Skip to main content
. 2020 Aug 12;22(8):e17478. doi: 10.2196/17478

Table 6.

Performance of relevance classifiers.

Classifiers Area under the receiver operating
characteristic curve (95% CI)
Precision Recall F1
Logistic regression 0.84 (0.78-0.89) 0.80 1.00 0.92
Random forest 0.95 (0.93-0.98) 0.93 0.97 0.98
Support vector machine 0.92 (0.88-0.96) 0.91 0.97 0.95
Naive Bayes 0.88 (0.83-0.93) 0.88 0.99 0.93
CNNa (vaping-related word vectors) 0.94 (0.91-0.97) 0.90 0.97 0.98
LSTMb (vaping-related word vectors) 0.91 (0.88-0.95) 0.89 0.98 0.96
LSTM-CNN (vaping-related word vectors) 0.89 (0.85-0.93) 0.93 0.87 0.95
BiLSTMc (vaping-related word vectors) 0.89 (0.85-0.94) 0.90 0.96 0.94
CNN (GloVed word vectors) 0.95 (0.92-0.97) 0.93 0.95 0.98
LSTM (GloVe word vectors) 0.95 (0.92-0.98) 0.95 0.95 0.98
LSTM-CNN (GloVe word vectors) 0.96 (0.93-0.98) 0.96 0.93 0.98
BiLSTM (GloVe word vectors) 0.95 (0.93-0.98) 0.92 0.96 0.98

aCNN: convolutional neural network.

bLSTM: long short-term memory.

cBiLSTM: bidirectional long short-term memory.

dGloVe: Global Vectors for Word Representation.