Skip to main content
. 2020 Aug 12;22(8):e17478. doi: 10.2196/17478

Table 8.

Performance of sentiment classifiers.

Classifiers Area under the receiver operating
characteristic curve (95% CI)
Precision Recall F1
Logistic regression 0.78 (0.71-0.84) 0.73 0.88 0.82
Random forest 0.78 (0.70-0.83) 0.78 0.79 0.82
Support vector machine 0.69 (0.64-0.78) 0.66 0.98 0.75
Naive Bayes 0.75 (0.66-0.82) 0.75 0.79 0.80
CNNa (vaping-related word vectors) 0.74 (0.66-0.81) 0.73 0.85 0.80
LSTMb (vaping-related word vectors) 0.74 (0.69-0.82) 0.75 0.81 0.81
LSTM-CNN (vaping-related word vectors) 0.75 (0.71-0.84) 0.74 0.91 0.83
BiLSTMc (vaping-related word vectors) 0.74 (0.68-0.81) 0.72 0.91 0.82
CNN (GloVed word vectors) 0.81 (0.75-0.87) 0.72 0.96 0.86
LSTM (GloVe word vectors) 0.78 (0.71-0.84) 0.76 0.82 0.84
LSTM-CNN (GloVe word vectors) 0.80 (0.74-0.86) 0.83 0.84 0.84
BiLSTM (GloVe word vectors) 0.83 (0.78-0.89) 0.79 0.79 0.88

aCNN: convolutional neural network.

bLSTM: long short-term memory.

cBiLSTM: bidirectional long short-term memory.

dGloVe: Global Vectors for Word Representation.