. Statistical Analysis and Definition of the lncRNA-Related
Prognostic Model. BRCA samples (1035 sequences) were ran-
domly divided into a training set (n = 518) and a test set
(n = 517). The Univariate Cox regression analysis was used
to examine associations among lncRNA expression levels
and overall survival (OS) in the training set. lncRNA were
considered significant when p values were <0.05. These
sequences were then used for the stepwise multivariate Cox
regression analysis, using the R package “survival” (choose
a model by AIC in a stepwise algorithm) [12–14]. Based on
expression levels and coefficients (β) from multivariate Cox
proportional hazards regression analysis, a novel ten-
lncRNA-based prognostic risk score formula was defined
[13–16]. The risk score formula was as follows:

risk score = 〠
N

i=1
Expi × βi: ð1Þ

A risk score for each patient in the training set was then
calculated. BRCA patient samples can be divided into high-
risk and low-risk groups, respectively, based on the median
risk score as a cutoff. The Kaplan–Meier survival curve and
the log-rank test were used to assess the prognostic value of
the risk score using the R package “survival.”

The receiver operation characteristic (ROC) curve analy-
sis within 3- and 5-year, using the R package “survivalROC,”
compared sensitivity and specificity of survival predictions.
Subsequently, we compared model predictions with tradi-
tional clinical risk factors (age, risk, stage, metastasis, tumor
size, and lymph node involvement) using the univariate
and multivariate Cox analysis. We also reassessed the rela-
tionship between risk level and clinical characteristics using
the chi-square test. p < 0:05 was considered statistically sig-
nificant. All data were analyzed using R scripts (version
3.6.1). All the figures were plotted by ggplot2 (version 3.2.1).

Table 1: Demographic characteristics of 1035 breast cancer
patients.

Characteristic
Training Test Entire

Set (n = 518) Set (n = 517) Set (n = 1035)
Age (years)

Mean 58.3 58.13 58.21

<50 143 144 287

≥50 375 373 748

Clinical stage

I 86 87 173

II 307 291 598

III 113 127 240

IV 12 12 24

T stage

T1 136 133 269

T2 304 298 602

T3 62 66 128

T4 16 20 36

N stage

N0 237 247 484

N1 185 166 351

N2 67 56 123

N3 29 48 77

M stage

M0 506 505 1011

M1 12 12 24

Vital status

Living 437 454 891

Dead 81 63 144

OS time (years)

Mean 17.99 18.52 18.26

Range 0-20.42 0-20.42 0-20.42

Age: the age of patient at diagnosis; OS time: overall survival time.
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2.4. Functional Enrichment Analysis. To explore functional
implications of lncRNA, Spearman’s correlation coefficients
were calculated between related lncRNA and protein-
coding genes. Related protein-coding genes were screened
for functional enrichment analysis. We subsequently per-

formed GO analysis and the Kyoto Encyclopedia of Genes
and Genome (KEGG) pathway enrichment analysis of differ-
ential expression protein-coding genes using the Database
for Annotation, Visualization, and Integration Discovery
(DAVID version 6.7).
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Figure 1: The volcano diagram of differentially expresses lncRNA between breast cancer tissue and normal tissue samples. Red dots represent
upregulated lncRNA, and blue dots represent downregulated lncRNA. Cutoff for |log2 (fold change)| is 2, FDR < 0:001.

Table 2: 32 survival-related lncRNA were obtained based on univariate Cox regression (p < 0:05).

Name Coef HR p value Name Coef HR p value

ST8SIA6-AS1 0.09034361 1.0945503 0.026243 RP11-909N17.2 -0.20319 0.81612 0.019443

LINC01208 0.12624424 1.1345592 0.034391 RP11-320N21.2 0.237757 1.268401 0.018486

RP11-127O4.3 0.11482258 1.1216744 0.027422 MAFA-AS1 -0.26894 0.764193 0.006172

RP11-148B18.3 -0.1436104 0.8662251 0.028363 LA16c-325D7.1 -0.18608 0.830209 0.043436

RP11-95M15.1 0.13719873 1.1470561 0.041031 CTC-297N7.9 0.254558 1.289891 0.049002

LINC01105 0.14482779 1.1558405 0.009837 MAPT-AS1 -0.10879 0.896916 0.033228

RP11-644C3.1 0.18463926 1.2027845 0.009652 LINC00668 0.125025 1.133177 0.009984

AC011294.3 0.19606627 1.2166075 0.042138 RP5-1028K7.2 -0.21427 0.80713 0.021088

AC061961.2 -0.1268231 0.8808895 0.018243 RP11-806H10.4 -0.27203 0.761831 0.005325

RP5-1011O1.3 0.1777658 1.1945455 0.004379 RP11-127I20.5 -0.20671 0.813254 0.04301

RP11-320N21.1 0.20684929 1.2297972 0.035183 RP3-395M20.12 -0.23466 0.79084 0.008974

RP11-386B13.4 0.1560986 1.1689415 0.047225 CTA-384D8.34 -0.25528 0.774697 0.005498

LINC01234 0.16039376 1.173973 0.021267 RP13-49I15.6 -0.2677 0.765138 0.037547

BMPR1B-AS1 -0.1032851 0.9018698 0.030654 CTD-3001H11.2 -0.23828 0.787981 0.034354

LINC00989 0.45410227 1.574759 0.023186 CTC-276P9.4 0.260139 1.29711 0.017559

RP11-696F12.1 -0.3033194 0.7383632 0.043388 MAPT-IT1 -0.19551 0.822418 0.03155

HR: hazard ratio. Coef: coefficient.
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Figure 2: Forest plot of the ten-lncRNA signature risk model. Coef: coefficient; P: p value; HR: hazard ratio; N : samples in the training set;
AIC: Akaike information criterion.
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Figure 3: Calibration curve of the prognostic model. The gray line indicates the ideal plot for the calibration curve. 3-year: 3-year overall
survival predicted probability by model. 5-year: 5-year overall survival predicted probability by model. The bootstrap method was performed.
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3. Results

3.1. Differentially Expressed lncRNA and Clinical
Characteristic. We analyzed specific baseline clinical charac-
teristics of 1035 BRCA patients (Table 1). We selected
lncRNA expression profiles from raw RNA-seq expression
data, and then, differentially expressed lncRNA between
BRCA samples and normal samples were identified follow-
ing ∣log2 fold change ðlog 2FCÞ ∣ >2 and false discovery rate
ðFDRÞ < 0:001. This analysis recognized 406 upregulated
lncRNA and 115 downregulated lncRNA (Figure 1).

3.2. Identification of lncRNA Associated with the OS of
Patients from the Training Set and Validated in Test Set and
Entire Sets. The training set was first analyzed to identify pos-
sible prognostic lncRNA; then, the test and entire sets were
used for validation. We performed univariate and multivari-
ate Cox regression analysis to identify correlation among dif-
ferentially expressed lncRNA and OS of BRCA patients using
the training set. Finally, 32 of the 521 differentially expressed

lncRNA were found to be associated with survival time
(p < 0:05) by performing univariate Cox regression analysis
(Table 2). In addition, a prognostic model, composed of 10
lncRNA, was established by performing a stepwise multivari-
ate Cox proportional hazard regression model (Figure 2). risk
score = ð0:12 × expression level of “LINC01208”Þ + ð0:19 ×
expression level of “RP5 − 1011O1:3”Þ + ð0:14 × expression
level of “LINC01234”Þ + ð0:49 × expression level of “LINC
00989”Þ + ð−0:35 × expression level of “RP11 − 696F12:1”Þ +
ð−0:19 × expression level of “RP11 − 909N17:2”Þ + ð0:31 ×
expression level of “CTC − 297N7:9”Þ + ð−0:33 × expression
level of “CTA − 384D8:34”Þ + ð0:36 × expression level of “

CTC − 276P9:4”Þ + ð−0:19 × expression level of “MAPT − IT
1”Þ. The C-index for model was 0.712 (CI 0.686-0.740), and
the calibration curve showed good performance for the
prognostic model (Figure 3).

Patients in the training set were classified into high-risk
groups and low-risk groups using median risk score (0.938)
as a cutoff. The survival rate of the high-risk group was
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Figure 4: The ten-lncRNA-related risk score model predicts the OS of patients with BRCA in the training set, test set, and entire set. The
Kaplan–Meier survival curves show a correlation between the expression of ten-lncRNA signature and overall survival of patients (a–c).
ROC curves show the sensitivity and specificity of the ten-lncRNA signature in predicting 3- and 5-year survival rate (d–f). ROC curve:
receiver operating characteristic curve. AUC: area under curve. These curves were performed by R package “survival,” “survivalROC,” and
“ggplot2”.
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significantly lower than the low-risk group in the Kaplan–
Meier method and the log-rank test (Figure 4(a)). Subse-
quently, the prognostic ability of the model was assessed by
calculating AUC of the time-dependent ROC curve. Gener-
ally, an AUC from 0.7 to 0.9 is deemed reliable. The AUC
value of the training set was 0.760 in 3 years, 0.746 in 5 years
(Figure 4(d)), indicating that the ten-lncRNA signature
model shows high sensitivity and specificity.

We next validated our ten-lncRNA signature model with
test and entire data sets. We again used risk scores for all
patients in test and entire sets and divided patients into high-
and low-risk groups based on the same threshold from the
training set. Again, we found that survival rate of the high-
risk group was significantly lower than the low-risk group in
both test and entire sets. (Figures 4(b) and 4(c)). Time-
dependent ROC curve analysis for the ten-lncRNA signature
model achieved an AUC score of 0.717 in both 3- and 5-year
for the test set, and the AUC score of the entire set was
0.741 in 3 years and 0.732 in 5 years, respectively
(Figures 4(e) and 4(f)).

3.3. Independence of the Ten-lncRNA Signature and Other
Clinical Variables. We assessed whether survival prediction
based on the 10-lncRNA signature model was independent
of clinical characteristics. Univariate Cox regression analysis
indicated that age, tumor status, N status, M status, and risk
score were significantly related to OS in the entire set. Also,
the multivariate Cox analysis indicated that risk score and
M status show outstanding independent prognostic value,

both with p < 0:001 (Table 3). Further, based on χ2 tests,
the risk level had no association with age, stage, metastasis,
tumor size, and lymph node involvement (Table 4). Collec-
tively, our study demonstrates that the ten-lncRNA signature
prognostic model is a robust tool for predicting the prognosis
of BRCA patients.

3.4. Functional Characteristic of Ten Prognostic lncRNA. Bio-
logical functions of lncRNA remain unclear, but the expres-
sion of lncRNA is remarkably correlated with neighboring
protein-coding genes. We obtained expression profiles of
protein-coding genes from raw RNA-seq data and extracted
corresponding protein-coding genes with ten lncRNA.
Spearman’s correlation coefficients with ∣COR ∣ >0:5 and p
< 0:05 as the cutoff yielded 1178 protein-coding genes for
stepwise functional enrichment analysis.

The GO function and KEGG pathway enrichment analy-
sis of protein-coding genes used DAVID bioinformatics
resources 6.7. BP results showed that protein-coding genes
were enriched for signal transduction, immune response,
inflammatory response, and positive regulation of transcrip-
tion from RNA polymerase II promoter (Figure 5(a)). Char-
acteristics of enrichment in MF were primarily
transmembrane signaling receptor activity, protein binding,
protein homodimerization activity, calcium ion binding,
and receptor binding (Figure 5(b)). For CC analysis, genes
were enriched in integral components of the plasma mem-
brane, integral components of membranes, plasma mem-
brane, extracellular exosome, and external side of the

Table 3: Univariate and multivariate Cox regression analyses in the training, test, and entire set.

Variables
Univariable analysis Multivariable analysis

HR 95% CI of HR p value HR 95% CI of HR p value

Training set (n = 518)
Age 1.021 1.004-1.038 0.014 1.016 0.999-1.034 0.055

T stage 1.574 1.183-2.094 0.002 1.166 0.812-1.674 0.405

N stage 1.588 1.275-1.979 <0.001 1.269 0.893-1.803 0.183

M stage 8.277 4.132-16.582 <0.001 3.647 1.354-9.825 0.011

Stage 2.202 1.616-2.999 <0.001 1.099 0.585-2.063 0.769

Ten-lncRNA risk score 4.203 2.462-7.176 <0.001 3.775 2.202-6.471 <0.001
Testing set (n = 517)

Age 1.013 0.994-1.032 0.170

T stage 1.312 0.947-1.819 0.103

N stage 1.337 1.062-1.682 0.013 1.113 0.758-1.635 0.585

M stage 12.332 6.231-24.408 <0.001 11.382 3.605-35.933 <0.001
Stage 2.068 1.452-2.946 <0.001 1.078 0.568-2.048 0.818

Ten-lncRNA risk score 2.885 1.636-5.088 <0.001 3.196 1.803-5.668 <0.001
Entire set (n = 1035)

Age 1.018 1.005-1.030 0.006 1.017 1.005-1.030 0.007

T stage 1.445 1.166-1.791 <0.001 1.068 0.823-1.385 0.620

N stage 1.445 1.235-1.691 <0.001 1.152 0.894-1.483 0.274

M stage 10.125 6.233-16.450 <0.001 6.202 2.882-13.349 <0.001
Stage 2.1347 1.691-2.696 <0.001 1.168 0.727-1.876 0.522

Ten-lncRNA risk score 3.5227 2.388-5.196 <0.001 3.396 2.298-5.018 <0.001
HR: hazard ratio. CI: confidence interval.
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plasma membrane (Figure 5(c)). Also, results from the
KEGG pathway analysis were enriched for cytokine-
cytokine receptor interaction, cell adhesion molecules
(CAMs), calcium signaling pathway, transcriptional dysregu-
lation in cancer, and HTLV-I infection (Figure 5(d)).

4. Discussion

High-throughput sequencing technology produces increas-
ing amounts of sequencing data for studies of cancer diagno-
sis, therapy, and prognosis [17]. Current studies focus on
ncRNA associated with cancer, especially lncRNA. Some
studies confirm that lncRNA plays a crucial role in th4e
occurrence and progress of tumors, such as gastric [18],
colon [19], and BRCAs [20].

In the present study, we downloaded RNA-seq data and
clinically relevant information related to BRCA from the
TCGA database. We obtained 1164 clinical samples and cor-
responding gene expression information. A total of 521 dif-
ferently expression lncRNA involved in BRCA were pulled
from the TCGA database, including 406 upregulated and
115 downregulated genes. Subsequently, univariate and mul-
tivariate Cox regression analyses identified correlations
among differentially expressed lncRNA and OS in a training
set. These correlations were used to establish a risk model for
predicting BRCA prognosis. A 10-lncRNA signature risk

prediction model (LINC01208, RP5-1011O1.3, LINC01234,
LINC00989, RP11-696F12.1, RP11-909N17.2, CTC-
297N7.9, CTA-384D8.34, CTC-276P9.4, and MAPT-IT1)
was produced. Patients were subdivided into high- and low-
risk groups based on the median risk score. Three-year
AUC values for the time-dependent ROC curve in the train-
ing, test, and entire sets were 0.760, 0.717, and 0.741, respec-
tively, indicating outstanding performance in survival
prediction. Recently, Zhu et al. [11] and Li et al. [21] have
proposed a breast cancer prognosis model based on RNA-
seq, and three-year AUC values of their models are 0.641
and 0.711 in the training set, respectively. Therefore, the per-
formance of our model outperforms these two models. We
also compared the risk model and clinical parameters (age,
stage, metastasis, tumor size, and lymph node involvement)
using univariate and multivariate Cox analysis. The prognos-
tic value of the model was independent of other clinical fac-
tors in BRCA, but the functional relationship between risk
score and tumor development was unclear.

Previously, Liao et al. [22] showed that LINC01234
knockdown suppressed cell proliferation, migration, and
invasion of colorectal cancer cells, while blocking the cell
cycle and inducing cell apoptosis. Chen et al. [23] found that
LINC01234 functioned as a ceRNA for miR-304-5p, result-
ing in derepression of its endogenous target core-binding fac-
tor. In addition, Chen et al. [24] found that LINC01234

Table 4: The relationship between clinical parameters and risk score.

Subgroup
Training set Test set Entire set

High risk Low risk p value High risk Low risk p value High risk Low risk p value

Age (years) 0.492 0.626 0.407

<50 68 75 73 71 141 146

≥50 191 184 198 175 389 359

T stage 0.71 0.901 0.481

T1 65 71 68 65 133 136

T2 154 150 157 141 311 291

T3 30 32 34 32 64 64

T4 10 6 12 8 22 14

N stage 0.547 0.819 0.547

N0 111 126 129 118 240 244

N1 95 90 84 82 179 172

N2 37 30 30 26 67 56

N3 16 13 28 20 44 33

M stage 0.243 0.678 0.263

M0 251 255 264 241 515 496

M1 8 4 7 5 15 9

Clinical stage 0.378 0.868 0.525

I 40 46 43 44 83 90

II 149 158 156 135 305 293

III 62 51 65 62 127 113

IV 8 4 7 5 15 9

Vital status <0.001 <0.001 <0.001
Living 195 242 224 230 419 472

Dead 64 17 47 16 111 33

Chi-square test was used.
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expression is increased in non-small-cell lung cancer tissues,
and its upregulation is associated with metastasis and shorter
survival. Downregulation of LINC01234 impairs cell migra-
tion and invasion in vitro and inhibits cell metastasis
in vivo by serving as a competing endogenous RNA for the
miR-340-5p and miR-27b-3p; LINC01234 also affects
RNA-binding proteins LSD1 and EZH2, leading to histone
modification and transcriptional repression of antiprolifera-
tive gene BTG2 [24, 25]. In another study, Wang et al. [12]
found that the expression of RP11-909N17.2 is positively
associated with colorectal cancer outcomes and prognosis;
in our study, RP11-909N17.2 is a protective factor in BRCA
prognosis. This discrepancy requires further study.

LINC00989 and MAPI-IT1 are associated with congeni-
tal diseases [26, 27], and their relationship with cancer
remains unclear. No studies have reported associations
between LINC01208, RP5-1-11O1.3, RP11-696F12.1, CTC-
297N7.9, CTA-384D8.34, CTC-276P9.4, and cancer, but we
speculate that these lncRNA may be involved in BRCA
tumorigenesis. More research effort is necessary to test this
hypothesis.

Many issues remain to be addressed. First, we only down-
load data from the TCGA database. More data are available
in other databased that could prove valuable for the risk
model. Second, lncRNA play important roles in the occur-
rence and progress of tumors, but the function of lncRNA
in the signature is unclear. Additional experimental study

of these lncRNA may help understand functional mecha-
nisms and thus the functional basis for the ten lncRNA for
prognosis of BRCA.

5. Conclusions

We identified differentially expressed gene associated with
the pathogenesis of breast cancer and constructed a ten
lncRNA prognostic model to predict prognosis of patients
with BRCA. The prognostic model presented a good perfor-
mance in 3- and 5-year OS prediction. Functional mecha-
nisms of these lncRNA have not yet been investigated.
Prospective studies are needed to further validate the utility
of the ten-lncRNA prognostic model.

Data Availability

The raw data and relevant R code used to support the find-
ings of this study are recorded in https://github.com/
zhouwenqing789/TCGA-MODEL-LCNRNA-BRCA.git
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Figure 5: Top 10 potential biological functions of the protein-coding genes associated with ten lncRNA according to p < 0:05. (a) BP:
biological process. (b) MF: molecular function. (c) CC: cellular component. (d) KEGG: Kyoto Encyclopedia of Genes and Genomes.
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