Table 8.
Performance of sentiment classifiers.
| Classifiers | Area under the receiver operating characteristic curve (95% CI) |
Precision | Recall | F1 |
| Logistic regression | 0.78 (0.71-0.84) | 0.73 | 0.88 | 0.82 |
| Random forest | 0.78 (0.70-0.83) | 0.78 | 0.79 | 0.82 |
| Support vector machine | 0.69 (0.64-0.78) | 0.66 | 0.98 | 0.75 |
| Naive Bayes | 0.75 (0.66-0.82) | 0.75 | 0.79 | 0.80 |
| CNNa (vaping-related word vectors) | 0.74 (0.66-0.81) | 0.73 | 0.85 | 0.80 |
| LSTMb (vaping-related word vectors) | 0.74 (0.69-0.82) | 0.75 | 0.81 | 0.81 |
| LSTM-CNN (vaping-related word vectors) | 0.75 (0.71-0.84) | 0.74 | 0.91 | 0.83 |
| BiLSTMc (vaping-related word vectors) | 0.74 (0.68-0.81) | 0.72 | 0.91 | 0.82 |
| CNN (GloVed word vectors) | 0.81 (0.75-0.87) | 0.72 | 0.96 | 0.86 |
| LSTM (GloVe word vectors) | 0.78 (0.71-0.84) | 0.76 | 0.82 | 0.84 |
| LSTM-CNN (GloVe word vectors) | 0.80 (0.74-0.86) | 0.83 | 0.84 | 0.84 |
| BiLSTM (GloVe word vectors) | 0.83 (0.78-0.89) | 0.79 | 0.79 | 0.88 |
aCNN: convolutional neural network.
bLSTM: long short-term memory.
cBiLSTM: bidirectional long short-term memory.
dGloVe: Global Vectors for Word Representation.