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Abstract

Aging is a modifiable risk factor for most chronic diseases and an inevitable process in humans. 

The development of pharmacological interventions aimed at delaying or preventing the onset of 

chronic conditions and other age-related diseases has been at the forefront of the aging field. 

Preclinical findings have demonstrated that species, sex and strain confer significant heterogeneity 

on reaching the desired health- and lifespan-promoting pharmacological responses in model 

organisms. Translating the safety and efficacy of these interventions to humans and the lack of 

reliable biomarkers that serve as predictors of health outcomes remain a challenge. Here, we will 

survey current pharmacological interventions that promote lifespan extension and/or increased 

healthspan in animals and humans, and review the various anti-aging interventions selected for 

inclusion in the NIA’s Interventions Testing Program as well as the ClinicalTrials.gov database 

that target aging or age-related diseases in humans.
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1. Introduction

Aging has been recognized as a risk factor for most chronic diseases. It is an inevitable 

progression towards dysfunction and ultimately death across most living organisms, 

especially mammals. With aging, there is accumulation of damage that leads to an increase 

in disease vulnerability and death. However, despite years of intense research, the exact 

underlying mechanisms that govern aging processes remain poorly understood. Why and 

how we age still remains a mystery.

Most chronic diseases are multifactorial, polygenic and their clinical manifestations tend to 

emerge late in life (Fabbri et al., 2015; Ferrucci et al., 2018). The recent increase in life 

expectancy and the decline in birthrates account for the sharp rise in the number and 

proportion of older adults around the globe. In 2014, people 65 and older represented 14.5 % 

of the population, but by 2060, the number of elderly persons will double and outpace the 

number of children under age 5 (World Health Organization, 2015), which will cause a 

significant burden of age-related diseases on the economy in both developed and developing 

countries. This demographic change is already having an impact in individual healthcare 

costs, which will soon surpass 400$ billion dollars per year in the U.S. alone. In order to 

contain the escalating increase in health care spending, we must reduce the overall burden of 

disability and chronic disease.

Aging has long been considered a stochastic, inevitable process towards dyfunction and 

ultimately death (Hayflick, 2000). However, recent advances in the field of gerontology are 

showing that there are deterministic mechanisms that might be driving aging with some 

people aging at a slower rate than others. Therefore, aging should be viewed as adaptive and 

amenable to interventions aimed at extending health span and life span. Individuals with 

exceptional longevity often have delayed onset of age-related diseases and disabilities (Evert 

et al., 2003; Lipton et al., 2010), with a compression of morbidity and increased lifespan, 

living longer and healthier lives. Exceptional longevity and successful aging are only 20 % 

heritable (Murabito et al., 2012), while some of the main age-related chronic diseases, such 

as cancer (∼33 %) (Mucci et al., 2016), cardiovascular diseases (∼25–35 %) (Gluckman et 

al., 2016), dementia (i.e: Alzheimer’s Disease ∼70–79 %) (Selkoe, 1996; Barber, 2012) and 

others, are highly heritable (Zenin et al., 2019). External factors including environment, 

psychosocial impact, nutrition, and physical fitness all contribute to deterministic 

mechanisms of slower/faster aging (Shiels et al., 2019). As we age, our diminished ability to 

respond to stress renders us more susceptible to adverse health outcomes, leading to 

declining health and ultimately death. Rockwood and Mitnitski (2011) proposed that this 

increase in deficit accumulation could represent another way to define frailty.

Ferrucci and colleagues clustered the systemic consequences of the aging process into four 

main domains (Ferrucci et al., 2010): i) Body composition; ii) balance between energy 

availability and energy demand; iii) homeostatic dysregulation; and iv) neurodegeneration. 

Changes in these four domains of the aging phenotypes increase the susceptibility to 

diseases and reduce the resilience or functional reserve capacity, leading to a condition that 

is known as frailty and the development of the so-called “geriatric syndromes” (Ferrucci and 

Studenski, 2012). These syndromes, which include delirium, cognitive impairment, falls, 
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muscle atrophy (e.g. sarcopenia) and disability, are multifactorial and involve systemic 

changes in many parts of the body with adverse association of comorbidity with mortality. 

Some of the interventions presented herein target these four domains.

Recently, the landmark review by López-Otín helped conceptualize the hallmarks of aging 

by grouping of age-associated cellular and molecular mechanisms into three major 

categories known as ‘primary’, ‘antagonistic’, and ‘integrative’ hallmarks (Lopez-Otin et al., 

2013) (Fig. 1). Genomic instability, telomere attrition, epigenetic alteration, and loss of 

proteostasis are deemed as primary hallmarks, causally related to molecular damage during 

aging. Antagonistic hallmarks have a beneficial hormetic function and protective role when 

expressed at low levels, but detrimental effects might occur at high levels. These hallmarks 

include deregulated nutrient sensing, mitochondrial dysfunction, and cellular senescence. 

Lastly, stem cell exhaustion and altered intercellular communication, known as integrative 

hallmarks, are indicators of impaired processes at the molecular and cellular levels, and both 

indicate a loss of reserve capacity or resilience, ultimately producing the aging phenotypes 

described by Ferrucci et al. (2010) (Fig. 1). The integration of all these hierarchical levels 

has been defined as metrics of aging (Ferrucci et al., 2018). Therefore, the geriatric 

syndromes would be considered ‘phenotypic aging’, and the hallmarks of aging should be 

viewed as ‘biological aging’. Ultimately a desequilibrum in both levels will lead to changes 

in cognition and physical performance, known as ‘functional aging’, ending in frailty and a 

loss of resilience.

In the last two decades, major scientific advances in our understanding of aging processes 

were achieved in model organisms, which led to the discovery of conserved longevity 

pathways, as well as the development of genetic, nutritional, and pharmacological 

interventions that target them. It is likely that the same interventions may provide benefits 

only in select tissues, organisms, or individuals based on age, sex, and ethnicity (Bartke et 

al., 2019). In model organisms, lifespan extension is often accompanied by a reduction or 

delay in morbidity (Fontana et al., 2010). Many of the pro-longevity pathways are also 

implicated in tissue development and metabolic regulation, as restriction in calorie intake is 

considered a key modulator in the aging process (de Cabo et al., 2014; Mercken et al., 

2012). Drugs that mimic the effects of calorie restriction (CR) have shown life- and 

healthspan-extending properties through modulation of nutrient-sensing pathways, 

mitochondrial stress and antioxidant responses, and chromatin silencing (de Cabo et al., 

2014; Lopez-Otin et al., 2016).

One of the most active areas of research in aging focuses on the identification of novel 

pathways that regulate the underlying processes of aging in order to develop interventions 

aimed at delaying the onset and progression of chronic diseases, preservation of functional 

capacity, and postponing death. We surmise that increases in mean lifespan with 

compression of morbidity is an ambitious, yet achievable goal within our reach (Fries et al., 

2011; Ebeling et al., 2018), although translation of the advances made from model 

organisms to human clinical trials still remains a major challenge (Campisi et al., 2019). 

Nevertheless, there are multiple questions that persist on how to reverse or delay the 

dysregulation of biological systems that are implicated in age-associated phenotypic changes 

that lead to frailty and death. In this review, we considered pharmacological interventions 
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that lead to lifespan extension and/or increase or preservation of function in mammals and 

human by targeting the hallmarks of aging.

2. Interventions that delay aging

Several small molecules and dietary manipulations based on CR have been developed during 

the last two decades that target processes of aging. A number of compounds have been 

found to delay the onset of age-related diseases and increase healthspan and lifespan from 

yeast to mammals, including nonhuman primates (Fontana et al., 2010; Ravussin et al., 

2015; Mattison et al., 2017). These interventions target major signaling pathways whose 

dysregulation contributes to the emergence of aging phenotypes and disease. These 

compounds are generally considered CR mimetics that extend lifespan through an 

improvement of metabolic function, especially via mitochondrial metabolic reprogramming, 

and include drugs that target i) various growth factor signaling pathways; ii) insulin 

signaling pathway implicated in carbohydrate and fat metabolism; iii) NAD+-dependent 

sirtuins; iv) amino acid pathway; v) autophagy; vi) senescence; and vii) stem cells and 

rejuvenation factors. There are excellent recent reviews that have extensively covered the 

benefits of these CR-mimetic compounds and interventions (Fontana et al., 2010; Longo et 

al., 2015; Rizza et al., 2014; Fontana et al., 2012; Fontana and Partridge, 2015; de Cabo et 

al., 2014; Martin-Montalvo and de Cabo, 2013; Baur et al., 2012; Novelle et al., 2015; Pan 

and Finkel, 2017; Custodero et al., 2018; Gurau et al., 2018). Here, we present a brief 

overview of the beneficial effects that these drugs and interventions confer on the different 

hallmarks of aging.

2.1. Drugs targeting growth factor pathways

2.1.1. mTOR inhibitors, rapamycin, rapalogs and other—Rapamycin is an 

antifungal antibiotic that was first isolated from an Easter Island soil sample by Chang et al. 

(1991). Rapamycin has been approved by FDA for its immunosuppressive and anti-rejection 

properties (Camardo, 2003). Novel mTOR inhibitors, known as rapalogues, have the same 

molecular scaffold as rapamycin, but with different physiochemical properties (Lamming 

and Sabatini, 2013). The anti-cancer properties of rapamycin are associated with inhibition 

of the mammalian target of rapamycin (mTOR) through interaction with immunophilin 

FKBP12, which binds next to the kinase region of TOR, a serine/threonine kinase that is 

regulated by nutrients, growth factors, and the cellular energy status. TOR signals through 

two multiprotein complexes, termed mTORC1 and mTORC2, with distinct biological 

outcomes. Acute and chronic exposure to rapamycin has been shown to inhibit mTORC1 

whereas inhibition of mTORC2 requires long-term treatment with the drug (for review, see 

Li et al., 2014). The pro-longevity effects of rapamycin are conveyed through mTORC1 

whereas mTORC2 inactivation is believed to be responsible of the insulin resistance 

phenotype associated with rapamycin treatment (Saxton and Sabatini, 2017).

mTOR is considered a “metabolic master regulator” through its ability to regulate 

metabolism across metabolically active tissues, such as skeletal muscle, adipose tissue, liver 

and brain (Sengupta et al., 2010; Tsai et al., 2015; Lamming and Sabatini, 2013; Garelick 

and Kennedy, 2011). Inhibition of mTORC signaling can also have protective effects during 
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obesity and type 2 diabetes (Reifsnyder et al., 2018). The healthspan and lifespan extension 

properties of rapalogs stem from the lowering in mTOR signaling pathway activation 

triggered by insulin/IGF-1 axis, amino acids and glucose levels, all of which acting in 

concert to influence the cellular energy status (for review see Kennedy and Lamming, 2016). 

Pharmacological inhibition of TOR with rapamycin or other mTOR inhibitors promotes 

lifespan extension in yeast, worm, flies, and mice (Vellai et al., 2003; Cao et al., 2010; 

Robida-Stubbs et al., 2012), notably by impacting downstream mTORC1-regulated 

processes that include autophagy, lipid synthesis, mitochondrial metabolism, ribosomal 

biogenesis, and modulation of the senescence-associated secretory phenotype among others 

(Pan and Finkel, 2017). The pro-longevity effects of rapamycin are seen preferentially in 

females than males (Miller et al., 2014). Recently, it has been suggested that the effects of 

mTORC1 inhibitors, such as the rapalog RAD001, could be mediated by regulation of c-

Myc protein, with subsequent reduction in nephropathy lesions found in aged rats 

(Shavlakadze et al., 2018).

2.2. Drugs targeting insulin signaling pathways, carbohydrates and fat metabolism

2.2.1. Metformin—Metformin (N,N-dimethylbiguanide) belongs to the biguanide class 

of anti-diabetic drugs and is well tolerated compared to other drugs. Metformin is most 

commonly used as a first-line medication for type 2 diabetes by lowering hepatic glucose 

production and insulin resistance. The underlying mechanisms by which metformin inhibits 

hepatic gluconeogenesis remains unknown, although recent studies have shown that 

metformin could suppress gluconeogenesis by inhibiting mitochondrial glycerophosphate 

dehydrogenase (Madiraju et al., 2014) and by activation of a duodenal pathway dependent 

on AMP-activated protein kinase (AMPK) (Duca et al., 2015). One of the major clinical 

advantages of metformin is that it does not induce hypoglycemia or weight gain while 

correcting hyperglycemia and conferring CR-like benefits such as improvement in insulin 

sensitivity and AMPK activity and better antioxidant protection. The ability of metformin at 

improving healthspan and lifespan of drosophila, C. elegans and mice raises the possibility 

of metformin-based interventions to promote healthy aging in humans (Slack et al., 2012; 

Cabreiro et al., 2013; Martin-Montalvo et al., 2013; Novelle et al., 2016; Alfaras et al., 

2017). Metformin has been reported to abrogate DICER1-mediated cellular senescence by 

altering microRNA expression (Noren Hooten et al., 2016) and producing epigenetic 

modifications that regulate the expression levels of several microRNAs to confer protection 

against diabetes and cancer (Bridgeman et al., 2018). A 6-week treatment with metformin 

regulates several cellular processes (e.g., DNA repair) and metabolic pathways that include 

pyruvate metabolism, PPAR and SREBP signaling, and mitochondrial fatty oxidation in 

skeletal muscle and subcutaneous adipose tissue of older adults (Kulkarni et al., 2018). 

While neonatal exposure to metformin appears to slow aging down and prolongs lifespan in 

male mice (Anisimov et al., 2015), administration of the biguanide every other week when 

initiated in late-life leads to an overall improvement on health without an extension in 

lifespan as compared to control mice (Alfaras et al., 2017). Long-term metformin treatment 

has been found to lower the expression of the antioxidant regulator Nrf2 (Nfe2l2) and that of 

neurotrophic factors in the brain of old mice (Allard et al., 2016).
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Based on experimental evidences from cellular and animal studies, a recent clinical trial 

known as TAME (Targeting Aging with Metformin) will assess whether metformin can 

delay the onset and/or progression of age-related diseases beyond its effects on glucose 

metabolism. TAME plans to enroll 3000 subjects, ages 65–79, in 14 different centers across 

the U.S. (Barzilai et al., 2016). Intriguingly, recent studies have found that the combination 

of metformin with exercise opposes the exercise-induced benefits in insulin sensitivity, 

cardiorespiratory fitness, and mitochondrial adaptations to aerobic exercise in older adults 

(Malin et al., 2012; Konopka et al., 2019).

2.2.2. 17α -Estradiol—While the feminizing hormone 17β-estradiol (17β-E2) is the 

most biologically active and abundant estrogen in circulation, 17α-estradiol (17α-E2) is 

considered a non-feminizing hormone with reduced affinity for the estrogen receptor. 

Previous studies have shown that 17α-E2 can confer protection against oxidative stress and 

age-related degenerative brain disorders, such as Parkinson’s and Alzheimer’s diseases, and 

age related inflammation (Dykens et al., 2005; Santos et al., 2017). Exposure to 17α-E2 

reduces body weight and extends lifespan in male mice while mitigating metabolic and age-

related chronic inflammation (Stout et al., 2017). The fact that 17α-E2 extends longevity of 

male but not female mice suggests a sexual dimorphism in its effect on lifespan (Strong et 

al., 2016; Harrison et al., 2014) that is reminiscent of acarbose (Harrison et al., 2014). 

Gonadectomised male and female mice have shown the contribution of sex hormones as 

main regulators of sexual dimorphism toward the lifespan extension properties of 17α-E2 

and acarbose (Garratt et al., 2017). A recent study has shown that 17α-E2 treatment in male 

mice does not increase the contribution of protein synthesis to proteostatic processes in 

metabolically active tissues, contrary to what has been shown in energy-restricted models or 

long-lived organisms (Miller et al., 2019). Further studies are required to elucidate the 

molecular mechanism of 17α-E2 action.

2.2.3. Acarbose—Acarbose is an alpha-glucosidase inhibitor that inhibits intestinal 

digestion of carbohydrates. Used for more than 20 years to treat hyperglycemia and type 2 

diabetes, acarbose is considered a CR mimetic capable of lowering postprandial blood 

glucose levels as well as total cholesterol, triglycerides and low-density lipoprotein 

cholesterol levels while enhancing insulin sensitivity in mice (Yamamoto and Otsuki, 2006; 

Gentilcore et al., 2011; Santilli et al., 2010). As indicated above, acarbose extends median 

and maximal lifespan, and improves healthspan preferentially in male mice through an 

increase in fibroblast growth factor-21 (FGF21) and a decrease in insulin-like growth factor 

1 (IGF1) (Harrison et al., 2014). The exact mechanisms of acarbose action toward 

healthspan remain unclear.

2.2.4. Fibroblast growth factor-21—FGF21 is a member of the FGF superfamily 

involved in the endogenous regulation of glucose, lipid metabolism, and inflammation (Nies 

et al., 2016). This protein hormone attenuates growth hormone (GH)/IGF1 signaling and has 

been proposed as a therapeutic target for aging and age-related incidence of diabetes and 

obesity (Mendelsohn and Larrick, 2012). FGF21 delays endothelial replicative senescence 

by protecting cells from DNA damage and premature senescence through SIRT1 (Yan et al., 

2017). FGF21, via its co-receptor β-Klotho, crosses the blood brain barrier to reduce the 
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levels of insulin, inhibit growth, and increase corticosterone levels, thus potentially leading 

to the development of new treatments for obesity and metabolic disorders (Hsuchou et al., 

2007; Bookout et al., 2013). Transgenic overexpression of FGF21 extends lifespan in mice 

without reducing food intake or affecting either NAD+ metabolism or the regulation of 

mTOR signaling by AMPK (Zhang et al., 2012). Although the precise mechanism of action 

is poorly understood, FGF21 could affect longevity and healthspan through alterations of 

key metabolic pathways reminiscent of CR mimetics, e.g., improvement in cellular longevity 

through activation of autophagy, stress resistance, and survival signals while attenuating 

cellular growth and protein synthesis (Xie and Leung, 2017).

2.3. Drugs targeting the NAD+-dependent sirtuins

2.3.1. Resveratrol—Resveratrol (3,5,4′-trihydroxystilbene) is a polyphenol abundant in 

mulberries, peanuts, and the skin of red grapes. Supplementation of the normal diet with 

resveratrol extends lifespan and healthspan across a variety of species from yeast, C. elegans 

and small mammals to non-human primates (McCormack et al., 2015; Fiori et al., 2013; 

Jimenez-Gomez et al., 2013; Mattison et al., 2014; Bernier et al., 2016). Resveratrol elicits 

beneficial health effects by suppressing inflammation, oxidative damage, tumorigenesis, and 

immunomodulatory activities, thereby leading to improvement of mitochondrial function 

and protection against obesity, cancer, and cardiovascular dysfunction (Xia et al., 2008; Shin 

et al., 2009; Cho et al., 2017; Wang et al., 2018a, b; Novelle et al., 2015). Recent evidence 

suggests an attenuation of the inflammatory response in immune and endothelial cells by 

resveratrol (Schwager et al., 2017), which occurs likely through activation of SIRT1 and 

AMPK (Ohtsu et al., 2017). Moreover, resveratrol confers neuroprotection in human neural 

stem cells via AMPK activation and subsequent reduction in β-amyloid-induced 

inflammation and oxidative stress (Chiang et al., 2018). The inhibition of high-fat diet-

induced NFκB signaling pathway also explains the anti-inflammatory effect of resveratrol 

(Pearson et al., 2008).

A cellular model of Alzheimer’s disease has helped to demonstrate that resveratrol 

attenuates oxidative damage through mitophagy activation (Wang et al., 2018a). Resveratrol 

alleviates the development of alcoholic liver injury and progression to fatty liver disease by 

down-regulating hepatic HIF-1α expression and mitochondrial ROS production (Ma et al., 

2017). Low dose of resveratrol improves mitochondrial respiratory function and enhances 

cellular reprogramming in patient-derived fibroblasts with mitochondrial DNA mutations 

(Mizuguchi et al., 2017). More recently, it has been shown that treatment of diabetic mice 

with resveratrol increases mitochondrial biogenesis and inhibits the activation of mitophagy 

in skeletal muscle, thus ameliorating diabetes-induced skeletal muscle atrophy (Wang et al., 

2018b).

Although resveratrol exhibits some CR-like benefits on healthspan, its limited absorption 

and bioavailability are impediment to its effective use. Several studies have shown over the 

past years that the concentration of resveratrol and its metabolites in urine and plasma are 

very heterogeneous among individuals on resveratrol supplementation, suggesting that some 

genetic factors, especially genes from the CYP450 enzymes, could be affecting the response 

to resveratrol treatment (Walle et al., 2004; Ortuño et al., 2010; Chang et al., 2001). In older 
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community-dwelling adults, total urinary resveratrol metabolite concentration derived from 

normal diet was not associated with inflammatory markers, cardiovascular disease, and/or 

cancer or predictive of all-cause mortality (Semba et al., 2014). McDermott et al. (2017) 

found that resveratrol supplementation didn’t improve walking performance in older people 

with peripheral arterial disease. Similarly, Pollack et al. (2017) showed that resveratrol 

treatment improved vascular function and mitochondrial number but not glucose metabolism 

or insulin sensitivity. Conflicting results have been shown about the effects of resveratrol in 

lifespan extension in mice, with some authors reporting no pro-longevity effect (Pearson et 

al., 2008; Miller et al., 2011; da Luz et al., 2012) while others found positive benefits of 

resveratrol when mice were fed high-fat diet or under intermittent fasting feeding protocols, 

but not on standard diet (Novelle et al., 2015; Strong et al., 2013; Pearson et al., 2008; 

Pallauf et al., 2016).

The molecular mechanisms of action of resveratrol remain elusive; however, AMPK and the 

NAD+-dependent deacetylase SIRT1 have been proposed to mediate the anti-aging response 

and disease protection of resveratrol, reminiscent of CR signaling (Baur et al., 2006; Park et 

al., 2012; Kulkarni and Canto, 2015). Understanding how resveratrol exerts its beneficial 

effects in healthspan will help to develop new drugs to treat age-associated metabolic 

disorders.

2.3.2. Sirtuin-activating compounds (STACs): SRT1720, SRT2104 and 
SRT3025—SIRT1 and the other six members (SIRT2–7) of the highly conserved class III 

histone deacetylase family are positively associated with lifespan (Hubbard and Sinclair, 

2014). These seven mammalian sirtuins have different subcellular locations and functional 

properties, and their activation have been linked to delayed aging, improved metabolism, and 

oxidative stress resistance in different animal models (Sinclair and Guarente, 2014). 

Compared to resveratrol, sirtuin-activating compounds (STACs) show better potency, 

solubility, and target selectivity by binding to the N-terminal domain in SIRT1 (Sinclair and 

Guarante, 2014), which results in the activation of pro-longevity pathways that target 

oxidative stress, inflammation and mitochondrial function (Imai and Guarente, 2016; 

Nogueiras et al., 2012). Pharmacological activation of SIRT1 with SRT1720 and SRT2104 

promotes healthspan and lifespan extension via reduction of inflammatory pathways (Minor 

et al., 2011; Mitchell et al., 2014; Mercken et al., 2014; Bonkowski and Sinclair, 2016). 

SRT1720 inhibits circulating TNF-α and IL-6 levels in a mouse model of estrogen-induced 

cholestatic liver injury (Yu et al., 2016), and postnatal administration of SRT1720 attenuates 

obesity and insulin resistance in offspring of mice dams fed high-fat diet during pregnancy 

(Nguyen et al., 2018). SRT1720 treatment lowers multi-organ injury and inflammation in 

mice via reduction of sepsis-induced inflammasome activation, thus attenuating renal 

fibrosis through apoptosis and reduction of oxidative stress (Ren et al., 2017). Furthermore, 

SRT1720 confers protection against endothelial senescence, resulting in the maintenance of 

cellular function via Akt/eNOS/VEGF axis (Li et al., 2016). Aged human mesenchymal 

stem cells can be rejuvenated by SRT1720-mediated SIRT1 activation of apoptosis (Liu et 

al., 2017). Another characterized STAC, SRT2104, has been found to increase mitochondrial 

oxidative phosphorylation and to decrease serum cholesterol and triglycerides in older adults 

(Libri et al., 2012). Treatment of diet-induced obese mice with SRT2104 promotes body 
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weight loss, improves insulin sensitivity, and increases exercise capacity (Qi et al., 2010); 

however, these benefits have not been reported in humans (Baksi et al., 2014). Short-term 

use of SRT2104 extends survival of male mice and preserves bone and muscle mass in an 

experimental model of atrophy (Mercken et al., 2014). Clinical trials involving patients with 

type 2 diabetes have shown SRT2104 to be associated with weight loss and improved 

glycemic control without effects on lipids or platelet function (Noh et al., 2017). 

Administration of SRT2104 in participants with diabetes lessened aortic endothelial 

dysfunction via inhibition of p53 (Wu et al., 2018). SRT2104 treatment confers 

neuroprotection and lifespan extension in a mouse model of Huntington’s disease by virtue 

of its ability to cross the blood-brain barrier and attenuate brain atrophy while improving 

motor function (Jiang et al., 2014). A third characterized and selective SIRT1 activator, 

SRT3025, has been linked to hematopoietic stem cell expansion (Zhang et al., 2015) and 

inhibition of osteoclast generation and function in bone marrow-derived macrophages, a 

finding suggestive of a role for STACs in combatting osteoporosis (Gurt et al., 2015).

Despite extensive evidence for the delay of phenotypic aging and age-related diseases, more 

research is needed to elucidate the positive benefits of STACs to treat inflammation, 

metabolic disorders, and neurodegenerative diseases. See the recent review on the role of 

STACS in aging by Bonkowski and Sinclair (2016).

2.3.3. Drugs targeting NAD biosynthesis—Interventions such as CR and exercise 

increase the levels of nicotinamide adenine dinucleotide (NAD+), thus resulting in improved 

mitochondrial function (Canto et al., 2010; Liu et al., 2008). The decline in cellular NAD+ 

concentrations with aging is associated with neurodegeneration and other pathologies that 

adversely impact healthspan and lifespan; conversely, modulation of NAD+ levels appears to 

be a key factor for successful aging (Gomes et al., 2013; Gong et al., 2013; Mouchiroud et 

al., 2013). NAD+ fuels reduction-oxidation reactions and regulates a variety of biological 

processes, including metabolism and stress response, and mediates also some of the 

beneficial pro-longevity effects of intermittent fasting and CR, possibly through sirtuin 

activation (Bonkowski and Sinclair, 2016; Rajman et al., 2018; Imai and Guarente, 2016). 

The circulating levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT) 

significantly decline with age in mice and humans. eNAMPT is carried in extracellular 

vesicles (EVs) and enhances NAD+ biosynthesis to increase lifespan in mice (Yoshida et al., 

2019). Diet supplementation with nicotinamide, a NAD+ precursor, has been recently 

reported to protect liver function, glucose metabolism and overall health of old mice on 

high-fat diet without beneficial effect on lifespan (Mitchell et al., 2018). Earlier studies with 

two other NAD+ precursors, namely nicotinamide mononucleotide (NMN) and nicotinamide 

riboside (NR), have been found to extend healthspan and lifespan in Drosophila and yeast 

(Anderson et al., 2003; Balan et al., 2008). Administration of NMN ameliorates the impact 

of maternal obesity on offspring liver health in mice (Uddin et al., 2017) as well as cognitive 

function via neurovascular coupling in old mice (Tarantini et al., 2019). Improvement in 

endothelial blood flow and physical endurance in old mice on NMN is the result of SIRT1-

dependent increase in both capillary density and hydrogen sulfide production (Das et al., 

2018). Renal SIRT1 activity and NAD+ content are restored upon NMN treatment of young 
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and 20-month-old mice (Guan et al., 2017), and NMN can synergize with exercise to delay 

skeletal muscle dysfunction in aging rats via increase in SIRT1 activity (Pajk et al., 2017).

In a mouse model of Alzheimer’s disease, NR treatment reduces DNA damage, 

neuroinflammation, and apoptosis of hippocampal neurons while promoting an increase in 

brain SIRT3 activity that leads to an improvement in cognitive function and hippocampal 

synaptic plasticity (Hou et al., 2018). NR supplementation attenuates the development of 

heart failure in a mouse model of dilated cardiomyopathy (Diguet et al., 2017), and 

stimulates hematopoiesis through increased mitochondrial clearance in immunodeficient 

mice (Vannini et al., 2019).

In humans, a recent clinical trial showed that chronic NR supplementation is well tolerated 

and stimulates NAD+ metabolism in healthy middle-aged and older adults (Martens et al., 

2018).

As a whole, these results indicate that supplementation with NAD+ precursors is a promising 

intervention strategy to delay aging and reduce age-associated ailments. However, 

pharmaco-kinetics or pharmacodynamics studies with these compounds are missing and 

more work is needed to elucidate the exact mechanisms by which these drugs can improve 

healthspan and lifespan.

2.4. Interventions targeting amino acid pathways

Although the reduction in calorie intake does not always extend lifespan (Mattison et al., 

2012; Mitchell et al., 2016), restriction in specific dietary components, such as proteins or 

amino acids, has been linked to the control of lifespan from yeast to humans (Leto et al., 

1976; Grandison et al., 2009; McIsaac et al., 2016). The mechanisms underlying the role of 

methionine and other amino acids in delaying aging remain unclear, but may involve 

reductions in serum IGF-1 coupled with lower oxidative stress and autophagy (Mirzaei et al., 

2014; Ables and Johnson, 2017; Liu et al., 2015). Animals on methionine- or tryptophan-

restricted diets live longer and show significant reduction in age-related diseases partly 

though detoxification of mitochondrial ROS (Gonzalez-Burgos et al., 1998; Edwards et al., 

2015; Obata and Miura, 2015; Gomez et al., 2015). Adipose tissue and liver are particularly 

responsive to methionine restriction (Ghosh et al., 2014; Wanders et al., 2015, 2016; Ables 

and Johnson, 2017), although other organs such as brain, heart and kidneys also benefit from 

this intervention (Cooke et al., 2018; Grant et al., 2016; Vogel et al., 2017; Marti-Carvajal et 

al., 2017). One recent study shows clear modulation of gut hormones, weight loss, energy 

balance, and gut microbiota in rats subjected to tryptophan restriction (Zapata et al., 2018). 

Moreover, the circadian clock (Nascimento et al., 2013) as well as brain plasticity and 

normal development (Serfaty et al., 2008) are influenced by tryptophan supplementation in 

mice. It is imperative that nutritional intervention studies with amino acid restriction be 

performed in humans.

2.5. Drugs targeting autophagy

Autophagy is a recycling mechanism that helps maintain cellular homeostasis and energetic 

balance (Sridhar et al., 2012; Singh and Cuervo, 2011). Several types of autophagy have 

been described and include macroautophagy, microautophagy, and chaperone-mediated 
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autophagy (Singh and Cuervo, 2011), whose effects on health and disease have garnered 

attention over the years. With aging, there is progressive loss of proteostasis characterized by 

dysregulation in autophagy, ubiquitin-mediated degradation, and protein synthesis (Lopez-

Otin et al., 2013). Aging and age-related diseases have been associated with changes in 

polyamine levels (Minois, 2014; Gupta et al., 2013) and their role in autophagy (Basisty et 

al., 2018). The impact of polyamines on cell growth, survival and proliferation has been 

ascribed to the inhibition of DNA methylation and tumorigenesis in mice (Soda et al., 2013).

Spermidine is a naturally occurring polyamine that elicits beneficial anti-aging effects 

through regulation of autophagy and other mechanisms, including antioxidant protection 

(Madeo et al., 2018a). Moreover, spermidine mediates lifespan extension in yeast via 

inhibition of histone acetylases and activation of autophagy genes, such as atg7, atg11 or 

atg15 (Morselli et al., 2009). Spermidine extends lifespan in several animal species via 

MAPK pathway (Minois, 2014) and is effective in improving neurodegeneration and 

conferring cardioprotection through autophagy (LaRocca et al., 2013; Buttner et al., 2014; 

Sigrist et al., 2014; Eisenberg et al., 2016). Spermidine supplementation is safe in humans 

and has positive effects on cognitive function of older adults (Schwarz et al., 2018) and on 

blood pressure (Eisenberg et al., 2016). The recent review by Madeo et al. (2018b) provides 

in-depth information about the role of spermidine in aging and disease.

2.6. Drugs targeting senescence pathways

Age-related accumulation of senescent cells in various tissues and organs is associated with 

several deficiencies that include (1) the decline in the number of stem cells that rely on 

proliferation for their proper function, (2) weakening of the immune system, (3) inadequate 

repair capacity, and (4) reduced global and site-specific DNA methylation in aging tissues 

(Sidler et al., 2014; LeBrasseur et al., 2015). The clearance of p16Ink4a-positive senescent 

cells delays age-related disorders (Baker et al., 2011) and evidence suggests that genes 

implicated in cellular senescence are also linked to longevity and age-related diseases 

(Tacutu et al., 2011). Senolytics refer to small molecules that can induce apoptosis in 

senescent cells and capable of promoting lifespan extension while delaying the onset of age-

related diseases (Kirkland et al., 2017). Originally developed as common anticancer drugs, 

navitoclax, quercetin, and dasatinib have senolytic properties (Ranganathan et al., 2015; 

Tolcher et al., 2015) that target BCL-2 and related anti-apoptotic pathways (Zhu et al., 

2017). Alvespimycin is a potent HSP90 inhibitor with senolytic properties (Fuhrmann-

Stroissnigg et al., 2017). Other senolytics include fisetin, a naturally-occurring flavone with 

low toxicity, and the BCL-XL inhibitors, A1331852 and A1155463, that have similar 

reactivity as navitoclax but with less hematological toxicity (Zhu et al., 2017). Clearance of 

senescent cells with chronic senolytic treatment improves age-related vascular conditions 

and reduces mortality from cardiovascular disease (Roos et al., 2016). For example, the 

treatment of aged mice with navitoclax eliminates senescent cardiomyocytes and attenuates 

profibrotic protein expression in aged mice (Walaszczyk et al., 2019). The combination of 

dasatinib plus quercitin has been recently shown to improve physical function and increase 

lifespan in old mice (Xu et al., 2018) and ameliorates Aβ plaque-associated inflammation 

and cognitive deficits in Alzheimer’s disease mice (Zhang et al., 2019).
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The ability of senolytic drugs to reduce the number of senescent cells and combat 

inflammatory diseases, such as obesity and other metabolic disorders, constitutes a major 

therapeutic approach aimed at ensuring healthy aging (Palmer et al., 2019). In fact, an open-

label pilot clinical study has recently demonstrated that quercitin could alleviate idiopathic 

pulmonary fibrosis (Justice et al., 2019). The recent review of Kirkland et al. (2017) 

provides additional insight into this important class of compounds.

2.7. Rejuvenation factors (GDF11, GDF8)

Studies of heterochronic parabiosis have provided evidence of rejuvenation factors present in 

the blood of young mice (e.g., cells and proteins) that provide benefits in aged animals 

(Conboy et al., 2005). Systemic administration of young blood counteracts age-related 

decline in cognitive function and synaptic plasticity in mice (Villeda et al., 2014). Growth/

differentiation factor 11 (GDF11) and GDF8, both members of the transforming growth 

factor (TGF)-β superfamily, have been identified as rejuvenation factors (Loffredo et al., 

2013; Sinha et al., 2014). Circulating concentrations of GDF11 correlate with lifespan in 

mice (Zhou et al., 2016), and several studies have shown that the decline in circulating 

GDF11 in old mice can be restored, via parabaiosis or injection of the recombinant form, 

with concomitant reduction in age-related cardiac hypertrophy (Loffredo et al., 2013; Sinha 

et al., 2014). Daily injections of GDF11 also improves cerebral vasculature and increases the 

number of brain stem cells (Katsimpardi et al., 2014). However, other studies have reported 

the lack of pro-longevity effects of GDF11 in a mouse model of premature aging (Freitas-

Rodriguez et al., 2016), and GDF11 treatment does not appear to rejuvenate skeletal muscle 

stem cells in old mice (Hinken et al., 2016). In humans, there is no evidence to suggest that 

GDF11 levels decline with age, although low GDF11 has been associated with frailty and 

morbidity in older adults with cardiovascular disease (Schafer et al., 2016).

The contribution of these rejuvenation factors in aging research has been controversial 

(Egerman et al., 2015; Smith et al., 2015), and it is based mostly on the lack of accuracy in 

quantifying GDF11 and GDF8. More work is needed to assess whether these and other 

rejuvenation factors can reverse aging phenotypes in both mice and its potential translation 

into humans.

3. Where are we now?

3.1. Compounds tested for anti-aging activity in mice via the National Institute on Aging 
(NIA) Interventions testing Program (ITP)

The Interventions Testing Program (ITP), developed in 2003 by the NIA at the National 

Institutes of Health (NIH), was designed to capitalize on the information previously reported 

on identified genes and gene products that impact healthy lifespan in non-mammalian 

species, and to rigorously evaluate in mice any agent that when taken in food or water could 

potentially delay aging rates or prevent late-life diseases (Warner, 2015). To achieve this 

goal, interventions are selected from the annual solicitation for collaborators by a two-level 

approval process and tested at three different sites simultaneously (University of Michigan, 

The Jackson Laboratory, and University of Texas Health Science Center in San Antonio 

(UTHSCSA) (Miller et al., 2007)). Key central features of this program include 1) the use of 
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genetically heterogeneous mice (UM-HET3) obtained by a specific four-way crossbreeding 

scheme (CB6F1 females bred to C3D2F1 males), 2) the use of sufficient statistical power to 

detect 10 % changes in lifespan, in either sex, 3) the use of pair-fed and untreated controls, 

4) the minimal inclusion of age-sensitive traits (i.e: locomotor activity, T-lymphocyte 

subtypes, and hormornes such as insulin, IGF-1, leptin and thyroxine), 5) plans for necropsy 

analysis, and 6) plan for interim analyses of survival (Miller et al., 2007). Grounded on these 

unique characteristics, the ITP has tested so far 67 interventions with 42 different 

compounds (Table 1). The efficiency/effects of the compounds are presented in Fig. 2 and 

have been published in several articles (https://www.nia.nih.gov/research/dab/interventions-

testing-program-itp/publications-nia-interventions-testing-program).

Perhaps the best known finding by the ITP is that rapamycin increases lifespan of both male 

and female mice (Harrison et al., 2009; Miller et al., 2011). The beneficial effects of 

rapamycin are seen when administration began at 270 days and later at 600 days of age, 

which suggests that it could have therapeutic potential in humans even if started late in life. 

Most recently, the ITP has conducted a dose-response study and found that concentrations of 

rapamycin higher than those used in the original studies can actually increase the maximal 

lifespan of mice (Miller et al., 2014). Rapamycin delays the progression of multiple age-

related pathologies including liver degeneration, endometrial hyperplasia in females, and the 

appearance of abnormal cell nuclei in the heart (Wilkinson et al., 2012). However, negative 

effects of rapamycin, such as testicular degeneration, increased severity of cataracts, and 

insulin-resistant phenotype, were reported indicating that caution must be used when 

assessing the potential role of rapamycin in lifespan extension (Wilkinson et al., 2012; 

Miller et al., 2014). Surprisingly, in the context of type 2 diabetes, rapamycin has 

cardioprotective effects and positive benefits on glucose metabolism (Azar et al., 2018; 

Reifsnyder et al., 2016).

Acarbose has also been found to increase median and maximal lifespan in both sexes when 

administered early in life, although the effects of acarbose were much larger in males 

(Harrison et al., 2014, 2019). Starting the acarbose treatment at 16 months of age resulted in 

an extension of maximum lifespan for both sexes, with an increase in median longevity 

observed only in males (Strong et al., 2016).

Other ITP studies have shown that only males have increased median lifespan when given 

either aspirin, nordihydroguaiaretic acid (NDGA), 17-α-estradiol, or protandim (Harrison et 

al., 2014; Strong et al., 2016, 2008). Originally, it was thought that differences in the 

metabolism of aspirin and NDGA could be responsible for their sex-specific effects on 

lifespan; however, administration of high dose NDGA failed to improve the lifespan of 

females despite achieving plasma NDGA concentrations similar to the males in the original 

study (Harrison et al., 2014). Therefore, the refractoriness of female mice to NDGA cannot 

simply be accounted for by differences in pharmacodynamics. Gonadal hormones underlie 

male-specific metabolomics response to 17-α-estradiol and improvements in glucose 

tolerance and mTORC2 signaling (Garratt et al., 2017).

The control male mice at UTHSCSA and The Jackson Laboratory have shorter lifespan than 

at the University of Michigan, while the females have relatively similar lifespans at all three 
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sites (Harrison et al., 2014). This fact may partially explain why in general the tested 

interventions preferentially benefit males compared to females. Nevertheless, other complex 

variables can be at play.

Most of the interventions tested by the ITP, as well as those reported here, did not produce 

significant effects on lifespan in mice regardless of sex (Fig. 3). These include 4–OH-α-

phenyl-N-tert-butyl nitrone (4–OH-PBN), nitroflurbiprofen (NFP), caffeic acid phenethyl 

ester (CAPE), enalapril maleate, simvastatin, resveratrol, green tea extract, curcumin, 

oxaloacetic acid, medium-chain triglyceride oil, metformin, fish oil, and ursodeoxycholic 

acid (UDCA) (Harrison et al., 2009; Miller et al., 2011; Strong et al., 2016, 2008; Strong et 

al., 2013). Methylene blue increases maximal, but not median, lifespan only in female mice 

(Harrison et al., 2014). Some of these findings are inconsistent with reports from other 

laboratories (Baur et al., 2006; Kitani et al., 2007; Martin-Montalvo et al., 2013; Anisimov 

et al., 2015; Bartke et al., 2019) and variables such as the age of onset, genetic background, 

dosage, mode of delivery, diet composition, and treatment regimen could account for these 

discrepancies. It is also possible that some of these interventions had other long-term effects, 

positive or negative, on other measurements of health, which were not detected due to the 

sole focus of the ITP on lifespan.

3.2. Other compounds that are being tested in the NIA-ITP

The ITP is testing another 22 compounds, although no data has been reported yet (Table 2).

3.3. Translation of the NIA-ITP findings toward the clinic in the treatment of age-
associated chronic diseases

The goal of treating chronic conditions and common geriatric syndromes is to enhance the 

quality of life and reduce mortality in the elderly. Using ClinicalTrials.gov, a database of 

privately and publicly funded clinical studies conducted around the world, we surveyed the 

most recent number of clinical trials (until July 2019) that treat aging or age-related diseases 

with the compounds/drugs described in Section 2 of the manuscript. All these clinical trials 

are being tested in both male and female participants of various ages (Supplementary Table 

1). The bulk of these studies are interventional or observational, and tackle a number of age-

related medical conditions ranging from insulin resistance and diabetes to dementia and 

cancer. Drug combinations are also being tested, including rapamycin with acarbose or with 

metformin as well as interventions such as CR with exercise.

In the database “condition/disease” is defined as “The disease, disorder, syndrome, illness, 
or injury that is being studied”. On ClinicalTrials.gov, conditions may also include other 

health-related issues, such as “lifespan, quality of life, and health risks”, and “Intervention/

Treatment” as “A process or action that is the focus of a clinical study. Interventions include 
drugs, medical devices, procedures, vaccines, and other products that are either 
investigational or already available. Interventions can also include noninvasive approaches, 
such as education or modifying diet and exercise”. Our search for conditions or disease 

included the terms: “age”, “aging,” “longevity”, “lifespan”, “senescence”, “frailty,” 

“sarcopenia”, “age-related atrophy”, “type 2 diabetes”, “metabolic syndrome,” 

“cardiovascular disease”, “age-related macular degeneration”, “age-related cognitive 
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decline”, “dementia”, “mild cognitive impairment”, “Alzheimer Disease”, “Parkinson 

Disease”, “cancer”, “osteoporosis” and “osteoarthritis”. For interventions and treatments: 

“acarbose”, “aspirin”, “curcumin”, “estradiol”, “GDF8″, “myostatin”, “GDF11″, “green 

tea”, “metformin”, “methylene blue”, “NAD”, “nicotinamide”, “nicotinamide riboside, 

“NAD precursors”, “polyamines”, “quercitine”, “resveratrol”, “sirtuin-activating 

compounds”, “SRT2104″, “SRT3025″, “simvastatin”, “tryptophan”, “ketogenic diet”, 

“caloric restriction”, “dietary restriction”, “exercise” and “fasting”. We found ∼12,100 

clinical trials that target age or age-related diseases with more than 538 clinical trials aimed 

toward “Aging as a condition or disease” Table 3). Table 3 describes all the clinical trials 

available by drug and age or age-related conditions. Many of these trials differ dramatically 

by sample size and, thus, interpreting the study results will require caution. Note the absence 

of GDF11 and 17 α-estradiol due to a lack of experimental intervention in clinical trials. 

Exercise, fasting and CR are the interventions with the highest number of clinical trials that 

target aging as a condition (435, 20 and 15 trials, respectively), followed by NAD precursors 

(12), metformin (11), and resveratrol (10).

4. Limitations and caveats

Older adults suffer from multiple medical conditions or co-morbidities and more than half 

take five or more medications, which raises the issue of polypharmacy leading to compliance 

concerns, adverse effects, and potential risk of drug-drug interactions. Moreover, 

environment, nutrition, age, ethnicity, and gender are important variables that contribute to 

differential responses to treatment or interventions. Indeed, there are substantial evidences 

pointing toward drug toxicity only at a certain age interval. Four possible outcomes have 

been ascribed within a cohort of patients having the same diagnosis and receiving the same 

prescription: 1) Drug toxic but beneficial; 2) drug toxic but not beneficial; 3) drug not toxic 

and not beneficial; and 4) drug not toxic and beneficial (Harrill, 2016). It would appear, 

therefore, that only few patients at a certain age range are expected to respond adequately to 

standard therapy, with most patients being either non-responders, develop resistance, or 

exhibit an inadequate response (Harrill, 2016). An example at hand is the hepatotoxicity to 

commonly used drugs, such as acetaminophen and ibuprofen, in sensitive individuals 

(Chitturi and George, 2002).

People age at different rates and the age-related deterioration and functional decline vary 

within the same individual in a tissue-specific manner: Epigenetic changes, such as DNA 

methylation and histone modification, largely account for the dynamic alteration in the 

transcriptional profile and/or cellular phenotype in a given tissue with age (Horvath, 2013; 

Melis et al., 2013). It has been assumed, wrongly perhaps, that the promotion of healthy 

aging, notably through delay in the aging phenotypes, frailty and associated geriatric 

syndromes, will impact every biological system to the same extent (Michel et al., 2016). 

However, whether changes in the number, dose frequency, and treatment length of 

medications influence physiological outcomes and cellular epigenetic landscapes within 

different types of tissues and organs remain to be answered. There is still a lack of clinical 

evidence for healthspan extension through compression of chronic disease in late life and it 

remains possible that some of the age–related phenotypic declines in function might not 

respond adequately to treatment (responders vs. non responders) (Evert et al., 2003; 
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Atkinson et al., 2019). Therefore, successful assessment in the efficacy of an intervention 

that delays aging will require validation through stringent outcome measures of phenotypic 

enhancement of longevity in various biological systems. The emergence of age-related 

changes within each type of tissue, whether at the genome, transcriptome, proteome, or 

metabolome level, should enable the identification of a selective set of biomarkers of aging 

and validate the efficacy of an intervention aimed at preserving or maintaining tissue 

functionality. Yet, with the advances in the different fields of molecular biology, the search 

for biomarkers or predictors of biological and phenotypic age, rather than chronological age, 

remains unsuccessful, except the epigenetic clock developed by Horvath in 2013. Ideally, 

defining those predictors for ‘healthy aging’ will allow us to predict lifespan.

Very few animal models, with the exception of non-human primates, adequately replicate 

physical and biochemical deficits in terms of human aging and age-related diseases. The 

rhesus monkey (Macaca mulatta) genome shares 93 % sequence identity with the human 

genome, and most of their anatomy, physiology, neurology, endocrinology, immunology an 

ddecline in function with age directly parallel those of humans, making this species an 

excellent model to study human aging. It is imperative to develop new animal models that 

better mimic key clinical features of human aging phenotypes and their environments for use 

in preclinical studies. Recently, researchers at university of Washington in Seatle, initiated 

an intervention study The Dog Aging Project, 2020 (http://dogagingproject.com) aiming to 

perform a longitudinal study of aging in dogs and an intervention trial to test whether 

rapamycin will prevent disease and extend healthy longevity in middle-aged dogs.

Pharmacological interventions need to satisfy the following conditions in order to be 

translatable: i) Low toxicity and few side effects; ii) effective via oral administration, iii) 

maximum dosing frequency of once-a-day; iv) stability; v) scalability and low 

manufacturing costs; vi) detectable in blood; and vii) effective when administered late in life 

or once symptoms have already started to develop (Kirkland, 2016). It remains to be seen 

whether long-term exposure of middle-aged adults to an ‘anti-aging drug’ will confer 

longevity dividend (described by Olshansky et al., 2016 as “the economic and health 
benefits that would accrue to individuals and societies if we extend healthy life by slowing 
the biological processes of aging”).

Perhaps, one of the main obstacles for the development of drugs to treat aging is that the 

FDA does not consider aging as a preventable condition. However, the FDA has recently 

agreed of a new clinical trial aimed at testing the ability of the diabetes drug metformin at 

delaying or preventing diseases associated with old age, including heart disease, cognitive 

impairment, and cancer (Barzilai et al., 2016). Metformin could be the first drug of its kind 

to be repurposed with the goal of targeting aging. If successful, similar studies will surely 

follow with other compounds, with the goal of maximizing the years that we live free of 

diseases or chronic conditions. This compression of morbidity should shorten the time spent 

with age-related syndromes as humans approach the limit of their lifespan (Fries et al., 

2011).
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5. Conclusions and future directions

Aging is an intrinsic heterogenic feature of most living organisms, especially mammals, and 

recent research has provided clues about how to improve several converging cellular 

processes implicated in nutrient sensing, mitochondrial bioenergetics, and healthy 

senescence. Animal studies and human clinical trials have thought us that diet, environment, 

gender, ethnicity, polymorphisms, and age are among the variables that contribute to being 

responders or non-responders to any given therapy, whether it is cancer, cardiovascular 

disease, or other ailments. The extensive genetic diversity both within and among human 

populations generally leads to discordance in the safety and efficacy profile of a drug. It has 

become increasingly apparent that these different responses to treatment require the use of 

molecular profiling to determine the appropriate therapy. The tailoring of pharmacotherapy 

to the individual characteristics of each patient can be applied to areas as varied as cancer, 

coronary heart disease, diabetes, and neuropathological disorders to name of few (Vargas 

and Harris, 2016; Orho-Melander, 2015; Scheen, 2016; Golan et al., 2016). It is likely that 

the identification of relevant biomarkers of healthspan will enable to stratify subgroups of 

individuals that will respond favorably to interventions aimed at reducing age-related 

ailments and chronic disease (Fig. 4).

Hopefully, integration of intermediate phenotypes of different (genetic and non-genetic) 

origin along with ‘omics’ data sets from the genome, transcriptome, proteome, and 

metabolome (Williams et al., 2016), and machine learning approaches will soon enable 

identification of subgroups of elderly subjects with similar complex trait frequency and 

predict whether an individual might benefit from a treatment aimed at tackling age-

associated cognitive deficits and physical frailty and geriatric syndromes. This approach 

should identify subgroups of the aging population that exhibit differential responses to 

treatment through selection of potential targetable biomarkers. It follows that the conditional 

probability that an elderly individual responds favorably to a given intervention will be 

measurably improved.
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Fig. 1. Hallmarks of aging and the four domains of aging phenotypes.
Integrative view of the hallmarks of aging described by Lopez-Otin et al. (2013) and the 

domains of the aging phenotypes described by Ferrucci et al. (2010). Different factors 

(genes, environment, exercise and nutrition) contribute to the rate of biological aging. The 

loss of reserve capacity or resilience, at a molecular and cellular level, ultimately leads to the 

development of the aging phenotypes.
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Fig. 2. Compounds tested by the National Institute on Aging (NIA) Interventions Testing 
Program (ITP) for their anti-aging activity and effects on lifespan extension in mice.
Some compounds elicit anti-aging effects on lifespan that are sex-dependent. For instance, 

rapamycin and acarbose extend lifespan in both sexes whereas methylene blue (in red) has 

pro-longevity effects only in females. Four compounds (in blue) extend lifespan in males. 

Most of the compounds are still being tested and there is no data available.
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Fig. 3. Heatmap summarizing the different interventions and their effect in maximum and mean 
lifespan extension in mice.
These interventions target major signaling pathways whose dysregulation contributes to the 

emergence of the aging phenotypes and disease.
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Fig. 4. Personalized approach for the treatment of age and age-related diseases.
The identification of relevant biomarkers of healthspan and the integration of ‘omics’ data 

sets from the genome, transcriptome, proteome, and metabolome, and machine learning 

approaches, will likely allow the development of personalized treatments aimed at reducing 

age-related diseases.

Gonzalez-Freire et al. Page 41

Ageing Res Rev. Author manuscript; available in PMC 2021 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gonzalez-Freire et al. Page 42

Table 1

Compounds under testing in the NIA-ITP. The ITP has tested so far 67 interventions with 42 different 

compounds.

COMPOUND CONCENTRATION IN FOOD (PPM) AGE AT TREATMENT INTIATION 
(MONTHS)

Effect on lifespan

Aspirin 20 4

60 11 Males

200 11

NFP 200 4 None

NDGA 2500 9

800 6-male

2500 6-male Males

5000 6

2500 13

5000 13

4-OH-PBN 315 4 None

CAPE 30 4

300 4 None

Enalapril Maleate 120 4 None

Rapamycin 14 20

14 9

4.7 9 Males

Females

14 9

42 9

42 20

Simvastatin 12 10

120 10 None

Resveratrol 300 12

1200 12 None

300 4

Oxaloacetic acid 2200 4 None

Green tea extract 2000 4 None

Curcumin 2000 4 None

Medium Chain Triglyceride Oil 60000 4 None

17a-Estradiol 4.8 10

14.4 10 Males

14.4 16 and 20

Methylene Blue 28 4 Females

Acarbose 1000 4

1000 16

2500 8 Males

Females

Ageing Res Rev. Author manuscript; available in PMC 2021 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gonzalez-Freire et al. Page 43

COMPOUND CONCENTRATION IN FOOD (PPM) AGE AT TREATMENT INTIATION 
(MONTHS)

Effect on lifespan

1000 8

400 8

Fish Oil 15000 9 None

50000 9

Bile acids 5000 5 -

Metformin 1000 9

Protandim** 600 10 Male

INT-767 FXR/TG5R agonist 180 10 -

HBX 1 15 Males

Ursolic acid 2000 10 -

Glycine 80000 9 -

TM5441-inhibitor of PAI-1 60 11 Males

Inulin 600 11 Males

17-DMAG 30 6 -

MitoQ 100 7 Males

Minocycline 300 6 -

B-GPA 3300 6 -

MIF098 240 8 Males

Nicotinamide Riboside 1000 8 None

Canagliflozin 180 7 -

Candesartan cilexetil 30 8 -

Geranylgeranylacetone 600 9 -

Hydrogen Sulfide - SG1002 240 TBD -

1,3-butanediol 100000 6 Males

Captopril 180 5 -

L-leucine 40000 5 Males

Females

PB125 100 5 -

Sulindac 5 5 -

Syringaresinol 300 5 -

Metformin + Rapamycin 1000 / 14 9 Males

Females

Rapamycin + Acarbose 14.7 / 1000 9 and 16 -

-
no data available.

*
ppm (part per million by weight).

**
the Protandim® was increased from 600 ppm to 1200 ppm when the mice reached 17 months of age.
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