Table 5.
Description of deep learning classifiers, target, and parameter settings used in the experiments.
| Deep learning classifiers | Targets | Parameter values | |
| Vaping-related word vectors | |||
|
|
CNNa | Relevance | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, filters: 100, kernel_size: 1, epochs: 5, batch_size: 16 |
|
|
LSTMb | Relevance | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, epochs: 10, batch_size: 16 |
|
|
LSTM-CNN | Relevance | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, filters: 50, kernel_size: 2, epochs: 10, batch_size: 16 |
|
|
BiLSTMc | Relevance | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, epochs: 10, batch_size: 16 |
|
|
CNN | Commercial | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, filters: 100, kernel_size: 2, epochs: 10, batch_size: 16 |
|
|
LSTM | Commercial | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, epochs: 5, batch_size: 32 |
|
|
LSTM-CNN | Commercial | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, filters: 75, kernel_size: 2, epochs: 5, batch_size: 16 |
|
|
BiLSTM | Commercial | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, epochs: 5, batch_size: 64 |
|
|
CNN | Sentiment | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, filters: 100, kernel_size: 2, epochs: 10, batch_size: 32 |
|
|
LSTM | Sentiment | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, epochs: 5, batch_size: 64 |
|
|
LSTM-CNN | Sentiment | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: adam, filters: 75, kernel_size: 3, epochs: 5, batch_size: 64 |
|
|
BiLSTM | Sentiment | max_features: 166,395, embed_size: 300, max_len: 75, optimizer: rmsprop, epochs: 5, batch_size: 32 |
| Global Vectors for Word Representation word vectors | |||
|
|
CNN | Relevance | max_features: 15,890, embed_size: 200, max_len: 75, optimizer: adam, filters: 100, kernel_size: 2, epochs: 10, batch_size: 16 |
|
|
LSTM | Relevance | max_features: 15,890, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 32 |
|
|
LSTM-CNN | Relevance | max_features: 15,890, embed_size: 200, max_len: 75, optimizer: adam, filters: 50, kernel_size: 2, epochs: 10, batch_size: 16 |
|
|
BiLSTM | Relevance | max_features: 15,890, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 64 |
|
|
CNN | Commercial | max_features: 10,842, embed_size: 200, max_len: 75, optimizer: rmsprop, filters: 50, kernel_size: 2, epochs: 5, batch_size: 16 |
|
|
LSTM | Commercial | max_features: 10,842, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 16 |
|
|
LSTM-CNN | Commercial | max_features: 10,842, embed_size: 200, max_len: 75, optimizer: adam, filters: 75, kernel_size: 2, epochs: 5, batch_size: 32 |
|
|
BiLSTM | Commercial | max_features: 10,842, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 64 |
|
|
CNN | Sentiment | max_features: 7979, embed_size: 200, max_len: 75, optimizer: rmsprop, filters: 100, kernel_size: 3, epochs: 5, batch_size: 64 |
|
|
LSTM | Sentiment | max_features: 7979, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 32 |
|
|
LSTM-CNN | Sentiment | max_features: 7979, embed_size: 200, max_len: 75, optimizer: rmsprop, filters: 75, kernel_size: 1, epochs: 10, batch_size: 64 |
|
|
BiLSTM | Sentiment | max_features: 7979, embed_size: 200, max_len: 75, optimizer: adam, epochs: 5, batch_size: 32 |
aCNN: convolutional neural network.
bLSTM: long short-term memory.
cBiLSTM: bidirectional long short-term memory.