Table 6.
Performance of relevance classifiers.
| Classifiers | Area under the receiver operating characteristic curve (95% CI) |
Precision | Recall | F1 |
| Logistic regression | 0.84 (0.78-0.89) | 0.80 | 1.00 | 0.92 |
| Random forest | 0.95 (0.93-0.98) | 0.93 | 0.97 | 0.98 |
| Support vector machine | 0.92 (0.88-0.96) | 0.91 | 0.97 | 0.95 |
| Naive Bayes | 0.88 (0.83-0.93) | 0.88 | 0.99 | 0.93 |
| CNNa (vaping-related word vectors) | 0.94 (0.91-0.97) | 0.90 | 0.97 | 0.98 |
| LSTMb (vaping-related word vectors) | 0.91 (0.88-0.95) | 0.89 | 0.98 | 0.96 |
| LSTM-CNN (vaping-related word vectors) | 0.89 (0.85-0.93) | 0.93 | 0.87 | 0.95 |
| BiLSTMc (vaping-related word vectors) | 0.89 (0.85-0.94) | 0.90 | 0.96 | 0.94 |
| CNN (GloVed word vectors) | 0.95 (0.92-0.97) | 0.93 | 0.95 | 0.98 |
| LSTM (GloVe word vectors) | 0.95 (0.92-0.98) | 0.95 | 0.95 | 0.98 |
| LSTM-CNN (GloVe word vectors) | 0.96 (0.93-0.98) | 0.96 | 0.93 | 0.98 |
| BiLSTM (GloVe word vectors) | 0.95 (0.93-0.98) | 0.92 | 0.96 | 0.98 |
aCNN: convolutional neural network.
bLSTM: long short-term memory.
cBiLSTM: bidirectional long short-term memory.
dGloVe: Global Vectors for Word Representation.