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Abstract

Deep learning has achieved impressive performance across a variety of tasks, including medical 

image processing. However, recent research has shown that deep neural networks are susceptible 

to small adversarial perturbations in the image. We study the impact of such adversarial 

perturbations in medical image processing where the goal is to predict an individual’s age based 

on a 3D MRI brain image. We consider two models: a conventional deep neural network, and a 

hybrid deep learning model which additionally uses features informed by anatomical context. We 

find that we can introduce significant errors in predicted age by adding imperceptible noise to an 

image, can accomplish this even for large batches of images using a single perturbation, and that 

the hybrid model is much more robust to adversarial perturbations than the conventional deep 

neural network. Our work highlights limitations of current deep learning techniques in clinical 

applications, and suggests a path forward.

1. Introduction

Deep learning methods are transforming the way scientists approach data across many 

disciplines, and have recently become prominent in medical imaging. For example, Esteva et 

al. [1] showed the same accuracy as a dermatologist in the detection of malignant skin 

lesions using deep learning techniques. Gulshan et al. [2] used similar methods for the 

detection of diabetic retinopathy in retinal fundus photographs with great accuracy, while 

Bejnordi et al. [3] were able to accurately detect lymph node metastasis in patients with 

breast cancer, and Cole et al. [4] used deep learning to produce a more accurate brain age 

prediction, which has been shown to correlate with neurodegenerative diseases. Given the 

remarkable results that deep learning methods have shown compared to standard clinical 

practice, these have started to be implemented into clinical practice, with several deep 
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learning applications already approved by the United States Food and Drug Administration 

(FDA) [5, 6, 7, 8].

However, concerns regarding the clinical suitability / safety of deep learning models linger 

given their algorithmic complexity and difficulty in describing specifically which features 

are driving the models. The lack of clarity may mask the true image content being learned 

(e.g., the difference between a wolf and a dog might be that wolves are seen in the snow [9]) 

or conceal issues of fairness [10]. Additionally, potential deleterious consequences of the 

opacity of deep learning have recently come to the fore in the computer vision community 

(largely, focusing on image classification tasks), where several studies reveal vulnerability of 

deep learning models to unanticipated perturbations, commonly known as adversarial 
examples [11, 12, 13, 14, 15, 16]. In particular, a number of methods have emerged which 

make small modifications to images that are indistinguishable to human eye, but effect 

dramatically different predictions. Similar observations have recently been made in the field 

of medical imaging for several classification and segmentation tasks [17, 18, 19], raising the 

concern that either faulty medical imaging equipment, or even unscrupulous for-profit 

providers, would lead to diagnostic mistakes (for example, leading to unnecessary additional 

testing).

We present the first investigation of vulnerabilities of regression-based prediction in medical 

image processing to adversarial example attacks. Specifically, our problem setting involves 

predicting age of a subject based on their 3D MRI brain image, with malicious perturbations 

artificially injected directly into the digital images. Since prior adversarial example research 

is focused on classification or segmentation tasks, our first contribution is to adapt state-of-

the-art methods for generating adversarial examples with l0, l2, and l∞ constraints on the 

magnitude of the perturbation to our setting. Our second contribution is a method for 

generating universal adversarial perturbations for our domain—that is, a single perturbations 

(for each norm) that is effective on a large batch of images; this is entirely novel in the 

context of medical imaging. Our third contribution is to experimentally demonstrate that 

adversarial examples—both image-specific, and universal—are indeed extremely effective, 

significantly reducing prediction effectiveness of deep learning for age prediction. The 

observation of the effectiveness of universal perturbations in this setting is particularly 

powerful: it implies that a single malfunction in MRI equipment (inadvertent, or adversarial) 

can have a significant impact.

Given vulnerability of deep learning for medical imaging, it is natural to wonder whether 

one can effectively mitigate this issue. We explore one approach which has not previously 

been considered for this: augmenting deep learning models with volumetric features 

obtained through traditional multi-atlas segmentation techniques, where each feature 

corresponds to the volume of a brain region (for a total of 132 features). Such contextual 

information has previously been shown effective in improving prediction in non-adversarial 

settings [20, 21, 22], and is by construction relatively insensitive to small perturbations. Our 

forth contribution is to demonstrate experimentally that, indeed, adding contextual features 

to deep learning significantly mitigates its vulnerability to adversarial perturbations, whether 

they are designed for each image independently, or universally crafted for batches of images.
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To illustrate the effect of adversarial noise, consider Figure 1, where age is predicted using a 

conventional deep neural network. For this figure, we identify one sample with predicted age 

19 and another sample with predicted age 80 (Figures 1(a) and 1(b), respectively); we note 

that predictions on unperturbed data are extremely accurate (root mean squared error, RMSE 

< 5.13 years). Comparing the brain images of a 19 and 80 year-old, we can readily see clear 

differences between them. Next, we add low-magnitude random noise (l∞ of noise is 0.002, 

where pixel values are normalized between 0 and 1) to the first (19-year-old) sample (Figure 

1(c)), showing that the deep neural network is robust to such random perturbations. Figure 

1(d) contrasts this with an adversarial perturbation of the same magnitude, but which causes 

the neural network to predict that the subject’s age is 80!

2. Methods

First, we describe the approaches we used to generate adversarial perturbations for a single 

image. Subsequently, we present our approach that targets a batch of images with a single 

perturbation. All our code is publicly available at https://github.com/yvorobey/

adversarialMI.

2.1. Generating Adversarial Perturbations for a Single Image

Let F(x) be the function computed by the deep neural network to predict age for an arbitrary 

input image x. Consider a fixed image x0. Our goal is to generate a small (imperceptible) 

perturbation, Δx, to add to the original image x0, so as to maximize or minimize predicted 

age. As described earlier, we use l∞, l2, and l0 norms to quantify the magnitude of the 

introduced perturbation. In all cases, if we wish to maximize predicted age, the goal is to 

solve the following problem:

maximizeΔx G(Δx) = F (x0 + Δx)
subject to: ‖Δx‖p ≤ ϵ, x0 + Δx ∈ [0, 1]n (1)

where ∥ · ∥p corresponds to the one of the above norms (p = ∞, 2, and 0, respectively), F(x + 

Δx) is the predicted age for the perturbed image, and the constraint ∥Δx∥p ≤ ϵ ensures that 

perturbation is at most ϵ, which is a small and exogenously specified bound (in our 

experiments, at most 0.002 for any norm). Additionally, since image pixels are normalized in 

the [0, 1] interval, we also ensure that introduced perturbations result in valid images by 

adding the constraint that x0+Δx ∈ [0, 1]n. If our goal is to minimize, rather than maximize 

predicted age, the objective becomes minimization rather than maximization.

Since the optimization problem (1) is challenging as stated, we use heuristic approaches 

based on those introduced in prior literature for solving this problem [11]. As the specific 

approaches are tailored to the norm which measures the magnitude of the introduced 

perturbation, we next present such approaches for each norm.

2.1.1. The l∞ Attack—Our approach to implementing the l∞ norm attack is based on 

FGSM [12] and its subsequent iterative variation [28]. The idea behind the approach is to 

approximate the objective function F(x0 + Δx) ≈ ∇F(x0)Δx + F(x0). The optimal solution to 

this linearized objective is then Δx = ϵ sign(∇F(x0)). Extending this idea to an iterative 
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variant, with N the number of iterations, we can take steps of size ϵ/N, where each step 

computes Δx using the gradient sign approach starting from the previous iterate. Finally, if 

the total modification to x0 ever leaves the interval [0, 1], it is clipped to remain feasible. 

The full algorithm is given in Algorithm 1.

Algorithm 1 Single Target l∞ Attack

1 input : predictor F , l∞ distance ϵ, iteration steps N, original image x0
2 output: adversarial perturbation Δx
3 t 0, i 0
4 α ϵ ∕ N
5 while i < N :
6 t t + α ⋅ sign(∇F (x0 + t))
7 t clip[0, 1](x0 + t)
8 i i + 1
9 Δx t

In the algorithm, the statement t ← clip[0,1](x0 + t) clips the argument to stay in the [0, 1] 

interval, modifying t accordingly.

These ideas extend in a straightforward way to minimizing F(x0 + Δx).

2.1.2. The l2 Attack—Our approach for generating adversarial perturbations with 

respect to the l2 norm follows Szegedy et al. [14] and Carlini and Wagner [16].

The main idea is to replace the hard constraint that ∥δx∥2 ≤ ϵ with an associated penalty in 

the objective. Specifically, we rewrite Problem (1) as follows:

minimizeΔx − c ⋅ F (x0 + Δx) + ‖Δx‖2
subject to: x0 + Δx ∈ [0, 1]n (2)

The constant c is used to balance maximizing F(x+Δx) and minimizing ∥Δx∥2. By updating 

c, we can then find a Δx which satisfies ∥Δx∥2 ≤ ϵ and maximizes F(x + Δx).

To deal with the box constraint 0 ≤ x0 + Δx ≤ 1, we follow Carlini and Wagner [16] and 

apply a change-of-variables, introducing a new variable ω such that:

x0 = 1
2(tanh(ω0) + 1)

Δx = 1
2(tanh(ω0 + Δω) − tanh(ω0))

Since −1 ≤ tanh(ω) ≤ 1, the constraint 0 ≤ x0 + Δx ≤ 1 is always satisfied. With this 

transformation, we optimize over ω, rather than Δx. The transformed optimization problem 

becomes
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minimizeΔω − c ⋅ F 1
2(tanh(ω0 + Δω) + 1) + ‖tanh(ω0 + Δω) − tanh(ω0)‖2 .

The algorithm is shown as in Algorithm 2. In this algorithm, the optimizer uses N steps to 

find the optimal solution with the specific constant c. Every time we run the optimizer, it 

would try to make the result of −c · F(x0 + Δx) + ∥Δx∥2 smaller at a certain learning rate. 

After each time we run the optimizer, we would check whether the l2 distance is smaller 

than the ϵ we have set and compare F(x0 + Δx) with the current maximum result.

Algorithm 2 Single Target l2 Attack

1 input: image x0, predictor F , L2 distance ϵ, number of iterations N , number of
iterations of binary search m

2 output: adversarial perturbation Δx
3 initialize x′ x, c c0, i 0

4 ω0 tanh−1(2x − 1)
5 while i < m
6 flag False

7 optimizer optimizer . minimize( − c ⋅ F 1
2(tanh(ω0 + Δω) + 1) + ‖tanh(ω0 + Δω) − tanh(ω0)‖2)

8 while j < N :
9 Δω optimizer . run_one_step

10 Δx 1
2(tanh(ω0 + Δω) − tanh(ω0))

11 if ‖Δx‖2 < ϵ:
12 flag True
13 if F (x + Δx) > F (x′):
14 x′ x + Δx
15 j j + 1
16 if flag :
17 increase c
18 else
19 decrease c
20 i i + 1
21 Δx x′ − x0

As before, the approach is straightforward to modify if we wish to minimize predicted age.

2.1.3. The l0 attack—In the l0 attack, the goal is to introduce an adversarial perturbation 

by modifying fewer than ϵ pixels in the image. Our method for doing this uses the intuition 

that the pixels with higher absolute gradient value play a more important role in the 

prediction output. Consequently, we find the pixels with the maximum absolute value of the 

gradient, and try to modify the value of these to maximize or minimize the model prediction. 

We iteratively do this until the maximum l0 distance is achieved (i.e., we reach the threshold 

number of pixels we can modify). This approach for maximizing the prediction is 
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formalized in Algorithm 3. To minimize predicted age, the only difference is to modify the 

value of one pixel in each iteration to make the prediction smaller, rather than larger.

Algorithm 3 Single Target l0 Attack

1 input: image x0, predictor F , l0 distance upper bound ϵ, possible values for each pixel
V = [v1, v2, …vn]

2 output: adversarial perturbation Δx
3 initialize x′ x0, i 0
4 G ∇xF (x′)
5 while i < ϵ:
6 pos argmaxk( ∣ Gk ∣ )
7 Gpos 0
8 flag False
9 for k in V :

10 x″ x′
11 xpos″ k
12 if f(x″) > f(x′):
13 x′ x″
14 flag True
15 if flag:
16 i i + 1 ∕ size(x)
17 Δx x′ − x0

2.2. Generating Adversarial Perturbations for a Batch of Images

Our final discussion concerns a method for generating a single adversarial perturbation Δx 
for a batch of input images {x0, x1, …, xm}. We formalize it as solving the following 

optimization problem:

Maximize G(Δx) = ∑
i = 0

m
F (xi + Δx)

subject to: ‖Δx‖∞ ≤ ϵ
(3)

(Note that we restrict attention to l∞-norm attacks in this case, to simplify discussion.)

We optimize the objective by extending the iterative gradient-sign method discussed in 

Section 2.1.3. The full algorithm is given in Algorithm 4.
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Algorithm 4 l∞ Attack for a batch of images

1 input : a batch of original images {x0, x1, …, xm}, predictor F , l∞ upper bound ϵ, number
o f iterations N

2 output: adversarial perturbation Δx
3 t 0, j 0
4 α ϵ ∕ N
5 while j < N :

6 t t + α ⋅ sign ∑
i = 0

m
∇F (xi + t)

7 j j + 1
8 Δx t

3. Results

Here we focus on data that are generally accessible and with an algorithm not likely to drive 

patient care to evaluate the effectiveness of such attacks in medical image processing 

settings in a way that does not violate clinical research ethics (as could be an issue, for 

example, if the target was a medical diagnosis). We expect that our results are generalizable, 

so long as similar image processing techniques are used.

Our imaging dataset is an aggregate of 7 datasets with a total 3921 T1w 3D images from 

normal, healthy subjects. The data include subjects with ages ranging between 4 and 94 

years old, with a mean age and standard deviation of 25.5 ± 18.6 years. Of the 3921 subjects, 

54.2% were male and 45.8% were female. Data were also acquired from different sites so 

there is a difference in field strength, of which 71.5% of scans were acquired at 3 Tesla and 

28.5% were acquired at 1.5 Tesla. ROI volumes, gender, and field strength were all used as 

input features for age prediction.

We consider two models for predicting age: 1) a conventional deep neural network, and 2) a 

hybrid (or context-aware) model which combines deep learning with image segmentation 

techniques. The conventional deep neural network model (Conventional DNN) takes a 3D 

brain MRI image as input and produces a subject’s age as output. The architecture consists 

of five 3D convolution layers of increasing size followed by two densely connected layers 

and one output layer. The ReLU activation function was used for all hidden layers. The 

neural network was trained using a learning rate of 0.001. The structure of this model is 

shown in Figure 2(a). The context-aware model has a similar structure to the conventional 

deep neural network model, with the exception that 132 volumetric features are introduced 

after the convolutional layers followed by two densely connected layers and, finally, the 

output layer. Volumetric estimates for 132 regions of interest in the brain (that is, each 

feature corresponds to the volume of a region of interest) were obtained using multi-atlas 

segmentation [23, 24]. The structure of the context-aware model is demonstrated in Figure 

2(b).
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We consider three types of attacks which inject adversarial noise into an image: l∞ attack, l0 

attack, and l2 attack. All attacks limit the amount of noise being injected to ensure that is 

cannot be perceived by looking at the image, but differ in how they measure the amount of 

noise injected. The l∞ attack considers modification to each pixel independently, and limits 

the amount any pixel can be modified. The l0 attack limits the number of pixels modified. 

The l2 attack limits the Euclidean norm of the injected adversarial perturbation. More 

precisely, define the perturbation as Δx = (Δx0, …, ΔxN), where N is the number of pixels in 

the image. We define distortions in the respective norms as follows (we use slightly modified 

definitions here to make our results more intuitive):

l∞ :max
i = 0

N
{Δxi}, l2 : 1

N ∑
i = 0

N
Δxi2, l0 : 1

N ∑
i = 0

N
1(Δxi ≠ 0) . (4)

The value of pixels in the original samples was normalized into range [0, 1].

The goal of adversarial perturbations is to either maximize or minimize the predicted (as 

opposed to actual) age. Since original predictions (without adversarial noise) are quite good 

(RMSE < 5.13 years), we use those as a baseline. We then measure the effectiveness of 

adversarial noise (in skewing the predictions) by deviation, defined as absolute change in 

predicted age:

deviation = ∣ y′ − y ∣ , (5)

where y is the original prediction (without noise), and y′ the prediction after adversarial 

perturbation.

3.1. Conventional Deep Neural Networks are Fragile to Adversarial Perturbations of 
Medical Images

We first consider the impact of adversarial perturbations on a Conventional DNN, where we 

aim to maximize predicted age. Figure 3 illustrates this for the 19-year-old subject we 

discussed earlier, and presents results over the entire dataset, breaking these down by 

(originally predicted) age groups: 0–14, 15–25, 26–50, 51–65, and > 65. As we can see from 

the illustration (images in the left column of the figure), we can cause the conventional DNN 

to predict age as 80 (rather than 19) using any of the three ways to quantify perturbation, 

with all three brain images looking indistinguishable from the original (in Figure 1(a)). As 

we would anticipate, l0 perturbations are the most sparse, concentrated in parts of the image 

that have the greatest impact. A more systematic analysis in Figure 3 (plots in the right 

column) shows that age can be amplified nearly 70 years on average by adding perturbation 

with magnitude < 0.002 (for the normalized image) by any of the three measures. 

Interestingly, the most susceptible population is 15-25 year olds, across all three attack 

methods.

Similar trends are obtained if we inject adversarial noise in order to minimize predicted age 

(Figure 4). There appears to be little difference in which metric we use to bound adversarial 

Li et al. Page 8

Neurocomputing. Author manuscript; available in PMC 2021 February 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



perturbations: in all cases, with only a small amount of added noise, we can often reduce 

predicted age to nearly 0 for all age cohorts.

3.2. A Single Adversarial Perturbation Works for Large Batches of Images

While the most powerful attacks customize adversarial noise to each image, an alternative 

that may be more practical is to generate a single perturbation which can then be injected 

into any given image. We design such an attack, based on the l∞-norm framework (which 

bounds the most any one pixel can be changed), and investigate its effectiveness as a 

function of the number of images that we target with a single attack. The attack maximizes 

average predicted age for an entire batch of images.

Figure 5 presents the results. Interestingly, once we consider more than 300 images in a 

batch, increasing the batch size has a relatively small impact on the effectiveness of 

adversarial perturbations. On average, perturbations result in an error in predicted of over 10 

years (averaged over images in the batch, and random draws of batches), even when we 
consider batches of 1500 images. In the case of the most vulnerable cohort (<25-50 years 

old, in this case), the impact is over 20 years. Consequently, we can design highly effective 

adversarial perturbations that appear to be nearly universal.

3.3. Deep Learning with Volumetric Features based on Image Segmentation is Less 
Vulnerable

One of our most significant observations is not just that the conventional DNN model is 

vulnerable, but that incorporating features based on traditional multi-atlas image 

segmentation makes it significantly less vulnerable to adversarial perturbations.

Consider Figure 6 which presents the systematic analysis of the impact of adversarial 

perturbations on the context-aware model.1 The difference with the conventional DNN is 

evident: in every case, the impact of the attack is significantly reduced, often by several 

factored. Nevertheless, it is not eliminated. For example, we can still introduce imperceptible 

noise (changing pixels by at most 0.2%) and in many cases increase predicted age by over 

30 years.

Similarly, we can observe that the impact of adversarial perturbations on image batches is 

significantly reduced for the context-aware model (Figure 7), where average impact on age 

drops from approximately 10 to just over 5 years. This drop is especially noteworthy since 

the adversarially induced error is now similar to the RMSE of the model prior to adversarial 

perturbations (which is just over 5 years).

4. Discussion

Despite the increasing popularity of deep learning methods in medical imaging applications, 

our results suggest that significant concerns remain about robustness of these to adversarial 

1Because volumetric feature generation is extremely time consuming, these figures were generated by keeping such features invariant. 
In the Appendix, we present results with a small representative batch of images where we regenerated volumetric features after the 
adversarial perturbation, and our findings are largely consistent, since such features are relatively insensitive to small pixel-level 
perturbations.
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perturbations to the environment. Such perturbations may arise simply due to unanticipated 

use cases or unusual patients, but may also be a product of actual tampering, for example, 

aiming to exploit introduced diagnostic bias for economic gain. While DICOM supports 

robust security protocols, common software features are not uniformly implemented or 

applied [25], and data may be vulnerable to simple, direct manipulation on portable data 

systems (e.g., reliance on physical CD transport). While one may be skeptical about the 

practical relevance of adversarial perturbations to individual images, our results suggest that 

we can even generate a single perturbation which introduces significant bias into predictions 

made on many images. Moreover, the relatively opaque nature of deep learning models 

makes the problem particularly challenging, as erroneous predictions may be difficult to 

detect.

However, our results also suggest that a way to address fragility of deep learning models is 

by incorporating domain knowledge and more traditional multi-atlas image segmentation 

techniques. We believe that such methods introduce higher-level semantic information into 

the model which is significantly more robust to voxel-level image perturbations. While our 

experiments suggest that such a context-aware model may still be somewhat vulnerable to 

adversarial noise, it is significantly less so that a pure (conventional) deep neural network. 

Alternative approaches, such as adversarial retraining [26, 27], have also shown promise in 

significantly reducing vulnerability of machine learning algorithms, including deep learning, 

to adversarial perturbations. In the end, it is likely that a combination of techniques is 

needed to make deep learning sufficiently reliable for medical image processing 

applications.
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Appendix A.

Since multi-atlas features regeneration takes too long, the results presented in Figure 6 do 

not consider the changes of multi-atlas feature after the attacks. Figure A.8 presents the 

results with regenerated multi-atlas feature on a tiny data set (8 instances). Although we 

can’t generate enough data to make any strong claims about the comparisons, but it’s enough 

evidence to suggest that, indeed, attacks don’t make a significant impact on the multi-atlas 

features.
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Figure A.8: 
Adversarial perturbations designed for the context-aware model with regenerated multi-atlas 

features. The x-axis limits the amount of noise injected, while the y-axis shows the 

corresponding impact, measured by deviation from original prediction. Left plots correspond 

to l∞ bounds (the most any one pixel can be changed) to measure impact. Middle plots 

correspond to l2 bounds (Euclidean norm of the added noise). Right plots correspond to l0 

bounds (the fraction of pixels that can be changed). Top plots correspond to the objective of 

maximizing predicted age. Bottom plots are when we aim to minimize predicted age
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Figure 1: 
The illustration of the effect of adversarial attack. (a) Sample 1 (19 year-old). (b) Sample 2 

(80 year-old). (c) Sample 1 with random noise. (d) Sample 1 with adversarial perturbation. 

The difference among (a), (c) and (d) appears imperceptible to human eye.
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Figure 2: 
The models for brain age prediction
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Figure 3: 
The adversarial perturbations that aim to maximize age. Images in the left column display 

the results of adversarial perturbations to the image of a 19-year-old subject in Figure 1(a), 

using each of our three criteria for limiting the magnitude of the perturbation. The images in 

the top row of each of these correspond to the modified 2D slice images of the brain; 

immediately below is isolated noise that we add (amplified for visibility). In the right 

column we present general results of applying adversarial perturbations to images in our 

data (maximizing predicted age). In each plot, the x-axis is the limit of the amount of noise 

injected (where the noise bound is measured by each of our three lp measures), while the y-

axis is the corresponding impact, measured by deviation from original prediction. The first 

row of plots correspond to l∞-bounded perturbations. The second row of plots represent 

results for l2-bounded perturbations. The third row of plots are the results for l0-bounded 

perturbations.
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Figure 4: 
Attacks that aim to minimize predicted age. The x-axis limits the amount of noise injected, 

while the y-axis shows the corresponding impact, measured by deviation from original 

prediction. Left: adversarial perturbations bounded by the l∞ metric. Middle: adversarial 

perturbations bounded by the l2 metric. Right: adversarial perturbations bounded by the l0 

metric.
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Figure 5: 
Attacking multiple images using the same adversarial perturbation for the conventional 

DNN model. The attack maximizes predicted age. We set the modification distance to 0.002. 

Group size corresponds to the number of images that we target with a single adversarial 

perturbation.
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Figure 6: 
Adversarial perturbations designed for the context-aware model. The x-axis limits the 

amount of noise injected, while the y-axis shows the corresponding impact, measured by 

deviation from original prediction. Left plots correspond to l∞ bounds (the most any one 

pixel can be changed) to measure impact. Middle plots correspond to l2 bounds (Euclidean 

norm of the added noise). Right plots correspond to l0 bounds (the fraction of pixels that can 

be changed). Top plots correspond to the objective of maximizing predicted age. Bottom 

plots are when we aim to minimize predicted age
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Figure 7: 
Attacking multiple images using the same adversarial perturbation for the context-aware 

model. The attack maximizes predicted age. We set the modification distance to 0.002. 

Group size corresponds to the number of images that we target with a single adversarial 

perturbation.
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