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ABSTRACT: Over millennia, natural evolution has allowed for the
emergence of countless biomolecules with highly specific roles within
natural systems. As seen with peptides and proteins, often evolution
produces molecules with a similar function but with variable amino
acid composition and structure but diverging from a common
ancestor, which can limit sequence diversity. Using antimicrobial
peptides as a model biomolecule, we train a generative deep learning
algorithm on a database of known antimicrobial peptides to generate
novel peptide sequences with antimicrobial activity. Using a variational
autoencoder, we are able to generate a latent space plot that can be
surveyed for peptides with known properties and interpolated across a
predictive vector between two defined points to identify novel
peptides that show dose-responsive antimicrobial activity. These
proof-of-concept studies demonstrate the potential for artificial
intelligence-directed methods to generate new antimicrobial peptides and motivate their potential application toward peptide
and protein design without the need for exhaustive screening of sequence libraries.

1. INTRODUCTION

The rising specter of broad antibiotic resistance has created a
critical need for the rapid development of new antimicrobials.
At the current rate, the annual global death toll due to
antibiotic resistance is expected to exceed 10 million by 2050
at a cost of 100 trillion USD.1 One avenue to combat this
problem is the use of antimicrobial peptides (AMPs). As
integral components of the innate immune system of humans
and other organisms, naturally occurring AMPs have remained
effective antimicrobials despite their ancient origins and
widespread continual contact with pathogens. For this reason,
among others, peptide antibiotics including colistin have been
deemed “drugs of last resort” for their ability to kill multidrug-
resistant bacteria.2

AMPs generally act through mechanisms associated with
membrane disruption, as well as other routes, including
binding to DNA and essential cytoplasmic proteins, inhibiting
their normal function.3 The relative immutability of bacterial
membranes and other AMP targets makes the development of
resistance to AMPs rare; however, the need for the
development of new AMPs remains essential for combating
multidrug-resistant bacteria.
Many attempts at both generating new AMPs and improving

their activity have been made, resulting in some success.4,5

These peptides have largely been generated via expert
knowledge, low-throughput design methods, including rational
design and specific amino acid substitution, or random
sequence mutation and template-based methods.

Various computational tools have been developed for
performing AMP design in a more sophisticated manner
than those previously used that require expert knowledge,
including statistical modeling, quantitative structure−activity
relationship studies, genetic algorithms,6 machine learning,7

and deep learning.8−10 Using these computational methods,
key biophysical attributes can be extracted from sequence
information, which can be used to provide model creation
information to predict or further enhance the antimicrobial
activity of AMPs. In general, these tools require large databases
of peptides with known antimicrobial activity. There are
currently several thousand AMP sequences in various data-
bases, including Antimicrobial Peptide Database 3 (APD3)11

and A Database of Anti-Microbial (ADAM)12 peptides that
contain AMPs with experimentally determined activity against
Gram-negative and Gram-positive bacteria, fungi, HIV, and
cancer cells. An extended overview of AMP databases and data
mining was recently described by Porto et al.13 and new
databases of various forms are regularly being released.14

Since peptides and proteins can be represented as sequential
amino acid residues in the form of a string of characters,
several groups have made use of previously developed methods
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for extracting sequence information in an order-dependent
manner, which have long been used in learning language,
including the recursive neural network (RNN) called long
short-term memory (LSTM) networks.15 In the few
applications of LSTMs for peptide design recently reported,
the promising ability to generate sequences of active AMPs,
with experimental verification, has demonstrated the usefulness
of these established deep learning techniques for new AMP
generation.8,10

In another recently developed approach, a number of reports
have demonstrated the utility of generative deep learning,
including generative adversarial networks (GANs) and varia-
tional autoencoders (VAEs),16 for the generation of new
objects from existing data. Among a broad array of attempted
applications, these have been successfully applied to the
generation of new images17 and new chemical compounds via
generation of simplified molecular-input line-entry system
(SMILES) strings.18,19 A noteworthy attribute of VAEs that
distinguishes it from other generative deep learning techniques
is their ability to create a continuous latent space that can be
used to smoothly interpolate between objects. This capability

was extensively exhibited by Goḿez-Bombarelli et al., whereby
interpolating between two selected FDA-approved drugs, they
generated novel chemical structures with a smooth transition
between structures, enabling the potential for the optimization
of known drugs, among other applications.18

In this study, the latent space generated by a VAE trained
using an AMP database was utilized for the discovery of new
AMPs. The continuous representation of peptides allows for
the generation of novel AMPs in an automated fashion, enables
the smooth interpolation between AMP sequences, and shows
the potential for optimization of peptide characteristics.
Furthermore, we experimentally examine AMPs generated via
interpolation and explore the potential of the method for AMP
design.

2. RESULTS

2.1. Model Creation and Generation of Active
Peptides. We implemented and trained a VAE for modeling
peptide sequences with antimicrobial activity. We then used
the model for generative peptide de novo design. The general
design of the standard VAE architecture is shown in Figure 1.

Figure 1.Machine learning for antimicrobial design. (A) Flow diagram of VAE design. During training, both known and scrambled peptides are fed
into the encoder, generating their latent codes (z). The latent codes are then decoded into the peptide sequence by the decoder. The two terms of
the loss function (KL and reconstruction loss) and model are updated using stochastic gradient descent. (B) Here, we train the VAE using an AMP
dataset, which allows for experimental validation of results using common microbiological assays. From starting input AMP sequences, the encoder
network converts each peptide into a vector in the latent space, which can be viewed as a continuous AMP representation. Provided a point in the
latent space, the decoder network will output a corresponding AMP sequence. The output sequences can then be experimentally tested for activity.

Figure 2. Antimicrobial activity assays. (A) Three peptides, P1, P2, and P3, were selected from point locations near short active peptides described
in the literature, NA-CATH, KR-12, and Tet110, generating three peptides sequences designated P1, P2, and P3, respectively, and three
corresponding scrambled control peptides (SP1, SP2, and SP3). (B) Experimental assessment of active (P1−P3) AMPs and scrambled (SP1−SP3)
pairs on E. coli, A. baumannii, and S. aureus. Peptide concentrations were 0, 0.64, 3.2, 16, 80, and 400 μg/mL. Peptide sequences are listed in Table
1. Inhibition of colony formation is indicative of AMP activity.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c00442
ACS Omega 2020, 5, 20746−20754

20747

https://pubs.acs.org/doi/10.1021/acsomega.0c00442?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00442?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00442?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00442?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00442?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00442?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00442?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c00442?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c00442?ref=pdf


Five-fold cross-validation on different network architectures
was tested for best performance as measured by loss, where
networks with 512 or 1024 intermediate dimensions
performed best, with no observable advantage with larger
networks. Training was stopped after 250 epochs as the loss
decreased at a sufficiently low rate (less than 0.1 per 10
epochs; Figure S1) and results did not noticeably improve with
longer periods of training. The final state of the model was
saved and used for sampling novel sequences (Figure 2A).
Since the model was trained using two sets of sequences

composed of “active” and “scrambled” peptides, the implicit
starting assumption was that the sequence order, or “peptide
grammar”,20 and characteristics dependent on that sequence
were the components that would be learned by the model.
Characteristics related to amino acid frequency, such as net
charge, would not directly contribute to model training as
these are also present in the scrambled peptides.
Using the generated latent space, new peptides were

decoded using locations near short active peptides described
in the literature. Latent space positions for the peptides NA-
CATH (AP00897; its 11-mer N-terminal variant, ATRA-1, has
been extensively studied21), KR-12 (AP00608),22 and Tet110
(AP02874)23 were identified and used to generate three

peptides sequences designated P1, P2, and P3, respectively.
From these sequences, three scrambled control peptides (SP1,
SP2, and SP3) were produced (Figure 2A), only altering the
sequence order while maintaining amino acid frequency and
length (see Table 1). Each of these peptides was then assessed
for antimicrobial activity against Escherichia coli, Acinetobacter
baumannii, and Staphylococcus aureus (Figure 2B).
By spot-plating the bacteria following incubation with a

range of AMP concentrations, half-maximal effective concen-
tration (EC50) values were calculated from triplicate experi-
ments. For E. coli, the EC50 values of P1, P2, and P3 were
determined to be 2.9, 3.1, and 2.9 μg/mL, respectively, while
only SP3 had a determinable EC50 of 3.1 μg/mL; the others,
SP1 and SP2, did not display significant killing at the
concentrations of peptide tested (<400 μg/mL). The EC50

values of P1, P2, and P3 against A. baumannii were found to be
3.1, 5.9, and 1.8 μg/mL, respectively. Both SP1 and SP3
obtained calculable EC50’s of 10.6 and 19 μg/mL, respectively,
while SP2 did not display antimicrobial activity at the
concentrations used. For the Gram-positive S. aureus, the
EC50 values of P1, P2, and P3 were determined to be 0.4, 6.6,
and 2.2 μg/mL, respectively. Both SP1 and SP3 obtained
calculable EC50’s of 10.6 and 16.5 μg/mL, respectively, while

Table 1. Peptides Used in the Study and Associated Characteristics

name/series increment sequence length molecular weight net charge hydrophobicity hydrophobic moment

P1 RKLKKLWRKFR 11 1558.983 6.997 −1.782 0.969
P2 RRFVKKVRKLVK 12 1557.008 6.997 −0.825 0.976
P3 FRWLRKWFRR 10 1550.878 4.998 −1.430 1.045
SP1 KKRRFRWLKLK 11 1558.983 6.997 −1.782 0.161
SP2 RKLRKKVFVKRV 12 1557.008 6.997 −0.825 0.253
SP3 WKRLRWRRFF 10 1550.878 4.998 −1.430 0.173
series 1 0.00 VIREHKYVLLL 11 1382.712 1.090 0.718 0.366
series 1 0.33 LPKIKKTVSTR 11 1270.582 3.997 −0.682 0.345
series 1 0.66 LLKSGRLLMKI 11 1271.671 2.997 0.736 0.637
series 1 0.99 KKIKRFLRKIG 11 1386.793 5.997 −0.855 1.015
series 2 0.00 GLGIIPHRRYGK 12 1366.632 3.088 −0.617 0.325
series 2 0.33 GIMSLFKGVLKT 12 1293.631 1.997 0.908 0.589
series 2 0.66 GLFKIIKNIFSG 12 1336.640 1.997 0.833 0.676
series 2 0.99 KLFRIIKRIFKG 12 1518.955 4.997 0.150 1.075

Figure 3. Latent space plots. Latent space maps were generated from the APD3 database (plus scrambled sequences). Antimicrobial concept vector
(black line) with stepwise sampling shown, extending from the scrambled peptide (A) SP1 (green star) to P1 (red star) and (B) SP2 (green star) to
P2 (red star). V1 and V2 are latent variables 1 and 2, respectively. Antimicrobial activity (black arrow) is expected to increase or decrease
proportional to the distance from the scrambled/inactive (SP) or active (P) position. Peptide sequences for each point in the space can be found in
Table 1.
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SP2 was found to be inactive. EC50 values are shown in Table
S3. Overall, by mean activity, the scrambled peptides were
assessed as significantly less active (p < 0.05; Welch’s t-test)
than those generated by sampling near active peptides in the
latent space. This result is visible in representative plating
images shown in Figure 2B. This result suggested that the
model learned a degree of sequence-dependent information
considering that the scrambled peptides maintained identical
net charge, hydrophobicity, and other sequence order-
independent attributes (listed in Table 1). Of note was the
significant difference in hydrophobic moment between P1, P2,
and P3 peptides when compared to SP1, SP2, and SP3: mean
hydrophobic moment values of 1.0 and 0.2, respectively. None
of the other biophysical characteristics examined were found to
be significantly different between the groups.
2.2. Interpolation and Dataset Characterization. To

test the effect of interpolation between active and scrambled
peptides, the overall characteristics of the decoded peptides
were examined to determine the effect of different sampling
points in the latent space. A representation of the latent space
generated from 2971 active (obtained from APD311) and 2971
corresponding scrambled peptide sequences is shown in Figure
3A,B. Here, two series of peptides were generated, between
SP1 and P1 and between SP2 and P2. Linear interpolation was
performed, and four peptides were generated along what can
be called an antimicrobial concept vector (black line) in
stepwise sampling (Figure 3). These four peptide sequences
were generated at increments of 0.33: 0.00, 0.33, 0.66, and
0.99. The sequence at 0.00 was generated close to scrambled
peptide (SP) and the sequence at 0.99 was generated close to
the active peptide (P). For each series, peptides were chosen at
relative distances of 0.33 and 0.66 along the prediction line or
antimicrobial concept vector (Table 1). A series was not
generated for SP3−P3 since both were found to be active.

To determine the different distributions of characteristics of
the peptides generated using interpolation, as shown in Figure
3, we performed this for every active and scrambled pair in the
dataset (2971 pairings, plus the P1−SP1 and P2−SP2 pairs),
resulting in a list of 17,838 sequences each with a location label
(scrambled, 0.00, 0.33, 0.66, 0.99, and active; see Table S2).
Attributes that are considered to be important for antimicro-
bial activity of AMPs, such as hydrophobic moment,24 and
others that are likely uncorrelated with activity, such as length,
were calculated as a function of step (location of sampling).
Although the AMP length was not restricted solely to 12 amino
acids, but was trimmed to ≤12, the majority of AMPs were at
that length (96%), with the remainder consisting of shorter
peptides (Figure 4A). Lengths were similar, regardless of
sampling location, with each group containing between 95 and
98% peptides of length 12.
Like length, the amino acid frequency was similar regardless

of sampling location while not being perfectly uniform (Figure
4B). This intergroup similarity was also the case for net charge
(Figure 4C), amino acid type (Figure S2A), isoelectric point
(pI; Figure S2B), and molecular weight (Figure S2C). With
the exception of net charge, each of these attributes is generally
considered to be largely uncorrelated to antimicrobial activity
in AMPs. The net charge within the group was positive (1.24
± 0.01 (mean ± SEM)) ranging between +1.19 and +1.31.
While a net positive charge is common among AMPs, between
12 and 15% of naturally occurring AMPs are thought to be
anionic (net negative charge).25 Beyond this, as net charge is
an attribute resulting from amino acid frequency and the active
and scrambled group AMPs are identical in this regard, the
sameness of the groups in net charge was expected.
Peptide hydrophobicity and protein hydrophobicity are

dependent on amino acid frequency and structural elements.
Within this study and dataset, all groups have a hydrophobicity
value between 0.08 and 0.2 (overall, 0.13 ± 0.01 (mean ±

Figure 4. Comparison of peptide characteristics for the entire generated dataset. (A) Length, (B) amino acid frequency, (C) net charge, (D)
hydrophobicity, and (E) hydrophobic moment. For (D) and (E), the middle line is displayed at the median. The sequence list for the generated
dataset is provided in Table S2.
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SEM)) as measured by the Kyte−Doolittle scale.26 Interest-
ingly, there was an observable trend upward between
scrambled and active groups (Figure 4D). When examining
the larger dataset of active and scrambled peptides, at steps
0.00, 0.33, 0.66, and 0.99, the hydrophobicity values were
determined to be 0.08 ± 0.02, 0.11 ± 0.02, 0.14 ± 0.02, and
0.19 ± 0.02, respectively. Both scrambled and active groups
were 0.11 ± 0.02. Since overall hydrophobicity is known to be
positively correlated with antimicrobial activity,24 this result is
not surprising; however, interestingly, the trend is not
continued in scrambled and active groups.
To estimate the proportion of the secondary structure of the

groups, the GOR IV method was used, which provided
predicted propensities for helix, beta sheet, and random coil.
As expected, the average peptide in the active group is
predicted to be primarily helical, while their scrambled
counterparts have a median predicted helicity of ∼15%, with
the steps in between increasing in helicity when sampled
nearer to active (Figure S3). A related, significant trend was
observed in comparing the predicted hydrophobic moments
between the sampling step locations. The hydrophobic
moments were calculated using a default angle of 100°,
which assumes a helical secondary structure. Hydrophobic
moments for each group were found to be 0.26 ± 0.002, 0.28
± 0.002, 0.30 ± 0.003, 0.32 ± 0.003, 0.35 ± 0.003, and 0.38 ±
0.003 for scrambled, 0.00, 0.33, 0.66, 0.99, and active,
respectively. This means that the spatial orientations of
hydrophobic and polar amino acids differ between the groups
along the interpolation path, leading to significantly increased
hydrophobic moments (p < 0.01, two-sided Welch’s t-test)
compared to those of the scrambled peptide set (Figure 4E).
Also, importantly, the mean value of each group is significantly
different from each adjacent set, suggesting a gradual shift in
spatial orientations along the route from scrambled to active.
Next, to quantify the potential antimicrobial activity of the

generated peptides, we made use of the CAMPR3 AMP
prediction tool. We decided to use the CAMPR3 classifier as it
has been empirically determined to be superior to other
classifiers in a recent benchmark report,27 best reflecting real
antimicrobial activity as determined in experiments. The
probability of antimicrobial activity (P(AMP)) of the AMPs
was obtained and plotted in Figure 5A. In a trend similar to the
hydrophobic moment described above, the P(AMP) increased
as a function of the sampling step locations between scrambled

and active. The P(AMP) for each group was, as output by
CAMPR3, 0.40 ± 0.006, 0.41 ± 0.006, 0.41 ± 0.006, 0.44 ±
0.006, 0.49 ± 0.007, and 0.50 ± 0.007 for scrambled, 0.00,
0.33, 0.66, 0.99, and active, respectively. Meanwhile, the overall
P(AMP) was 0.44 ± 0.002 (mean ± SEM), suggesting that, on
average, the peptides generated in this study are predicted to
be inactive (where a P(AMP) of ≥0.5 is classified as active).
However, several of these are clearly active, as seen in Figure
5B and discussed below. Critically, Welch’s t-test rejected the
hypothesis that the scrambled and active datasets have equal
means of activity predictions (p < 0.05), as well as 0.66 and
0.99 datasets when compared to the scrambled dataset (p <
0.05). Interestingly, at the 0.33 point, the peptides were not of
higher P(AMP).
The relatively low P(AMP) prediction for those sequences

in the active peptide group may result from the following: (1)
the sequences in the training set for CAMPR3 are substantially
longer on average than those used in this study (≤12), (2)
short peptides may not contain sufficient information for most
models to properly assess likelihood of activity, and (3) it is
possible that the truncation of peptides in the APD3-based
dataset did impact real activity. Overall, according to the
CAMPR3 predictions, the VAE model can be used to
smoothly interpolate between AMPs predicted to be active
(or borderline active) and those that are predicted to be
inactive.

2.3. Evaluation of Antimicrobial Activity. As described
above (Section 2.2), following their testing, the peptides P1,
P2, SP1, and SP2 were used as markers to test the capability of
interpolating between the two groups, scrambled and active.
Two series of interpolating peptides were generated at four
increments between each of the scrambled−active pairs of P1−
SP1 and P2−SP2 at increments of 0.00, 0.33, 0.66, and 0.99, as
shown in Figure 3. The resulting peptides were next
experimentally investigated by assessing their antimicrobial
activities on E. coli, A. baumannii, and S. aureus (Figure 5B). By
spot-plating the bacteria following incubation with a range of
AMP concentrations, EC50’s were calculated from triplicate
experiments. EC50’s for both series 1 and 2 peptides against
each of the three species tested are found in Table S4 and
corresponding EC50 curves are shown in Figure S4.
For E. coli, the EC50 values of peptides 0.66 and 0.99 for

series 1 were found to be 308 and 11 μg/mL, respectively,
while neither preceding peptides in the series displayed

Figure 5. (A) Active AMP prediction using CAMPR3. (B) Peptide series 1 and 2 tested against E. coli, A. baumannii, and S. aureus. Peptide
concentrations were 0, 0.64, 3.2, 16, 80, and 400 μg/mL. Row labels are interpolation step for each peptide series. The absence or inhibition of
colony formation is indicative of AMP activity.
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activity. Similarly, for series 2, peptides 0.66 and 0.99 were
found to have EC50’s of 84 and 0.2 μg/mL, respectively, while
both peptides 0.00 and 0.33 were inactive at the concentrations
tested. When tested against A. baumannii, the EC50 values of
peptides 0.66 and 0.99 for series 1 were found to be 400 and
36 μg/mL, respectively, while neither of the preceding peptides
0.00 or 0.33 display activity. For series 2, the EC50’s were
observed to be 65, 13, and 0.8 μg/mL for 0.33, 0.66, and 0.99,
respectively; peptide 0.00 was inactive. For S. aureus, the EC50
values of peptides 0.33, 0.66, and 0.99 for series 1 were
determined as 69, 11, and 0.4 μg/mL, respectively, while
peptide 0.00 did not show activity. For series 2, all of the
peptides were found inactive at the concentrations examined.
Overall, these results appear to confirm the P(AMP)
predictions by CAMPR3 in Figure 5A, suggesting that the
peptides sampled from regions closer to the active space in
latent space are more active than those decoded in close
proximity to scrambled. This trend is further supported by
comparing the overall mean activities, which show that 0.99
group AMPs have a significantly lower EC50 than those from
0.66 (p < 0.05; Welch’s t-test). Although the EC50 values for
many of those in group 0.33 and all of those in group 0.00 are
not available due to insufficient activity for calculation, Figure
5B suggests the overall trend of increasing activity along the
path between scrambled and active groups.

3. DISCUSSION
This study demonstrates the use of a VAE for de novo peptide
sequence design using AMPs as an example. The VAE
described has the potential for sequence design automation
provided that a large database of AMP sequences is available, a
requirement similar to other computational techniques. The
increasing number of both AMP databases and entries per
database makes AMPs a viable proof of concept for assessing
the ability of VAEs to generate new peptides. This approach is
distinct from many previously reported design techniques, such
as random mutagenesis, template-based peptide design
strategies, and other random sequence generation methods,
where amino acids are drawn from a predefined distribution
and then concatenated.5 The encoder and decoder of the VAE
rely on LSTM RNNs that have high-dimensional sequence
representations, meaning that it does not simply reproduce
sequence templates but learns important features present in the
training dataset.
The results achieved suggest that the peptide VAE model

was capable of generating an internal representation of AMPs
from the APD3 database, in that the model did not simply
reproduce the training data, supported by the absence of any
previously known sequences in those experimentally examined.
However, when sampled from similar locations in the latent
space, the decoded peptides do have statistically similar
distributions to those found in the training data (either active
or scrambled). Critically, the features generally reported to be
important for the antimicrobial activity of AMPs, whether for
bacterial membrane targeting or otherwise, such as high
hydrophobic moment in alpha helical peptides,24 are retained
in the peptides decoded near active peptides, while properties
less correlated with antimicrobial activity, such as length,
molecular weight, and pI, are roughly constant regardless of
location in the latent space. In fact, of all of the peptide
attributes examined in the study, the main difference between
the active model-generated sequences and scrambled random
sequences is their amphipathicity, which is illustrated by a

higher hydrophobic moment for the model-generated sets
close to active peptides in the latent space, consistent with the
results reported by Müller et al. utilizing a LSTM RNN
model.8

Since the hydrophobic moment translates back to a regular
pattern of charged and hydrophobic residues at specific
locations in the sequence, this demonstrates that this has
been learned by the model. It is very likely that the increasing
hydrophobic moment yielded higher probabilities in the
CAMPR3 AMP prediction model,28 suggesting that simply
alternating groups of positively ionizable and hydrophobic
amino acids will score highly by the CAMPR3 predictor, a
hypothesis that has been manipulated by Müller et al.,8

highlighting the importance of experimentally verifying the
antimicrobial activity of generated AMPs. This, along with
preserving the simplicity of the method presented, is a possible
advantage of avoiding pairing generative models with
predictive models, which has been done elsewhere:29 we can
avoid any possibility of forcing the generative model to “learn”
to tailor its output to what scores highly in a predictive model.
To verify antimicrobial activity, the interpolation feature

provided by VAEs was exploited. By interpolating between two
known peptides, an active peptide found in APD3 and an
assumed inactive scrambled partner, increasing gradations of
antimicrobial activity can be sampled at regular steps along the
line (Figure 2). This study demonstrated that two series of
peptides, between P1−SP1 and P2−SP2, sampled at four steps
each could yield an increasing spectrum of activity between
two points. The results indicate that not only did the VAE
actually learn to recognize the grammar of amphipathicity in
peptides but also it may have learned the underlying grammar
of what features contribute to antimicrobial activity. The
critical finding is that the VAE learned the grammar of
amphipathicity and antimicrobial activity in peptides, which
can then be tuned in a controllable manner.
As observed in these studies, the intermediates of P3−SP3

displayed high antimicrobial activity as both the predicted and
scrambled peptides. With the P1, P2, SP1, and SP2 constructs,
the reduced activity of the scrambled peptides can likely be
attributed to a change in the hydrophobic moment and,
therefore, the ability for the peptide to readily insert into the
bacterial membrane. For the P3−SP3 pair, however, the
significant change in hydrophobic moment does not appear to
affect the antimicrobial activity. The P3−SP3 peptides are
composed of multiple tryptophan and arginine residues. In a
publication by Wessolowski et al., a similar phenotype was
observed with short peptides of similar composition,
suggesting antimicrobial activity through noncanonical mech-
anisms.30 While their consistent activity as native and
scrambled peptides is interesting, neighboring peptides were
not examined in these studies as similar activity was expected.
This observation, however, illustrates the potential need for
pairing the VAE with a filtering algorithm to remove certain
classes of AMPs depending on the application.
As confirmation of the active AMP prediction model,28 the

two interpolated series of AMPs were tested against E. coli, A.
baumannii, and S. aureus and, overall, yielded the same trend
identified by the AMP prediction, where peptides sampled
displayed more activity as a function of their proximity to
known active peptides. Interestingly, the peptide series may
show a Gram bias, in that the series 2 peptides did not display
any measurable activity against S. aureus but were active against
Gram-negative bacteria E. coli and A. baumannii. More
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investigation is required to determine if this result was
predictable prior to synthesis. Although, for simplicity, no
predictive model was paired with VAE in the current study,
various other groups using generative models for chemical or
peptide generation have output shuttled through predictive
models prior to use.18 Such a pairing could be developed for
future applications to potentially wield some control over
Gram bias in antimicrobial activity and other attributes of
peptides prior to experiment assessment.

4. CONCLUSIONS

The results of the study demonstrate the use of a VAE for the
automated generation of novel AMPs. The model was trained
on thousands of known and scrambled AMP sequences from
APD3 and created a readily usable tool, the form of a
continuous representation of peptides. The latent space
allowed us to generate novel AMPs in a controllable fashion,
which we experimentally verified to be active. Despite the
shortcomings of this proof-of-concept study, including the
focus on truncated peptides, this favorable result will drive
future work in the application of VAEs toward various peptide
and protein-designing projects, including full-length AMPs.
This work suggests that the VAE could operate with greater
utility when paired with a predictive model, or other
characteristic classifier, in a manner described by Goḿez-
Bombarelli et al. for molecule generation to better predict
AMP activity and for optimization purposes. Beyond this, it is
unclear whether the VAE technique is specifically well suited
for peptide and protein applications or could other recently
developed and improved generative deep learning techniques
such as GANs result in superior performance. This idea, use of
a conditional VAE or otherwise pairing with a characteristic
classifier, and assessment of VAE-generated AMPs on other
bacteria will be the subject of future research.

5. EXPERIMENTAL SECTION

5.1. Dataset and Preprocessing. AMP sequences and
other information, including activity (Gram-negative bacteria,
Gram-positive bacteria, cancer cells, etc.), were downloaded
from APD3,11 yielding 2971 peptide sequences (accessed in
mid-2018). Despite the flaws of APD3, such as high
homogeneity and incomplete annotation of post-translationally
modified sequences, it remains to be one of largest AMP
databases available. Since synthesis of long peptides can be
prohibitively expensive, and to reduce the computational load
downstream, the sequences were truncated such that all
peptides were ≤12 amino acids in length, retaining the N-
terminal sequence. The length of ≤12 amino acids was chosen
based on several reports that have shown that short (10−12
amino acids), truncated AMPs are capable of maintaining high
levels of antimicrobial activity.4,31,32 The list of trimmed
peptide sequences was then duplicated and randomly
scrambled with the stringi R package21 function stri_rand_-
shuffle to create a scrambled peptide pair for each peptide
found in APD3, resulting in a list of 5942 sequences. Duplicate
active peptides were retained as all scrambled pairings were
unique. The sequences were then tokenized (each residue
separated; see Table S1) and represented by a one-hot
encoding scheme using binary vectors with length equal to the
size of the amino acid vocabulary: “<end>”, “a”, “c”, “d”, “e”,
“f’”, “g”, “h”, “i”, “k”, “l”, “m”, “n”, “p”, “q”, “r”, “s”, “t”, “v”, “w”,
“x”, and “y”, where “x” is an unknown amino acid present in

some of the APD3 sequences. This resulted in a 3D data
matrix of dimensions 5942, 24, and 12 for the number of
sequences, length of the vocabulary, and feature vector length,
respectively.

5.2. Training and Sequence Generation. The archi-
tecture of the VAE was implemented as described by Bowman
et al.,33 including use of character dropout, which replaces a
random fraction of characters (listed in Section 5.1) with an
<unk> character and utilization of Kullback−Leibler (KL)
annealing, comprising an additional variable weight added to
the cost function KL term while training. The loss function, as
described by Bowman et al., was composed of reconstruction
loss and KL loss to penalize poor reconstruction of the data by
the decoder and encoder output representations of z (latent
space variables) that are different from a standard normal
distribution, respectively (Figure 1A). Training stoppage
criteria were met when loss values did not decrease for 10
iterations through the entire dataset (epochs). The prepro-
cessed data were encoded into vectors using LSTMs. The
encoder LSTM was paired with a decoder LSTM to do
sequence-to-sequence learning. The decoder results were
converted from binary one-hot encoded vectors to peptide
sequences (Figure 1B). The VAE was trained using the Keras34

library with a TensorFlow35 backend via the Adam optimizer.
The number of neurons for the LSTM layers found in both
encoder and decoder was both set to 1024. All models were
trained on an Ubuntu workstation with a Nvidia Geforce
GTX1070 GPU. The LSTM RNNs used in the decoder (and
encoder) are stochastic, meaning that decoding from the same
point in the latent space may result in a different peptide being
generated and is dependent on the random seed set prior to
running. Sequence sampling was performed using linear
interpolation between active peptides and their scrambled
pairs, which is expected to be inactive or less functional as an
AMP against target bacteria. For each pairing, four points were
generated at equally spaced increments of 0.33: 0.00, 0.33,
0.66, and 0.99, where the scrambled pair is encoded at point 0
and the active pair is encoded at 1 such that points 0.00 and
0.99 are adjacent to AMPs in the dataset, while points decoded
at 0.33 and 0.66 are intermediates. Here, it was theorized that
antimicrobial activity would correspond to the latent space
position or distance from either the active (position 1.0) or
inactive/scrambled peptide (position 0.0).

5.3. Examination of Sequence Characteristics. The
characteristics of sequences generated, including peptide
length, amino acid composition, net charge, hydrophobicity,
and hydrophobic moment, were assessed using the Peptides R
package36 and Python library modlAMP.37 Prediction of the
three-state protein secondary structure (helix, beta, and coil)
was carried out using the Garnier−Osguthorpe−Robson
(GOR) IV method38 implemented in the Decipher R
package.39 The probability of AMP activity (P(AMP)) was
predicted using CAMPR327 by uploading sequences to its
server. Exported results from CAMPR3, as well as character-
istic values output from the Peptides package and modlAMP,
were visualized using ggplot2 in the tidyverse R package.40

5.4. Antimicrobial Assays. Peptides synthesized for use in
this study are listed in Table 1. Peptides were synthesized by
Genscript, Inc. (Piscataway, NJ), and each was confirmed to
have greater than 90% purity. Lyophilized peptides were
solubilized in water, aliquoted, and stored at −20 °C.
Overnight cultures of E. coli BL21, A. baumannii ATCC
17978, and S. aureus ATCC 12600 were grown in Lysogeny
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Broth (LB). EC50 assays were performed as previously
described.41 Overnight cultures of bacteria were enumerated
by a standard curve using optical density vs CFU/mL. Cultures
were resuspended in 10 mM sodium phosphate buffer (pH 7)
to a final concentration of ∼2 × 106 CFU/mL. For
determination of EC50 values, peptides were assessed at a
range of concentrations (0.64−400 μg/mL) with bacteria for 1
h at 37 °C. Following incubation, bacteria were spotted for
colony counting as previously described;42 full spread plating
was performed for confirmation of colony counting.
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(18) Gömez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernańdez-
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