Skip to main content
. 2020 Aug 12;22(8):e17478. doi: 10.2196/17478

Table 7.

Performance of commercial classifiers.

Classifiers Area under the receiver operating
characteristic curve (95% CI)
Precision Recall F1
Logistic regression 0.98 (0.95-0.99) 0.93 0.83 0.96
Random forest 0.97 (0.96-0.99) 0.95 0.82 0.97
Support vector machine 0.98 (0.91-0.99) 0.92 0.86 0.92
Naive Bayes 0.96 (0.94-0.99) 0.83 0.89 0.92
CNNa (vaping-related word vectors) 0.98 (0.96-0.99) 0.93 0.75 0.94
LSTMb (vaping-related word vectors) 0.97 (0.95-0.99) 0.88 0.81 0.94
LSTM-CNN (vaping-related word vectors) 0.97 (0.94-0.99) 0.92 0.85 0.94
BiLSTMc (vaping-related word vectors) 0.98 (0.96-0.99) 0.84 0.87 0.95
CNN (GloVed word vectors) 0.99 (0.98-0.99) 0.93 0.89 0.98
LSTM (GloVe word vectors) 0.99 (0.98-0.99) 0.89 0.94 0.98
LSTM-CNN (GloVe word vectors) 0.99 (0.98-0.99) 0.86 0.96 0.99
BiLSTM (GloVe word vectors) 0.99 (0.98-0.99) 0.97 0.88 0.98

aCNN: convolutional neural network.

bLSTM: long short-term memory.

cBiLSTM: bidirectional long short-term memory.

dGloVe: Global Vectors for Word Representation.