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Abstract

Gyrase and topoisomerase IV are the targets of fluoroquinolone antibacterials. However, the rise in 

antimicrobial resistance has undermined the clinical use of this important drug class. Therefore, it 

is critical to identify new agents that maintain activity against fluoroquinolone-resistant strains. 

One approach is to develop non-fluoroquinolone drugs that also target gyrase and topoisomerase 

IV, but interact differently with the enzymes. This has led to the development of the “novel 

bacterial topoisomerase inhibitor” (NBTI) class of antibacterials. Despite the clinical potential of 

NBTIs, there is a relative paucity of data describing their mechanism of action against bacterial 

type II topoisomerases. Consequently, we characterized the activity of GSK126, a naphthyridone/

aminopiperidine-based NBTI, against a variety of Gram-positive and Gram-negative bacterial type 

II topoisomerases including gyrase from Mycobacterium tuberculosis, and gyrase and 

topoisomerase IV from Bacillus anthracis and Escherichia coli. GSK126 enhanced single-stranded 

DNA cleavage and suppressed double-stranded cleavage mediated by these enzymes. It was also a 
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potent inhibitor of gyrase-catalyzed DNA supercoiling and topoisomerase IV-catalyzed 

decatenation. Thus, GSK126 displays a similar bimodal mechanism of action across a variety of 

species. In contrast, GSK126 displayed a variable ability to overcome fluoroquinolone resistance 

mutations across these same species. Our results suggest that NBTIs elicit their antibacterial 

effects by two different mechanisms: inhibition of gyrase/topoisomerase IV catalytic activity or 

enhancement of enzyme-mediated DNA cleavage. Furthermore, the relative importance of these 

two mechanisms appears to differ from species to species. Therefore, we propose that the 

mechanistic basis for the antibacterial properties of NBTIs is bimodal in nature.

Graphical Abstract

INTRODUCTION

In addition to their essential cellular functions,1–3 the bacterial type II topoisomerases, 

gyrase and topoisomerase IV, are the targets for fluoroquinolone antibacterials.4–11 These 

broad-spectrum drugs are among the most widely prescribed antibacterials worldwide,4,5,7,12 

and act by stabilizing covalent protein-cleaved DNA complexes that are generated during the 

catalytic cycles of the type II enzymes.7,8,11,13,14 By inserting between the bases at the 

cleaved scissile bonds, fluoroquinolones increase the cellular concentration of gyrase- and 

topoisomerase IV-mediated DNA breaks and block the essential catalytic functions of these 

enzymes.4–11,13,14 Clinically relevant fluoroquinolones interact with the bacterial type II 

topoisomerases through a water-metal ion bridge.7,15–19 The C3/C4 ketoacid of the 

fluoroquinolone skeleton chelates a divalent metal ion, which is coordinated by four water 

molecules. Two of these water molecules interact with a highly conserved serine and an 

acidic residue that is located four amino acids upstream in the GyrA or GrlA/ParC subunits 

of gyrase or topoisomerase IV (Gram-positive/Gram-negative), respectively.15

Despite the importance of fluoroquinolones in the treatment of bacterial infections, their 

overuse has contributed to a rise in resistance that spans their entire spectrum of clinical 

usage.4–7,10 This resistance is most often associated with mutations in the two amino acid 

residues that anchor the water-metal ion bridge.4–7,10 Given the broad clinical applications 

of fluoroquinolones, it is critical to discover new drug classes that can supplement their use 

in the clinic. One approach is to develop novel drugs that act on validated targets, such as 

gyrase and topoisomerase IV, but interact differently with the enzymes. This approach has 

led to the development of compounds known as “novel bacterial topoisomerase inhibitors” 

(NBTIs) (Figure 1).10,11,20,21

Several NBTIs display activity against clinically relevant bacterial species.9,10,21–28 

However, most show poor activity against Mycobacterium tuberculosis.29 GSK126 (Figure 
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1), which is a naphthyridone/aminopiperidine-based NBTI, was identified in a screen as 

having moderate activity against the bacterium.29 This discovery led to a subset of NBTIs 

that were derived from GSK126 and displayed high activity against M. tuberculosis in 

culture and in mouse infection models.29 Compounds in this subclass are known as M. 
tuberculosis gyrase inhibitors (MGIs). Whereas a recent study characterized the mechanistic 

basis for the actions of MGIs against M. tuberculosis gyrase,30 relatively little is known 

about the actions of the parent NBTI class against gyrase and topoisomerase IV.9–11

In order to address this important issue, we analyzed the actions of GSK126 against a variety 

of bacterial type II topoisomerases, including gyrase from M. tuberculosis, and gyrase and 

topoisomerase IV from Bacillus anthracis and Escherichia coli. This NBTI was chosen for 

initial studies to afford direct comparisons with the MGIs. Results indicate that GSK126 has 

a broader spectrum of activity against gyrase and topoisomerase IV than the MGIs, but 

displays similar mechanistic characteristics. GSK126 acted in a bimodal fashion; it was a 

potent inhibitor of gyrase-catalyzed DNA supercoiling and topoisomerase IV-catalyzed 

decatenation and also induced single-stranded DNA cleavage (i.e., acted as a topoisomerase 

poison) with both enzymes. However, the relative importance of these two modes of NBTI 

action (inhibiting vs. poisoning) appears to differ among bacterial species. Thus, we propose 

that the mechanistic basis for the antibacterial properties of NBTIs is bimodal in nature.

EXPERIMENTAL PROCEDURES

Enzymes and Materials.

Full-length wild-type B. anthracis gyrase subunits (GyrA and GyrB) and GyrA mutant 

(GyrAS85L), as well as wild-type B. anthracis topoisomerase IV subunits (GrlA and GrlB) 

and GrlA mutant (GrlAS81F), were expressed and purified as described by Dong et al.31 

Wild-type E. coli gyrase subunits (GyrA and GyrB) were expressed and purified as 

described by Maxwell et al.32 Mutant E. coli GyrAS83L was expressed and purified as 

described by Dong et al.31 Wild-type E. coli topoisomerase IV and ParC mutant (ParCS80L) 

were expressed and purified as described by Peng and Marians33 or by a minor modification 

of Corbett et al.34 Wild-type M. tuberculosis gyrase subunits (GyrA and GyrB) and GyrA 

mutant (GyrAA90V) were expressed and purified as described by Blower et al.35 as modified 

by Aldred et al.18

Negatively supercoiled pBR322 DNA was prepared from E. coli using a Plasmid Mega Kit 

(Qiagen) as described by the manufacturer. Relaxed pBR322 plasmid DNA was generated 

by treating negatively supercoiled pBR322 with calf thymus topoisomerase I (Invitrogen) 

and purified as described previously.17 Kinetoplast DNA (kDNA) was isolated from 

Crithidia fasciculata as described by Englund.36

The NBTI GSK126 was synthesized as described previously by Blanco et al.29 In the paper 

by Blanco et al., GSK126 was identified as compound 1. The NBTI was stored at 4 °C as a 

1–2 mM stock solution in 10% dimethylsulfoxide.
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DNA Cleavage.

DNA cleavage assays were based on the procedure of Aldred et al.16 Reactions were carried 

out in the absence of GSK126 or presence of increasing concentrations of the NBTI and, 

unless stated otherwise, contained 500 nM B. anthracis wild-type or mutant (GyrAS85L) 

gyrase (1:2 GyrA:GyrB ratio), 150 nM B. anthracis wild-type or 125 nM mutant (GrlAS81F) 

topoisomerase IV (1:2 GrlA:GrlB ratio), 50 nM E. coli wild-type or mutant (GyrAS83L) 

gyrase (1:1 GyrA:GyrB ratio), 20 nM E. coli wild-type or 10 nM mutant (ParCS80L) 

topoisomerase IV (1:1 ParC:ParE ratio), or 100 nM M. tuberculosis wild-type or mutant 

(GyrAA90V) gyrase (1.5:1 or 1:1 GyrA:GyrB ratio, respectively). Stated enzyme 

concentrations reflect those of the holoenzyme (A2B2) calculated on the basis of the limiting 

subunit. The subunit ratios that were employed represent the minimal amount of protein 

required to generate maximal cleavage at 37 °C. Assays contained 10 nM negatively 

supercoiled pBR322 in a total volume of 20 μL of reaction buffer: B. anthracis gyrase: 50 

mM Tris-HCl (pH 7.5), 100 mM KGlu, 5 mM MgCl2, 1 mM dithiothreitol (DTT) and 50 

μg/mL BSA, M. tuberculosis gyrase: 10 mM Tris-HCl (pH 7.5), 40 mM KCl, 6 mM MgCl2, 

0.1 mg/mL bovine serum albumin, and 10% glycerol, all other enzymes: 40 mM Tris-HCl 

(pH 7.9), 50 mM NaCl, 10 mM MgCl2 and 12.5% glycerol. In some cases, MgCl2 in 

reaction buffers was replaced with an equivalent concentration of 5 mM CaCl2 or 1.5 mM 

ATP was included in reaction mixtures. Unless stated otherwise, reactions were incubated at 

37 °C for 30 min with B. anthracis gyrase and 10 min with all other enzymes. Enzyme-DNA 

cleavage complexes were trapped by adding 2 μL of 5% sodium dodecyl sulfate (SDS) 

followed by 2 μL of 250 mM Na2EDTA and 2 μL of 0.8 mg/mL Proteinase K (Sigma 

Aldrich). Reaction mixtures were incubated at 45 °C for 30 min to digest the enzyme. 

Samples were mixed with 2 μL of loading buffer [60% sucrose, 10 mM Tris-HCl (pH 7.9), 

0.5% bromophenol blue, and 0.5% xylene cyanol FF] and incubated at 45 °C for 2 min 

before loading onto 1% agarose gels. Reaction products were subjected to electrophoresis in 

40 mM Tris-acetate (pH 8.3) and 2 mM EDTA containing 0.5 μg/mL ethidium bromide. 

DNA bands were visualized with medium-range ultraviolet light and quantified by scanning 

densitometry using a Protein Simple AlphaImager HP digital imaging system. DNA single- 

or double-stranded cleavage was monitored by the conversion of supercoiled plasmid to 

nicked or linear molecules, respectively, and quantified in comparison to a control reaction 

in which an equal amount of DNA was digested by EcoRI (New England BioLabs). EC50 

values were determined using Prism and represent the concentration of GSK126 at which 

50% maximal single-stranded DNA cleavage was observed.

Gyrase-catalyzed DNA Supercoiling.

DNA supercoiling assays were based on previously published protocols.16,18 Assays 

contained 200 nM B. anthracis wild-type or mutant (GyrAS85L) gyrase (1:2 GyrA:GyrB 

ratio), 10 nM E. coli wild-type or mutant (GyrAS83L) gyrase (1:1 GyrA:GyrB ratio), or 75 

nM M. tuberculosis wild-type or mutant (GyrAA90V) gyrase (1.5:1 GyrA:GyrB ratio), 5 nM 

relaxed pBR322, and 1.5 mM ATP in a total volume of 20 μL of 50 mM Tris-HCl (pH 7.5), 

5 mM MgCl2, 175 mM KGlu, and 50 μg/mL BSA for all enzymes except M. tuberculosis 
gyrase or 10 mM Tris-HCl (pH 7.5), 40 mM KCl, 6 mM MgCl2, 0.1 mg/mL BSA, and 10% 

glycerol for M. tuberculosis gyrase. Stated enzyme concentrations reflect those of the 

holoenzyme (A2B2) calculated on the basis of the limiting subunit. In reactions with gyrase 
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from B. anthracis and M. tuberculosis, 5 mM DTT and 2 mM DTT, respectively, were 

included. Reactions were incubated at 37 °C for 30 min, which represents the minimum time 

required to completely supercoil the DNA in the absence of drug. Reaction mixtures were 

stopped by the addition of 3 μL of a mixture of 0.77% SDS and 77.5 mM Na2EDTA. 

Samples were mixed with 2 μL of loading buffer and incubated at 45 °C for 2 min before 

loading onto 1% agarose gels in 100 mM Tris-borate (pH 8.3) and 2 mM EDTA. Gels were 

stained with 1 μg/mL ethidium bromide for 30 min. DNA bands were visualized and 

quantified as described above. IC50 values were determined using Prism and represent the 

concentration of GSK126 that decreased activity by 50%.

Topoisomerase IV-catalyzed DNA Decatenation.

DNA decatenation assays were based on previously published protocols.16,37 Assays 

contained 25 nM B. anthracis wild-type or mutant (GrlAS81F) topoisomerase IV (1:2 

GrlA:GrlB ratio) or 10 nM E. coli wild-type or mutant (ParCS80L) topoisomerase IV (1:1 

ParC:ParE ratio), 5 nM kDNA, and 1.5 mM ATP in 20 μL of 40 mM HEPES (pH 7.6), 100 

mM KGlu, 10 mM Mg(OAc)2, and 25 mM NaCl. Stated enzyme concentrations reflect those 

of the holoenzyme (A2B2) calculated on the basis of the limiting subunit. Reactions were 

incubated at 37 °C for 30 min, which represents the minimum time required to completely 

decatenate the DNA in the absence of drug. Reaction mixtures were stopped by the addition 

of 3 μL of a mixture of 0.77% SDS and 77.5 mM Na2EDTA. Samples were mixed with 2 μL 

of loading buffer and incubated at 45 °C for 2 min before loading onto 1% agarose gels in 

100 mM Tris-borate (pH 8.3) and 2 mM EDTA. Gels were stained with 1 μg/mL ethidium 

bromide for 30 min. DNA bands were visualized and quantified as described above. IC50 

values were determined using Prism and represent the concentration of GSK126 that 

decreased activity by 50%.

Results

MGIs are the best-characterized members of the naphthyridone/aminopiperidine-based 

NBTI drug class.29,30 However, their selection for activity against M. tuberculosis resulted 

in a group of compounds with narrow specificity.30 This narrow specificity range raises 

questions regarding the spectrum of action of the parent NBTI series and whether the 

mechanism of the naphthyridone/aminopiperidine-based compounds are translatable across 

species.

Therefore, the ability of GSK126 (the parent compound of MGIs) to induce enzyme-

mediated single-stranded breaks was examined against gyrase and topoisomerase IV from a 

variety of Gram-negative and Gram-positive bacteria (Figure 2). In contrast to MGIs, the 

NBTI displayed a much broader spectrum of activity. The compound showed activity against 

all the enzymes examined, including those from B. anthracis, E. coli, and M. tuberculosis. In 

order to assess the basis for the actions of GSK126 against bacterial type II topoisomerases, 

we characterized its activity against all the enzymes shown in Figure 2. This allowed us to 

characterize the actions of a NBTI against Gram-negative and Gram-positive gyrase and 

topoisomerase IV as well as M. tuberculosis gyrase (this species does not encode 

topoisomerase IV38) to afford direct comparisons to MGIs.
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DNA Gyrase

Effects of GSK126 on the DNA Supercoiling Activity of Wild-type and 
Fluoroquinolone-resistant Gyrase.—NBTIs have been shown to inhibit the catalytic 

function of gyrase, but it is not known how enzyme inhibition vs. the ability of NBTIs to 

enhance DNA cleavage affects drug-induced cell death. Therefore, the effects of GSK126 on 

DNA supercoiling catalyzed by B. anthracis, E. coli, and M. tuberculosis gyrase were 

examined (Figure 3). The NBTI was a potent catalytic inhibitor of the B. anthracis and E. 
coli enzymes, but displayed lower activity against M. tuberculosis gyrase (IC50 ~ 0.4 μM 

and 2 μM compared to IC50 ~ 75 μM, respectively). In addition, GSK126 was able to 

decrease the activity of the latter enzyme by only 60%. Furthermore, the compound 

displayed a variable ability to overcome the effects of the common clinical fluoroquinolone 

resistance mutations (all are at corresponding serine residues) in B. anthracis (GyrAS85L), E. 
coli (GyrAS83L), and M. tuberculosis (GyrAA90V) gyrase (Figure 3). Whereas GSK126 

maintained activity against all three mutant enzymes, its potency dropped considerably 

against the B. anthracis and M. tuberculosis gyrase mutants (compared to the wild-type 

enzyme). In contrast, the compound was 5–10 fold more potent against the E. coli gyrase 

that harbored the fluoroquinolone resistance mutation.

Effects of GSK126 on the DNA Cleavage Activity of Wild-type and 
Fluoroquinolone-resistant Gyrase.—In contrast to studies on the inhibition of gyrase 

supercoiling,22–25,27,28,39–42 relatively little is known about how NBTIs affect gyrase-

mediated DNA cleavage.21,22,25,30,43 Therefore, the effects of GSK126 on DNA cleavage 

mediated by wild-type gyrase from B. anthracis, E. coli, and M. tuberculosis was examined 

(Figure 4). Paralleling previous results for MGIs and other classes of NBTIs,21,25,30,43 

GSK126 displayed a potent ability to induce single-stranded DNA breaks generated by all 

three enzymes [EC50 (concentration of GSK126 required to obtain 50% maximal cleavage) 

values ranged from sub-micromolar to ~1 μM], but displayed no ability to induce double-

stranded breaks.

In contrast to the concentration dependence for the enhancement of single-stranded DNA 

breaks with E. coli and M. tuberculosis gyrase, GSK126 induced a sharp increase in DNA 

cleavage mediated by the B. anthracis enzyme (Figure 4). This presumably reflects a strong 

binding of the NBTI to the B. anthracis gyrase-DNA complex, which is consistent with the 

sharp decline in supercoiling rates with this enzyme in the presence of GSK126 (Figure 3).

Although NBTIs and fluoroquinolones both bind in the active site of gyrase in the cleavage 

complex, they do not interact with the same amino acid residues. However, very little is 

known about how the presence of common fluoroquinolone resistance mutations in gyrase 

affect the ability of NBTIs to induce enzyme-mediated DNA cleavage.30 As shown in Figure 

4, GSK126 was slightly more efficacious against B. anthracis GyrAS85L and induced 

substantially more single-stranded DNA cleavage against M. tuberculosis GyrAA90V gyrase 

than their wild-type counterparts. In contrast, GSK126 displayed no ability to enhance DNA 

cleavage mediated by E. coli GyrAS83L gyrase (control experiments carried out in the 

presence of Ca2+ demonstrate that GyrAS83L displays wild-type levels of baseline DNA 

cleavage, not shown). This is the first reported instance in which DNA cleavage 
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enhancement by a NBTI or related compound has failed to overcome resistance induced by a 

fluoroquinolone-resistant mutation in gyrase.

GSK126 Enhances only Single-stranded DNA Cleavage Mediated by Gyrase 
and Suppresses Enzyme-generated Double-stranded DNA Breaks.—To further 

assess the ability of GSK126 to induce gyrase-mediated single- vs. double-stranded breaks 

with the wild-type enzyme, DNA cleavage reactions were carried out at NBTI 

concentrations as high as 200 μM and at reaction times up to six times longer than required 

to achieve DNA cleavage-ligation equilibrium. Under all conditions examined, only the 

enhancement of single-stranded breaks was observed (Figure 5). Furthermore, no 

enhancement of double-stranded breaks was seen in the presence of ATP, which is required 

for overall catalytic activity (Figure 6). However, it is notable that levels of single-stranded 

DNA cleavage generated by E. coli gyrase in the presence of ATP were considerably lower 

than those seen in the absence of the high energy cofactor (see Figure 4). This finding opens 

the possibility that under physiological conditions, GSK126 acts primarily as a catalytic 

inhibitor (as opposed to a poison) of E. coli gyrase. Conversely, the potent DNA cleavage 

enhancement with M. tuberculosis gyrase vs. the relatively weak inhibitory properties of 

GSK126 against this enzyme suggest that the opposite may be the case for GSK126 and M. 
tuberculosis.

The double-stranded cleavage of DNA by type II topoisomerases is carried out by two 

coordinated single-stranded cleavage events.14,44,45 Thus, the generation of single-stranded 

DNA breaks that are observed in the presence of GSK126 can reflect multiple mechanisms. 

For example, the compound in any given cleavage complex may stabilize the break only at 

one of the scissile bonds. Alternatively, after cleavage at one scissile bond, the presence of 

GSK126 may alter the structure of the enzyme-DNA complex such that the second DNA 

strand cannot be cut. This latter mechanism is favored by structural studies that indicate 

distortion in the cleavage complex in the presence of NBTIs.21,43 To help elucidate the 

mechanisms by which GSK126 induces only single-stranded DNA breaks, the MgCl2 in 

DNA cleavage assays was replaced with CaCl2. This latter divalent metal ion raises baseline 

levels of DNA cleavage with most type II topoisomerases, so that double-stranded breaks 

can be observed more easily even in the absence of drug (compare levels of double-stranded 

DNA breaks in the absence of GSK126 in Figure 4 with those in Figure 7). As seen in 

Figure 7 (or more clearly in Figures 4 and 6 with B. anthracis gyrase), the rise in single-

stranded cleavage mediated by gyrase at increasing concentrations of GSK126 was 

accompanied by a coordinate decrease in double-stranded breaks. This finding suggests that 

cleavage of one scissile bond in the presence of GSK126 suppresses cleavage at the opposite 

scissile bond.

Taken together, the above data provide strong evidence that GSK126 (a naphthyridone/

aminopiperidine-based NBTI), like the naphthyridone/aminopiperidine-based MGIs 

(GSK000 and GSK325)30 and other structural classes of NBTIs (NBTI GSK299423, 5643, 

and gepotidacin),21,25,43 induces only gyrase-mediated single-stranded DNA breaks across a 

variety of species.
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Topoisomerase IV

Effects of GSK126 on the DNA Decatenation Activity of Wild-type and 
Fluoroquinolone-resistant Topoisomerase IV.—Depending upon the bacterial 

species and the specific drug, the primary cellular target of fluoroquinolones may be gyrase, 

topoisomerase IV, or both enzymes.6,7,10,13 However, less is known about the targeting of 

NBTIs. Therefore, to be able to make direct comparisons with DNA gyrase, the ability of 

GSK126 to inhibit decatenation catalyzed by B. anthracis and E. coli topoisomerase IV was 

characterized.

Consistent with studies with other structural classes of NBTIs21–25,27,28,30,39–43,46 and as 

seen with gyrase (Figure 3), GSK126 was a potent inhibitor of topoisomerase IV function 

(IC50 ~ 2.3 μM for B. anthracis and 1.4 μM for E. coli, respectively) (Figure 8). 

Furthermore, GSK126 maintained activity against the ParCS80L fluoroquinolone-resistant 

mutant of E. coli topoisomerase IV (IC50 ~ 1.4 μM) and displayed even greater potency 

against the GrlAS81F mutant of the B. anthracis enzyme (Figure 8). As above, these 

fluoroquinolone resistance mutations are at the corresponding serine residues.

Effects of GSK126 on the DNA Cleavage Activity of Wild-type and 
Fluoroquinolone-resistant Topoisomerase IV.—Virtually nothing has been reported 

regarding the effects of NBTIs on DNA cleavage mediated by topoisomerase IV. 

Consequently, we examined the ability of GSK126 to enhance DNA cleavage mediated by 

the enzyme (Figure 9). The NBTI was a potent enhancer of single-stranded DNA cleavage 

with wild-type B. anthracis and E. coli topoisomerase IV (EC50 values for both enzymes 

were <0.5 μM). As seen with gyrase in Figure 4, no enhancement of double-stranded breaks 

was observed. Furthermore, in parallel with results with B. anthracis gyrase, there was a 

sharp increase in DNA cleavage mediated by B. anthracis topoisomerase IV in the presence 

of GSK126. Once again, this likely reflects a tight binding between the NBTI and the 

topoisomerase IV-DNA complex.

The effects of fluoroquinolone resistance mutations on the induction of topoisomerase IV-

mediated DNA cleavage by GSK126 were also examined (Figure 9). Both the potency and 

efficacy of the NBTI against the B. anthracis GrlAS81F mutant enzyme were similar to those 

observed for wild-type topoisomerase IV. In contrast, similar to results with E. coli gyrase 

(see Figure 4), GSK126 was ineffective at inducing DNA cleavage with the E. coli 
topoisomerase IV fluoroquinolone-resistant ParCS80L mutant. This is despite the fact that the 

NBTI maintained the ability to inhibit overall catalytic activity.

GSK126 Enhances only Single-stranded DNA Cleavage Mediated by 
Topoisomerase IV and Suppresses Enzyme-generated Double-stranded DNA 
Breaks.—As found with gyrase, GSK126 induced only single-stranded DNA breaks 

mediated by B. anthracis and E. coli topoisomerase IV. Even at high concentrations of 

GSK126 and longer reaction times, no enhancement of double-stranded breaks was observed 

(Figure 10). Furthermore, paralleling the results with gyrase, no double-stranded DNA 

breaks were observed in the presence of ATP (Figure 11). However, the ability of GSK126 

to induce DNA cleavage with E. coli topoisomerase IV was marginal in the presence of the 
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high energy cofactor. Thus, as was seen with E. coli gyrase (see Figure 6), this finding 

suggests that under physiological conditions, GSK126 acts primarily as a catalytic inhibitor 

of E. coli topoisomerase IV.

Because topoisomerase IV generally maintains higher levels of baseline DNA cleavage than 

gyrase, double-stranded DNA breaks can be monitored in Mg2+-containing reactions. As 

seen in Figure 9 with E. coli topoisomerase IV and Figure 11 with B. anthracis 
topoisomerase IV, the increase in NBTI-induced single-stranded breaks was accompanied by 

a decrease in double-stranded DNA breaks. This suppression of double-stranded breaks 

becomes even more apparent for both species of topoisomerase IV in Ca2+-containing 

reactions (Figure 12). Note that data with E. coli topoisomerase IV are shown using a lower 

ratio (1:1) of enzyme to DNA than in Mg2+-containing reactions (2:1) because levels of 

double-stranded breaks are often so high with this enzyme in the presence of Ca2+ that 

baseline reactions contain multiply cleaved DNA products (not shown). Taken together, the 

above results indicate that GSK126 enhances single-stranded and suppresses double-

stranded DNA breaks generated by bacterial type II topoisomerases.

Discussion

Given the rise in fluoroquinolone resistance, there is a need to supplement or eventually 

replace these drugs. The NBTIs display promise to address this unmet medical need. 

However, there is a paucity of published data describing the mechanism of action of these 

compounds against their type II topoisomerase targets. Structural work with NBTIs has 

focused on the interaction of these compounds with gyrase.21,43,47,48 Whereas previous 

studies have reported the inhibition of DNA supercoiling by gyrase or decatenation or 

relaxation by topoisomerase IV,21–25,27,28,30,39–43 only a handful of studies have examined 

the effects of NBTIs on DNA cleavage.21,22,25,30,43 Thus, it was not obvious that previous 

conclusions could be extended across bacterial species or from gyrase to topoisomerase IV. 

Consequently, we examined the effects of the NBTI GSK126 on the catalytic and DNA 

cleavage activities of wild-type and fluoroquinolone-resistant gyrase and topoisomerase IV 

from B. anthracis and E. coli and gyrase from M. tuberculosis.

NBTIs as bimodal agents that target bacterial type II topoisomerases.

Results of the present work indicate that GSK126 is a potent catalytic inhibitor of gyrase and 

topoisomerase IV from a variety of gram-positive and gram-negative bacterial species. 

Furthermore, the NBTI enhances single-stranded DNA cleavage and suppresses double-

stranded cleavage mediated by these enzymes. These findings make it likely that NBTIs (at 

least those that enhance DNA cleavage) display a similar bimodal mechanism of action 

against gyrase and topoisomerase IV across a spectrum of bacteria. However, the role that 

“inhibition of catalytic activity” vs. “enhancement of cleavage” plays in the antibacterial 

properties of NBTIs remains an enigma and may differ from species to species. To this 

point, results with E. coli gyrase and topoisomerase IV suggest that under physiological 

conditions (i.e., in the presence of ATP) GSK126 acts primarily as a catalytic inhibitor rather 

than a poison with these enzymes. This finding opens the possibility that the antibacterial 

activity of GSK126 against E. coli (Minimal Inhibitory Concentration = 0.26 μM)30 may be 
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more closely linked to its ability to inhibit the critical catalytic activities of gyrase and 

topoisomerase IV as opposed to its ability to enhance DNA strand breaks. Conversely, the 

potent DNA cleavage enhancement with M. tuberculosis gyrase vs. the relatively weak 

inhibitory properties of GSK126 against this enzyme suggest that DNA cleavage 

enhancement may be the more important mode of action in this species. Alternatively, the 

more balanced effects of GSK126 on the catalytic and DNA cleavage activities of the B. 
anthracis type II topoisomerases leave the door open for either mode of action (or a 

combination of both) to predominate in cells. Taken together, the results of the present study 

suggest that NBTIs are antibacterial agents that act in a bimodal fashion. Despite the fact 

that they target the same enzymes across a wide range of bacterial species, the mechanism 

by which they manifest their antibacterial properties in distinct species may be 

fundamentally different.

At the present time, it is not possible to predict the actions of any NBTI against any given 

bacterial type II topoisomerase a priori. Eventually, mechanistic in vitro studies with wild-

type and resistant enzymes will have to be coupled with parallel cellular studies to develop a 

set of “rules” that describe the actions of NBTIs. If this information can be generated, it 

should hasten the development of this potentially important class of compounds.
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Figure 1. 
Structure of the NBTI GSK126. The naphthyridone (purple) and aminopiperidine (blue) 

moieties are indicated.
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Figure 2. 
GSK126 displays a broad spectrum of DNA cleavage enhancement against gyrase and 

topoisomerase IV. The effects of GSK126 (solid bars) on single-stranded DNA cleavage 

mediated by gyrase and topoisomerase IV are shown for the NBTI concentration that 

generated the highest levels of single-stranded breaks (see Figures 4 and 9). Data are shown 

for B. anthracis gyrase (Ba Gyr, red, 0.5 μM GSK126) and topoisomerase IV (Ba TIV, 

purple, 0.5 μM), E. coli gyrase (Ec Gyr, green, 15 μM) and topoisomerase IV (Ec TIV, blue, 

1 μM), and M. tuberculosis gyrase (Mt Gyr, orange, 10 μM) are shown. The corresponding 

single-stranded DNA cleavage in the absence of GSK126 is shown as empty bars. Error bars 

represent the SD (standard deviation) of at least three independent experiments.
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Figure 3. 
GSK126 inhibits DNA supercoiling catalyzed by wild-type (WT) and fluoroquinolone-

resistant gyrase. The effects of GSK126 on the supercoiling of relaxed DNA by WT (filled 

circles) and fluoroquinolone-resistant (empty circles) B. anthracis WT and GyrAS85L (top 

left, red), E. coli WT and GyrAS83L (top middle, green), and M. tuberculosis WT and 

GyrAA90V (top left, orange) gyrase are shown. Error bars represent the SD of at least three 

independent experiments. The bottom panel shows a table of IC50 values. Representative 

agarose gels are shown in Figure S1.
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Figure 4. 
Effects of GSK126 on DNA cleavage mediated by wild-type (WT) and fluoroquinolone-

resistant gyrase. The effects of GSK126 on single-stranded (SS, filled circles) and double-

stranded (DS, empty circles) DNA cleavage mediated by WT (solid line) and 

fluoroquinolone-resistant (dashed line) B. anthracis WT and GyrAS85L (left, red), E. coli 
WT and GyrAS83L (middle, green), and M. tuberculosis WT and GyrAA90V (right, orange) 

gyrase are shown. Some of the data shown for M. tuberculosis WT and GyrAA90V gyrase 

are from Gibson et. al.30 Error bars represent the SD of at least three independent 

experiments. Representative agarose gels are shown in Figure S2.
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Figure 5. 
GSK126 enhances only single-stranded DNA breaks mediated by gyrase. The top panel 

shows the enhancement of B. anthracis gyrase-mediated single- (red) or double-stranded 

(black) DNA breaks at 30 min (filled bar) or 3 h (empty bar) in the absence or presence of 

10 μM or 200 μM GSK126. The middle panel shows the enhancement of E. coli gyrase-

mediated single- (green) or double-stranded (black) DNA breaks at 10 min (filled bar) or 60 

min (empty bar) in the absence or presence of 10 μM or 200 μM GSK126. The bottom panel 

shows the enhancement of M. tuberculosis gyrase-mediated single- (orange) or double-

stranded (black) DNA breaks at 10 min (filled bar) or 60 min (empty bar) in the absence or 

presence of 10 μM or 200 μM GSK126. Error bars represent the SD of at least 3 independent 

experiments. Representative agarose gels are shown in Figure S3.
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Figure 6. 
GSK126 enhances only single-stranded DNA breaks mediated by gyrase in the presence of 

ATP. The effects of GSK126 on single-stranded (SS, filled circles) and double-stranded (DS, 

empty circles) DNA cleavage mediated by B. anthracis (left, red), E. coli (middle, green), 

and M. tuberculosis (right, orange) gyrase in the presence of 1.5 mM ATP are shown. Error 

bars represent the SD of at least three independent experiments. Representative agarose gels 

are shown in Figure S4.
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Figure 7. 
GSK126 suppresses double-stranded DNA breaks generated by gyrase. The effects of 

GSK126 on single-stranded (SS, filled circles) and double-stranded (DS, empty circles) 

DNA cleavage mediated by B. anthracis (left, red), E. coli (middle, green), and M. 
tuberculosis (right, orange) gyrase are shown. Reaction mixtures contained 5 mM CaCl2 in 

place of MgCl2 to increase baseline levels of DNA cleavage. Error bars represent the SD of 

at least three independent experiments. Representative agarose gels are shown in Figure S5.
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Figure 8. 
GSK126 inhibits DNA decatenation catalyzed by wild-type (WT) and fluoroquinolone-

resistant topoisomerase IV. The effects of GSK126 on DNA decatenation by WT (filled 

circles) and fluoroquinolone-resistant (empty circles) B. anthracis WT and GrlAS81F (top 

left, purple) and E. coli WT and ParCS80L (top right, blue) topoisomerase IV are shown. 

Error bars represent the SD of at least three independent experiments. The bottom panel 

shows a table of IC50 values. Representative agarose gels are shown in Figure S6.
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Figure 9. 
Effects of GSK126 on DNA cleavage mediated by wild-type (WT) and fluoroquinolone-

resistant topoisomerase IV. The effects of GSK126 on single-stranded (SS, filled circles) and 

double-stranded (DS, empty circles) DNA cleavage mediated by WT (solid line) and 

fluoroquinolone-resistant (dashed line) B. anthracis WT and GrlAS81F (left, purple) and E. 
coli WT and ParCS80L (right, blue) topoisomerase IV are shown. Error bars represent the SD 

of at least three independent experiments. Representative agarose gels are shown in Figure 

S7.
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Figure 10. 
GSK126 enhances only single-stranded DNA breaks mediated by topoisomerase IV. The top 

panel shows the enhancement of B. anthracis topoisomerase IV-mediated single- (purple) or 

double-stranded (black) DNA breaks at 10 min (filled bar) or 60 min (empty bar) in the 

absence or presence of 10 μM or 200 μM GSK126. The bottom panel shows the 

enhancement of E. coli topoisomerase IV-mediated single- (blue) or double-stranded (black) 

DNA breaks at 10 min (filled bar) or 60 min (empty bar) in the absence or presence of 10 

μM or 200 μM GSK126. Error bars represent the SD of at least 3 independent experiments. 

Representative agarose gels are shown in Figure S8.

Gibson et al. Page 23

Biochemistry. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. 
GSK126 enhances only single-stranded DNA breaks mediated by topoisomerase IV in the 

presence of ATP. The effects of GSK126 on single-stranded (SS, filled circles) and double-

stranded (DS, empty circles) DNA cleavage mediated by B. anthracis (left, purple) and E. 
coli (right, blue) topoisomerase IV in the presence of 1.5 mM ATP are shown. Error bars 

represent the SD of at least three independent experiments. Representative agarose gels are 

shown in Figure S9.
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Figure 12. 
GSK126 suppresses double-stranded DNA breaks generated by topoisomerase IV. The 

effects of GSK126 on single-stranded (SS, filled circles) and double-stranded (DS, empty 

circles) DNA cleavage mediated by B. anthracis topoisomerase IV (left, purple) and E. coli 
(right, blue) topoisomerase IV are shown. Reaction mixtures contained 5 mM CaCl2 in place 

of MgCl2 to increase baseline levels of DNA cleavage. Note that data shown for E. coli 
topoisomerase IV were generated at a 1:1 enzyme:plasmid ratio to ensure that baseline 

reactions carried out in the absence of GSK126 did not include DNA molecules that 

contained multiple double-stranded breaks. Error bars represent the SD of at least three 

independent experiments. Representative agarose gels are shown in Figure S10.
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