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ABSTRACT: Somatostatin receptor 1 (SSTR1), a subtype of
somatostatin receptors, is involved in various signaling mechanisms
in different parts of the human body. Like most of the G-protein-
coupled receptors (GPCRs), the available information on the
structural features of SSTR1 responsible for the biological activity
is scarce. In this study, we report a molecular-level understanding
of SSTR1−ligand binding, which could be helpful in solving the
structural complexities involved in SSTR1 functioning. Based on a
three-dimensional quantitative structure−activity relationship (3D-
QSAR) study using comparative molecular field analysis (CoMFA)
and comparative molecular similarity index analysis (CoMSIA), we
have identified that an electronegative, less-bulkier, and hydro-
phobic atom substitution can substantially increase the biological
activity of SSTR1 ligands. A density functional theory (DFT) study has been followed to study the electron-related properties of the
SSTR1 ligands and to validate the results obtained via the 3D-QSAR study. 3D models of SSTR1−ligand systems have been
embedded in lipid−lipid bilayer membranes to perform molecular dynamics (MD) simulations. Analysis of the MD trajectories
reveals important information about the crucial residues involved in SSTR1−ligand binding and various conformational changes in
the protein that occur after ligand binding. Additionally, we have identified the probable ligand-binding site of SSTR1 and validated
it using MD. We have also studied the favorable conditions that are essential for forming the most stable and lowest-energy bioactive
conformation of the ligands inside the binding site. The results of the study could be useful in constructing more potent and novel
SSTR1 antagonists and agonists.

■ INTRODUCTION

Over the past decade, structural understanding of the G-
protein-coupled receptors (GPCRs), which constitute the
largest family of membrane protein receptors, has been the
focus of attention of structural biologists.1 Recent studies on
the structures of GPCRs have led to notable discoveries,
helping in studying the pathophysiology of various GPCR-
related diseases and in their drug discovery.2 Although all
GPCRs are structurally similar, having seven transmembrane
helices and a highly conserved E/DRY motif, every single
GPCR differs in its mode of cellular communication.3,4 Hence,
in addition to the crystallization of GPCRs, it becomes
important to study the conformational dynamics of ligand-
binding sites and G-protein interaction sites that happen
during the binding of both agonists and antagonists with the
receptors. As a stable conformation of GPCRs is expected to
regulate their functions, analyzing their conformational
changes over time is significant. We have selected somatostatin
receptors (SSTRs), a GPCR, in our study due to the important
structural features necessary for SSTR−ligand binding and
conformational changes that occur during binding. Previously,

we have carried out structural characterization of SSTR5 and
SSTR2 in two different studies5,6 and studied the binding of
respective ligands with the receptor. In this study, we hope to
analyze the various structural properties of SSTR1 and their
ligands responsible for their biological activity.
SST receptors are omnipresent throughout the human body,

expressed by intronless genes except for SSTR2.7 There is a
notable sequence similarity (39−57%) among subtypes, with
the highest sequence similarity observed between SSTR1 and
SSTR4 (70%).8 Binding of the cyclic neuropeptide somatos-
tatin (SRIF) with SSTRs triggers a cascade of signaling
episodes that result in the regulation of various functions, such
as inhibition of the secretion of growth hormone, glucagon,
gastrin, insulin, and other gut hormones.9−14 SRIF occurs in
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two natural forms: SRIF-14 and SRIF-28 having 14 and 28
amino acids, respectively. SRIF has a short plasma half-life ≲3
min, which leads to their quick proteolytic degradation.15

Moreover, just a nanomolar activity of SRIF is efficient to bind
it with the receptors,15 making the analysis of protein−ligand
binding of SSTR−SRIF difficult. Analogues that mimic the
SRIF structure are, hence, used in the treatment of SRIF-
related disorders, known as somatostatin analogues (SSAs).16

Octreotide, first SSA to be clinically used, inhibits the growth
hormone 45 folds compared to SRIF-14 and has a better half-
time of ∼90 min.17 In addition to SSA, the availability of
cloned SST receptor subtypes expedited the study of the
various features involved in SSTR−SRIF binding.
SSTR1 is found to be secreted in various regions of the

human body including neuroendocrine cells,18 cerebral
cortex,19 retina,20 and blood vessels.21 In addition to this,
SSTR1 is found to be expressed in various human tumors.22−25

Structural information about SSTR1 binding site could be
useful in analysis of SSTR1-related tumors. In a site-directed
mutagenesis study of SSTR2, Kaupmann et al. have
constructed an SSTR1 mutant to validate the important
residues that they have proposed to be involved in the binding
of SSTR2 with an analogue SMS 201-995.26 Based on their
study, a point mutation of the residues Q6.55 and S7.34 of
SSTR1 greatly affected SSTR1−ligand binding. In another
study, Liapakis et al. studied the importance of residues R197
to E214 present in the extracellular loop of SSTR1 related to
binding of SSTR1 selective agonists.27 It becomes important to
validate the role of these residues in ligand−SSTR1 binding,
which we hope to carry out in this study. We performed a
combination of molecular- and atomic-level analyses using
homology modeling, molecular docking, three-dimensional
quantitative structure−activity relationship (3D-QSAR), mo-
lecular dynamics, and DFT in this study to investigate the
features responsible for the biological activity of SSTR1
ligands, both agonists and antagonists, and to propose and
validate a probable binding site of SSTR1.

■ RESULTS
Homology Modeling. We have predicted 45 models

totally: 40 models from EasyModeller and 5 models using the
I-Tasser online server, which were later subjected to validation.
The developed models have retained the characteristic seven
transmembrane helices of the GPCR superfamily. We have
discerned model 08, developed using the template 4RWA, to
be scoring better validation scores compared to the other 44
models. The model has a root-mean-square deviation (RMSD)
of 0.149 with its template 4RWA. On analyzing the model
residues using the Ramachandran (RC) plot, we have observed
94.1% of the residues in the favored region, 3.3% in the
allowed region, and the remaining 2.6% in the outlier region. It
scored a QMEANDisCO value of −4.96 and a ProSA overall
model quality value of −2.60. On analyzing the ERRAT plot,
we have identified that the overall quality factor of the model is
81.905. Statistics of the model validation scores of all
developed models is tabulated in Table S1. Figure 1 shows
model 08, template (4RWA) superimposition, and Figure S1
represents the plots developed using RAMPAGE and ERRAT
servers for model 08. Using the PEP-FOLD3 server, 3D
structures of peptides SRIF-28 and cortistatin-14 are predicted.
The models are subjected to validation, and one best model of
each protein is selected for performing protein−protein
docking. Model validation statistics of both peptides are

represented in Table S2. The RC plot and ERRAT plots of the
selected models are represented in Figure S2.

Binding Site Characterization Using Molecular Dock-
ing. Using the COACH server, we have identified different
clusters of probable binding pockets and ranked them based on
C-score, which is the confidence score of prediction. We have
also used the SiteID Find pocket available in Sybyl-X 2.1 to
identify local clefts in the protein, which are plausible enough
to be considered as a binding site. Results of both tools are
grouped together to identify the residues that are consistently
appearing in the top clusters. We have ascertained that residues
S1.31, Y1.39, T2.64, R121, V206, C208, T5.43, Q6.55, S7.34,
S7.37, and Y7.42 are significant in shaping the SSTR1 binding
site. To validate this prediction, we have scrutinized the
predicted binding pocket by docking ligands that are
cocrystallized with the templates and observed that the ligands
bound well within the site. Since the template shares a
substantial sequence identity (>40%) with SSTR1 and belongs
to the same structural family, we deem them to have
comparable biological roles. We have carried out molecular
docking of the selected 144 molecules with the proposed
binding site using the Surflex docking algorithm in Sybyl-X 2.1.
After energy minimization, we have clustered the molecules
into a database and generated a protomol surrounding the
binding site. After docking, we have ranked the molecules
based on their Surflex energy score and identified the residues
forming hydrogen bonds with each molecule (Table S3).
Arylpiperazine derivatives, compounds 01−23, have Surflex

scores lesser compared to other derivatives, which is
strengthened by the fact that they form H-bonds less
frequently. Compounds 7 and 8 are the only residues to
have scored >5, scoring 5.89 and 5.29, respectively. Y1.39 is
observed to be the most consistently H-bond-forming residue.
Compounds 24−46 (phenylpiperazines) follow the arylpiper-
azines in the case of Surflex energy scores but form H-bonds
more frequently than them. Here, once again, residue Y1.39
could be seen forming H-bond more frequently than other
residues. Cyclic tertiary amides, 47−55, that are not piperazine
derivatives, have scores better than previous derivatives but still
lesser than the overall average. Recurrence of Y1.39 in H-bond
formation is the case here too, with C208 and ASP137 being
the other residues to form H-bonds.

Figure 1. Selected homology model of SSTR1 (Model 08) is
superimposed with the template (4RWA). Figure is generated using
the PYMOL program (http://www.pymol.org).
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Octahydrobenzo[g]quinoline derivatives (compounds 56−
71) having variations at position 6 scored better than the
piperazines with an average score of about 4.3. Along with
Y1.39, residues R121, C208, T5.43, and Q6.55 formed H-bond
with ligands more than once. In the case of other
octahydrobenzo[g]quinoline derivatives (compounds 72−77)
that have variations at position 9, the Surflex score and
formation of H-bond were lesser than average. Similar is the
case with ergoline derivatives that have variations at position 2
(compounds 78−85). But ergoline derivatives that have
variations at position 6 (compounds 86−92) scored better
than the overall average, around 5, and residues Y1.39, R121,
and Y7.42 formed H-bond with the molecules. Ergoline
derivatives with variations of the piperazine substituent
(compounds 93−110) had an average Surflex score com-
parable to overall average and formed H-bonds with residues
Y1.39, R121, V206, C208, Q7.35, and Y7.42. β-alanine
piperazine amide derivatives with modifications at the
polycyclic moiety (compounds 111−120) scored good scores
>6.5. For example, compound 111 and 112 had Surflex scores
of 7.43 and 7.32, respectively, and compound 118 scored the
overall best value of 8.55. Each molecule formed at least one
H-bond with protein, with Y1.39, T2.64, T5.43, and Q6.55
forming H-bond more than once. Four compounds 121−124,
which are fluorene derivatives having modifications at the alkyl
moiety, scored slightly lesser than the previous case, with
scores of 5.04, 6.68, 7.04, and 6.41, respectively. Of these four
compounds, three formed H-bonds with residues T5.43 and
Q6.55. Fluorene derivatives with modified arylpiperazine
moieties, 125−142, even though had an average dock score
around 6, formed H-bond less frequently. Compounds 127,
130, 141, and 142 formed H-bond with Y1.39, whereas 128,
135, 139, and 140 formed H-bond with T2.64. Other highly
active molecules 143 and 144 scored 6.09 and 6.77,
respectively, and both formed a H-bond interaction with
Y1.39. In addition to identifying the residues involved in H-
bond interactions, we also recognized the residues steadily
taking part in hydrophobic interactions with SSTR1 antago-
nists. It becomes imperative to remark that the residues which
we have proposed to be forming the SSTR1 binding site could

certainly play a key role in the formation of an SSTR1−ligand
complex. This result corresponds with the work by Kaupmann
et al.,26 who studied the importance of residues Q6.55 and
S7.34 in determining the biological activity of an SSTR1
ligand. The mentioned residues form a vital part in the binding
site that we have proposed in this study. Figure 2 represents
the binding mode of all 144 compounds that we have docked,
and it can be perceived that the compounds share the same
binding area.

Protein−Protein Docking. Homology models developed
for both the receptor (SSTR1) and the ligand peptides
(cortistatin-14 and SRIF-28) were used to carry out protein−
protein docking by the ClusPro server. A total of 15 and 16
clusters of protein−protein complexes were developed by the
server for SRIF-28 and cortistatin-14, respectively. Each cluster
was given a rank based on its lowest weighted energy score. In
the case of SSTR1−cortistatin-14, the top cluster consisted of
155 members with a lowest energy score of −975.0, whereas
the top cluster of the SSTR1−SRIF-28 complex had 276
members with a lowest energy score of −977.6. We observed
that SRIF-28 formed a more stable protein−protein complex
since it formed 25 hydrogen bonds in contrast to the 8 bonds
formed by cortistatin-14. Both SRIF-28 and cortistatin-14
formed H-bonds with residues S7.34 and Y7.42, which are part
of the predicted binding site. Other than stated residues, S1.31,
L2.65, D3.32, S202, D203, T205, E298, D300, and A7.31 were
also involved in H-bond interactions. All of these residues are
either part of the proposed binding site or exist in the vicinity.
Figure 3 shows the docking posture of the peptides with the
receptor, disclosing that the peptides reside inside the
proposed binding site same as the antagonists. Based on this
observation, we can deduce that the antagonist can consume
the binding spot, thereby intercepting the agonist from
binding. Results of the protein−protein docking are
represented in Table S4.

3D-QSAR Study Based on Comparative Molecular
Field Analysis (CoMFA) and Comparative Molecular
Similarity Index Analysis (CoMSIA). Based on the selected
common scaffold, we aligned the data set using the atom-by-
atom match method (Figure 4). Of 144 compounds used, 20

Figure 2. SSTR1 antagonists share the same binding space, inside the proposed binding site. Figure is generated using the PYMOL program
(http://www.pymol.org).
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were identified to be outliers based on their residual pKd value
(actual pKdpredicted pKd). These outliers were removed
from the data set, and the remaining 124 compounds were
used for developing CoMFA and CoMSIA models.
To identify reliable models with good q2 and rpred

2 scores, we
divided the data set into a variety of training and test set
combinations (4:1), and five models with good prediction
scores (q2 > 0.500 and rpred

2 > 0.600) were chosen for further
study (Table 1). Model 1, which has compounds 1, 4, 6, 16,
33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91,
93, 95, 100, 101, 102, 108, 110, 113, 137, and 144 in the test
set, has a q2 value of 0.520 and an rpred

2 value of 0.640. Other

models with similar good values have compounds 131, 132,
134, and 135 in the test set. Like the CoMFA model
generation, we have developed CoMSIA models with various
combinations of training and test sets. Table 2 represents the
CoMSIA selected with good prediction scores. Test set
compounds that were part of the best CoMFA model
generation were consistent in CoMSIA model generation
too. Model 4 has q2 and rpred

2 scores of 0.550 and 0.543,
respectively. Residual pKd values (actual pKd − predicted pKd)
of the compounds based on CoMFA and CoMSIA analyses are
tabulated in Table S5, and corresponding scatter plots are
represented in Figure 5.
Contour maps based on the various physicochemical

descriptors responsible for the biological activity of the
compounds were generated using CoMFA and CoMSIA
models. Approved and disapproved levels were set, respec-
tively, at 80 and 20%. On studying electrostatic contours
generated from both CoMFA and CoMSIA models, we
identified that a large red contour is present adjacent to the
R substitution position (Figure 6). A red contour corresponds
to the zone where an electronegative group increases the
biological activity of compounds. Most of the compounds that
have an electronegative group at this position showed high−
medium activity compared to others.
For example, the presence of an electronegative F atom at

this position in compounds 42 and 43 has greatly increased
their activity than compounds 35, 36, 37, 38, 39, 40, and 41,
which do not have an electronegative atom. Especially,
compound 39 with an electropositive Na at this position has
shown the least activity of all compounds. Other highly active
compounds like 92, 93, 105, 129, 130, 131, and 134 also have
fluorine at this position. In electrostatic contour maps (Figure
6), blue regions are the points where an electropositive
substitution would increase the ligand activity or in other
words the presence of electronegative atoms would decrease

Figure 3. (a) SSTR1−SRIF-28 complex and (b) SSTR1−cortistatin-
14 complex. Figures are generated using the PYMOL program
(http://www.pymol.org).

Figure 4. Ligand-based alignment of the antagonists.
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the activity. This is the case with compounds 6, 33, 35, 40, 41,
51, 52, 53, 54, 83, 89, 90, 91, 117, 119, 133, and 136. Based
on the SAR analysis by Hurth et al.,28 the introduction of a 4-
cyano substituent (compound 5) instead of 4-pyridyl
(compound 2) results in a gain in SSTR1 affinity, which
supports the presence of red contour in the vicinity of the 4′-
position of the pyridine ring. Troxler et al.29 studied the SAR
of nonpeptide obeline somatostatin SSTR1 antagonists at
positions 6 and 9 of the octahydrobenzo[g]quinoline ring
system. They have reported that replacing 6′-OMe with H in
compounds 57, 65, and 66 results in a loss of activity. Blue
contours in the region could explain the fact that replacing a
highly electronegative atom with a H atom could have caused
the loss in activity. Similarly, the presence of red contour near
the 9′ position of the ring system could explain the reason for
the reduced affinity of compounds 72 and 73 due to
halogenation of that position.
In the steric contours that are represented in Figure 6c,d, we

have identified the zones where bulky group substitution can
increase/decrease the activity of the ligand. The presence of
bulky group substitutions in compounds like 6, 8, and 13 could
be responsible for their low activity. In the case of compounds
47−55, Hurth et al.28 replaced the piperazine ring with
homopiperazine, tetrahydropyridine ring, and some other
moieties, but it resulted in a significant loss of activity. The
presence of a yellow contour near the region indicates the fact
that the bulky atom substituent at this position is not favorable
for the activity. Another example can be the case of
compounds with ergoline derivatives (86−92); compounds
with bulkier groups in the unfavorable region (86−90) show

considerably less activity than the compounds with less bulky
substitution (91−92). Compounds that have a bulky
substitution in favorable regions like 56, 58, 59, 63, 64, 67,
68, 69, 70, 71, 75, and 76 show better activity. For example,
compounds 63, 69, and 71 have sulfonic acid esters of the
phenol moiety at this position. Troxler et al.29 reported that
these compounds are the most active derivatives of the series
and have substantially increase SSTR1 affinity with no
compromise of SSTR1 selectivity over SSTR2. Among the
compounds with fluorene substitutions (121−124), 121 is
more active than others as it has a less bulky atom in the
unfavorable region. In Figure 7a, hydrophobic contours are
represented where white and yellow contours denote favorable
and unfavorable regions for hydrophobic atoms, respectively.
The presence of sulfur, a hydrophobic atom, in the favorable
region in compounds like 20, 21, 22, 46, 69, 70, 71, 74, 75, 76,
108, 109, and 110 could be the reason for their higher activity
than that of compounds 40, 41, 72, 73, and 77, which have
sulfur in the unfavorable region. Similarly, the presence of
chlorine near white contours in compounds like 98, 99, and
100 could strengthen the reason for their high activity.
Meanwhile, it is noteworthy that the presence of cyanide in
these regions (compounds 12 and 28) greatly reduces their
activity.
Hurth et al.28 reported that going for a 2-pyridone

substituent instead of 2-pyridine, with a N-methyl substitution,
resulted in increased activity and more than 6000-fold
selectivity for SSTR1 over SSTR2. The presence of a white
contour near this substitution position supports the result
reported by Hurth et al.28 Compound 9 with an NH instead of

Table 1. Statistics of Ligand-Based CoMFA

leave-one-out cross-validation non-cross-validation field contribution

model q2 n r2 SEE F-value rpred
2 steric electrostatic

1 0.520 5 0.833 0.468 86.863 0.640 0.470 0.530
2 0.523 5 0.836 0.464 88.979 0.632 0.472 0.528
3 0.517 5 0.832 0.469 86.325 0.637 0.470 0.530
4 0.543 5 0.841 0.456 92.179 0.621 0.462 0.538
5 0.531 5 0.835 0.463 87.792 0.617 0.467 0.533

Test set compounds
Model 1: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 137, 144
Model 2: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 135, 144
Model 3: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 134, 144
Model 4: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 132, 144
Model 5: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 131, 144

Table 2. Statistics of Ligand-Based CoMSIA

LOO cross-
validation non-cross-validation field contribution

model q2 n r2 SEE F-value rpred
2 steric electrostatic acceptor donor hydrophobic

1 0.550 6 0.847 0.443 79.153 0.531 0.172 0.209 0.169 0.210 0.240
2 0.542 6 0.844 0.447 77.795 0.547 0.174 0.207 0.170 0.207 0.242
3 0.546 6 0.847 0.443 79.061 0.538 0.172 0.208 0.169 0.207 0.242
4 0.550 6 0.851 0.437 81.885 0.543 0.173 0.207 0.169 0.209 0.242
5 0.552 6 0.852 0.433 82.604 0.530 0.174 0.208 0.170 0.205 0.243

Test set compounds
Model 1: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 137, 144
Model 2: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 135, 144
Model 3: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 134, 144
Model 4: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 132, 144
Model 5: 1, 4, 6, 16, 33, 38, 39, 40, 45, 46, 48, 53, 59, 61, 68, 76, 77, 83, 87, 91, 93, 95, 100, 101, 102, 108, 110, 113, 131, 144
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N-methyl at this position has comparatively lesser activity and
SSTR1 selectivity than compound 10. Hurth et al. also
reported that the presence of more wettable atoms like
hydroxy, carbonyl, carboxyl, sulfonyl, and sulfonamide at 4′ in
compounds 34−41 respectively is less favorable for their
activity. We observed the presence of white contour in the
region, which could explain the reason for the low activity of
compounds. Figure 7b,c depicts the hydrogen bond donor and
acceptor contour maps, respectively, where the presence of
hydrogen bond donors/acceptors increasing or decreasing the
activity of the ligand are represented. For example, the
presence of fluorine atom in the unfavorable region in
compound 6 could be the reason for its lower activity than
that of its derivative counterparts. The same could be the
reason for the low activity of octahydrobenzo[g]quinoline
derivatives (47−55), which have hydrogen donor atoms in the
region not favoring activity. Troxler et al.30 reported that the
nature of the substituent at position 2 of the arylpiperazine
moiety did not affect the affinity of compounds toward SSTR1.
On observing the contour maps generated, we did not observe

a single contour in the vicinity of the said position. This fact is
confirmed in other studies related to obeline derivatives
reported by the same group.28,29

Density Functional Theory. Ten different descriptors
based on the molecular orbital theory were calculated for all
144 compounds after optimization using the B3LYP function.
Energies of HOMO (EHOMO) and LUMO (ELUMO) were
calculated, which respectively stand for the electron-giving and
-receiving capacity of a molecule. Based on Fukui’s molecular
orbital theory,31 molecular reactivity of the molecules based on
their frontier orbitals were calculated. EHOMO and ELUMO of
selected compounds are represented in Table 3, and the
respective electron density maps of their molecular orbitals are
represented in Figure 8. Energy gaps (ΔE) between HOMO
and LUMO of the molecules were calculated by calculating the
difference in energies between the two orbitals: ΔE = ELUMO −
EHOMO. Figure S3 represents the energy gap distribution of
molecules. It is important to note that the energy gap is
inversely proportional to molecular reactivity.32 Compounds
58−77 and 111−122 have shown lesser energy gap than the
average. Here, most of the compounds like 58, 59, 63, 67, 68,
69, 70, 71, 75, 76, 115, 116, and 121 are highly active. We
have calculated the molecular dipole moment of all
compounds, which is directly proportional to the chemical
reactivity of the compound.33 Hurth et al.28 reported that a
simple change in the position of a N atom between compounds
16 and 17 resulted in a difference in SSTR1 affinity by at least
2 orders of magnitude. 16 and 17 scored vastly different values
in terms of molecular dipole moment; however, other energy
values like total energy and molecular orbital energies were
similar. This phenomenon shown by these two compounds
depicts the importance of the molecular dipole moment of a
molecule even though the compounds show similar energy
levels. Table 3 represents the energy values of molecular
orbitals, energy gap values, and molecular dipole moments of
selected molecules (for corresponding values of other
molecules, check Table S6).
Using EHOMO and ELUMO, other DFT-based molecular

descriptors like chemical potential (μ), electronegativity (χ),
global softness (σ), absolute hardness (η), and electrophilicity
index (ω) of the molecules were calculated. Electronegativity
of a molecule influences the capability of a molecule to accept
electrons. Chemical potential (μ) is the negative of electro-
negativity of a molecule, which describes the energy absorbed
or released by a molecule during a chemical reaction. Both
values greatly influence the inhibitive efficiency of a
molecule.34,35 By analyzing the electronegativity values of the
compounds and their electron density maps, we have observed
that the presence of an electronegative atom at the R
substitution position increases the activity of the compounds,
which supports the results obtained through CoMFA and
CoMSIA. For instance, molecules with high χ values like 43,
44, 46, 58, 59, 63, 67, 68, 70, and 71 are highly active than low
active compounds like 52, 53, 54, 55, 85, 86, 87, 88, 89, 90,
and 91, which have comparatively lesser χ values. Troxler at
al.30 reported that removal or replacing of the N-methyl
substituent of the 2-bromo-ergoline core, in compounds 87−
91, with longer alkyl groups resulted in a significant loss of
SSTR1 activity. Based on the SAR analysis of substituted
phenylpiperazines by Hurth et al.,28 the presence of an
electronegative atom like 2′F or 2′cyano is not favorable for
activity, whereas the introduction of a nitro atom at these
positions greatly increases the SSTR1 affinity. χ analysis of

Figure 5. Plots of actual pKd vs predicted pKd values of the
compounds generated based on CoMFA and CoMSIA.
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molecules with these substituents supported this result.
Molecule 31 with a 4′ NO2, one of the best compounds of
the series, is the most electronegative molecule, followed by
compounds 29 and 30, which have NO2 at 2′ and 3′,

respectively. This result is supported by the electrostatic
contour maps generated using CoMFA analysis, where the
presence of a contour representing the region favoring
electronegative atoms near the 4′-position of phenylpiperazine

Figure 6. (a, b) Represent the electrostatic contour maps and (c, d) represent the steric contour maps generated using CoMFA and CoMSIA
models, respectively, along with the test compounds. In electrostatic contours, the region where electropositive groups increase activity are
represented in blue, whereas the regions where electronegative groups increase activity are represented in red. In steric contours, the regions where
bulky groups increase and decrease activity are represented in green and yellow, respectively.

Figure 7. (a) Represents the hydrophobic contour map and (b, c) represent the hydrogen bond donor and acceptor contour maps generated using
CoMFA and CoMSIA models, respectively. In hydrophobic contours, the region where hydrophobic atoms are favorable and unfavorable for
activity are represented in white and yellow, respectively. In H-bond donor contours, the areas where the H-bond donor group increases and
decreases the activity are represented in cyan and blue, respectively. In H-bond acceptor contours, the areas where the H-bond acceptor group
increases and decreases the activity are represented in purple and red, respectively.
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can be observed. Most of the low active molecules have high μ
values, which denotes the fact that more energy would be
required by these molecules to bind with the receptor.
Membrane-Protein Dynamics Simulation. To mimic

the actual biological environment, protein−ligand systems
were embedded in lipid−lipid bilayer membranes using the
Membrane builder tool and simulated for 100 ns using
GROMACS. DPPC, one of the most studied phospholipids
in studies related to membrane-protein dynamics, is extensively
used in modeling membrane interactions using highly
acceptable force field parameters. We have constructed a
bilayer consisting of 200 DPPC molecules in top and bottom
layers. Figure 9 represents one of the four lipid membrane-
protein−ligand systems constructed to perform molecular
dynamics simulation. The aim of the study is to identify the
low-energy conformation of the ligands inside the protein
binding site, which can be considered as the most stable and
bioactive conformation of the ligand. Also, an MD-based

structure−activity relationship study of the obeline and
ergoline derivatives is carried out by correlating the results
with 3D-QSAR and DFT results. Before analyzing the
simulated membrane-protein system, it is important to
examine the physical stability of the system during the
simulation time. Structural stability of the system is studied
by plotting RMSD of the protein backbone. The potential
energy of the system over the simulation time is calculated to
examine whether the systems are energetically stable. After a
gradual decrease from the initial potential energy, the potential
energies of the systems are equilibrated around −2.07 × 10+06,
−2.80 × 10+06, −2.06 × 10+06, and −2.06 × 10+06 kJ mol−1,
respectively, for systems with compounds 22, 42, 58, and 107.
It is important to take a note on the experimentally

estimated properties of the DPPC molecule to compare them
with the results obtained from simulation analysis. After
simulation of each system, parameters of the bilayer like area
per lipid, mean-square displacement, deuterium order param-

Table 3. DFT Statistics of the Selected Molecules (Statistics of Other Molecules Are Tabulated in Table S6)

compound total energy (eV) molecular dipole moment (Debye) EHOMO (eV) ELUMO (eV) HOMO/LUMO gap (ΔE)

1 −36501.08 4.28 −5.42 −0.34 5.08
22 −50314.84 1.62 −5.01 −0.80 4.21
42 −41464.72 2.75 −5.39 −0.22 5.17
58 −41617.18 4.80 −5.52 −2.74 2.78
107 −110444.75 5.32 −5.17 −0.36 4.81

compound absolute hardness (η) global softness (σ) electronegativity (χ) chemical potential (μ) electrophilicity index (ω)

1 2.54 0.20 −2.88 2.88 1.64
22 2.11 0.24 −2.90 2.90 2.00
42 2.59 0.19 −2.80 2.80 1.52
58 1.39 0.36 −4.13 4.13 6.13
107 2.41 0.21 −2.76 2.76 1.59

Figure 8. Electron density maps of HOMO and LUMO of five selected molecules.
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eters, and density of different simulated components of the
system are analyzed. The results are later compared with
experimentally determined values, and different understanding
for each system is given. Area per lipid (APL) is a crucial
parameter of both biological and artificially constructed
membrane bilayers. Correctly predicting the APL of a
membrane is important to verify the accurate two-dimensional
(2D) density in the bilayer plane, which in turn results in
correct prediction of other properties like electron density
profiles, thickness of the bilayer, and lipid tail order parameters.
APL of a bilayer can be calculated by dividing the area of the
simulation box by the number of lipids present in each leaflet.
APL throughout the simulated trajectory is calculated, and
averaged APL provides the approximate APL of the system
over the simulation time. According to various literature
reports, experimentally determined APL of a DPPC molecule
is between 0.629 and 0.643 nm2 at 323 K.36−39 Similarly, the
experimentally calculated volume per DPPC lipid is 1.229 nm3

at 323 K.40 GridMAT-MD,41 a grid-based membrane analysis
tool, is used to analyze the bilayer thickness of the systems
constructed. It is an algorithm that reads the GROMACS
trajectory file and calculates the average thickness of the bilayer
over the simulated time. After calculating APL of the
headgroup, APL values in the top and bottom layers of the
systems with compounds 22, 42, 58, and 107 are calculated to
be 63.68, 63.68, 65.95, and 64.80 Å2, respectively. The
experimentally determined bilayer thickness of a DPPC bilayer
is between 3.78 and 3.86 nm at 323 K.36,38−40 The bilayer
thickness of various simulation components like lipid head-
group, N atoms, P atoms, C atoms, ions, and water can be
determined using the distribution of electron density profiles of
the component. We calculated the density of each component
using gmx density. In Figure S4, density plots of membrane
components of each system are represented. It is important to

note that the density values of the headgroups of both top and
bottom layers are near the experimentally determined values.
Also, similar trends are seen in the case of each component in
all plots. In molecular dynamics related to lipid molecules,
deuterium order parameters of the lipid acyl chains are crucial
to validate simulations. As lipids in a bilayer are constantly in
motion, different movements occur at a different time scale like
lipid flip-flop, lateral diffusion, rotation around the axis,
wobbling, and some undulatory movements.
We have plotted the deuterium order parameters for each

system and are represented in Figure S5. In the plot, order
parameters of the lipid acyl chain (Scd) are plotted against
renumbered atoms. After examining the trend of Scd, we have
inferred that the membrane has entered the gel phase during
the simulation. Similarly, analysis of the mean-square displace-
ment (msd) of the lipids is essential to calculate their lateral
diffusion. Naturally, lipids are always in a state of diffusion
along a plane rather than in all three spatial dimensions. For
instance, if the lateral diffusion coefficient of a lipid molecule is
10−7 cm2/s, then the lipid will travel ∼1 nm in a 25 ns
simulation on an average. For calculating msd, the phosphorus
atom present in the headgroup is chosen as a reference point.
After estimation, the msd values of systems with compounds
22, 42, 58, and 107 were 0.0106 × 10−5, 0.00943 × 10−5,
0.0106 × 10−5, and 0.009615 × 10−5 cm−2/s, respectively.

MD Trajectory Analysis. Protein−ligand complexes with
four compounds, 22, 42, 58, and 107, were selected to study
the change in conformation of the receptor over a period of
100 ns. Trajectories of the simulations were scrutinized to
comprehend protein dynamics over time and the ligand
position inside the binding site. The protein dynamics was
analyzed by charting the variations in RMSD and the variations
in the root-mean-square fluctuation (RMSF) of protein
backbone residues. In the case of compound 22, we observed

Figure 9. Lipid bilayer-SSTR1 protein−ligand complex constructed using Membrane Builder. SSTR1 is represented as a green cartoon. Compound
42 is represented as a red surface. Ions are represented as blue spheres. DPPC headgroups and tail groups are represented as violet spheres and
yellow lines, respectively.
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a wobbling protein structure in first 20 ns, i.e., the RMSD
changing in the range of 0−0.2 nm. Then, from 20 ns onward
until 30 ns, there was an upward spike in RMSD (from 0.2 to
0.25 nm), which gradually became stable after 30 ns. Similar
was the case with compound 42, which showed an upward
trend until 20 ns and gradually became stable after 30 ns.
Compound 58 had an increased RMSD from 0 to 0.2 nm until
14 ns, which further dipped to 0.15 nm at 20 ns. Then, there
was an upward trend till the 35 ns, after which the protein
became stable around approximately 0.25 nm. Compound 107
showed little variation in RMSD compared to other
compounds, 0−0.25 nm in the first 20 ns, which gradually
became stable afterward. We compared the changes in RMSD
of the above-mentioned complexes with that of the apoprotein,
to study their effect on the change in conformation of the
protein. Compound 42 and 107 showed a similar trend as that
of the apoprotein, whereas 22 and 58, though showing a
different trend in the beginning, became comparable to
apoprotein as time progressed. Figure 10 represents the plot
of change in RMSD of complexes where the change in RMSD
of apoprotein is shown in black for a better understanding.
In addition to this, the change in the radius of gyration (Rg)

of the protein was also plotted, to measure the distance of
backbone Cα atoms of the protein from their axis of rotation.
The change in Rg is similar to the change in RMSD since
compounds 42 and 107 again displayed comparable plots to
apoprotein. These compounds showed a fall in Rg value (0.38−
0.24 nm) for the first 20 ns, which became stable after that
(0.22−0.24 nm). Compound 22 showed an initial fall of Rg
from 0.38 to 0.28 nm in the first 10 ns, which was followed by
a quiver in Rg till 20 ns. The complex later became stable
(0.24−0.22 nm), following a fall in the Rg, 30 ns onward.
Compound 58 was comparably less stable than other
compounds, as it was erratic in first 40 ns and became stable

around 0.26−0.24 nm afterward. The change in Rg of the
complexes against time is represented in Figure 11.
The change in RMSF of amino acid residues of the protein

was plotted over simulation time. The average RMSF
(RMSFavg) value of all residues for each complex was
calculated, and residues were stated as stable or fluctuating
based on their RMSF values in comparison with the RMSFavg
value. If values were 2 times more than RMSFavg, they were
regarded as fluctuating, and if the values were less than half the
average value, they were considered as stable residues. Based
on this, we identified that N-terminal residues M1 to S12 and
C-terminal residues S364 to L391 fluctuated a lot than average
RMSF throughout the simulation. As the fluctuations of N-
and C-terminal residues are common in any protein
simulation, we looked for other residues that fluctuated or
stayed stable over the simulation time. We compared the
residues that were stable/fluctuating with RMSF values of
residues from apo simulation and identified residues that were
behaving differently. Residues that were fluctuating more than
average in apoprotein simulation like N2.45, A2.49, F3.37,
T3.38, S3.39, I3.40, Y3.41, C3.42, T3.44, and G5.461 were
identified to be stable in the protein−ligand complex
simulation. In all protein−ligand complex systems, some
residues like V1.53, Y2.42, I2.43, L2.44, L2.46, A2.47, I2.48,
D2.50, E2.51, D3.32, A3.33, V3.34, N3.35, M3.36, Y3.41,
C3.42, L3.43, V3.45, L3.46, S3.47, V3.48, Y5.42, T5.43, F5.44,
L5.45, F5.47, I6.33,..., F6.60, and I7.39,..., L7.52 were stable
over the simulation. Certain residues of the apo receptor in
terminal and loop regions were stable compared to the same
residues in their holo counterparts. For instance, residues like
G26, P30, A32, N44, T50, G54, S57, R197, A199, S202, D203,
M210, L211, E214, Q299, and D300 were stable in apo
simulation but fluctuated more in complexes. Liapakis et al.
reported that the extracellular loop residues of SSTR1 from

Figure 10. Change in RMSD of the backbone Cα atoms of the complexes over 100 ns.

Figure 11. Change in Rg of the backbone Cα atoms of the complexes over a period of 100 ns.
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R197 to E214 are crucial for the binding of SSTR1 selective
agonists.27 These residues were stable in the case of apo, 22
and 107 complexes but comparatively fluctuating in 42 and 58.
The fact that compounds 22 and 107 are more active than the
other two compounds can be correlated with these values.
The flexibility of binding site residues was studied, and it was

identified that average RMSFavg of binding site residues in the
107 complex was significantly less than other complexes. In the
case of 42 and 58, RMSFavg values of the binding site residues
were 0.3600 and 0.3719 nm, respectively, which are remarkably
greater than RMSFavg values of highly active compounds 22
and 107 with values 0.2916 nm and 0.2070 nm, respectively.
RMSFavg of apo binding site residues stayed in between the
values, i.e., 0.3357 nm. Figure 12 represents the RMSF plot of
simulated SSTR1 complexes. Figure 13 represents snapshots of
the bioactive conformation of the compound inside the
receptor binding site at different time stamps. Important
SSTR1 residues reported by Liapakis et al.27 are represented as
a purple sheet. It is important to note that the ligand
consistently formed H-bonds with these residues, suggesting
the importance of these residues for stability and bioactivity of
compound 22. Similarly, the relation between these residues
and other compounds (42, 58, and 107) is studied, and we
have observed a similar H-bonding pattern. Figure 14
represents the number of H-bonds formed by simulated
compounds over time. As hydrogen bonds formed between the
protein and ligand are important for the stability of the ligand,
we have plotted the number of H-bonds formed by the ligand
over the course of simulation. 48 formed the least number of
H-bonds on average when compared to other compounds. 48
formed ∼0.7 H-bonds on an average, whereas 22, 58, and 107
formed ∼1.03, 1.76, and 1.09 H-bonds, respectively.

■ DISCUSSION
This study is a part of an extensive study we have carried out
on somatostatin receptors, including structural characterization
of other SSTRs like SSTR25 and SSTR5.6 The aim of the study
is to understand the underlying features responsible for the
functioning of SSTR1 by characterizing the structural features
responsible for their action. Also, we have studied the essential
structural features required for the biological activity of SSTR1
ligands and look to possible improvements in their structure to
increase the activity. We have performed a computational
study using molecular modeling and 3D-QSAR-based molec-

ular dynamics analysis. Initially, computational modeling of the
3D structure of SSTR1 is performed as there is no available
structure in the PDB, and a reliable 3D model is selected after
model validation. A total of 144 SSTR1 antagonists reported in
the literature are selected to perform 3D-QSAR analysis to
understand the structural characteristics responsible for their
biological activity. Molecular docking of the selected
compounds with the SSTR1 model is performed to rank
molecules based on their binding energy. Also, we have
characterized the probable binding site of SSTR1 using
computational tools and molecular docking. Later, protein−
protein docking of SSTR1 model with native peptide agonists
of SSTR1 is carried out to validate the results of molecular
docking. We have identified that residues S1.31, Y1.39, T2.64,
R121, V206, C208, T5.43, Q6.55, S7.34, S7.37, and Y7.42
group together to form the binding site of SSTR1. Afterward, a
3D-QSAR study of SSTR1 antagonists using CoMFA and
CoMSIA is performed to understand the reason for their
biological activity. Based on the analysis, we have observed that
an electronegative, less-bulkier, and hydrophobic atom
substitution is preferable than an electropositive and hydrogen
donor substitution. We have performed a DFT analysis to
study electron density-based features of the molecules and to
correlate the results with 3D-QSAR results. Results obtained
through 3D-QSAR and DFT are correlated with the SAR
studies on the obeline and ergoline derivatives in the
literature28−30,42 and are found to be consistent with the
results published. Molecular dynamics simulation of SSTR1 in
a DPPC lipid−lipid membrane bilayer is carried out for 100 ns
using GROMACS. Four different protein−ligand systems and
an apoprotein system are simulated. Initially, analyses like
change in RMSD, area per lipid, the density of the simulated
components, acyl chain order parameters, and mean-square
displacement of the membrane were performed to examine the
stability of the membrane-protein systems. Then, MD
trajectories of the simulated systems based on changes in
RMSF of SSTR1 residues are analyzed. We have observed that
the stability of ECL2 of SSTR1 is crucial for a stable SSTR1
binding. Based on the analysis, we can infer that SSTR1 ligands
that form more H-bonds with the residues of the ECL2 loop
will have high bioactivity. This inference supports the study by
Liapakis et al.,27 which suggested the importance of these
residues in SSTR1−ligand binding. Also, the behavior of the
ligands inside the binding site corresponds well with the

Figure 12. RMSF of SSTR1 residues over a period of 100 ns.
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respective CoMFA result. Based on CoMFA, the presence of a
hydrogen acceptor group at this position increases the activity
of the ligand. Here, the consistent formation of H-bonds by the
ligand with residues of TM1 and TM2 strengthens the fact that
it is important for the ligand to have H-bond acceptor groups
at this position for high bioactivity. Also, it is notable that the
residues that form H-bonds frequently with ligands are part of
the proposed SSTR1 binding site. A novel ligand with
suggested functional groups at the favorable position based
on the 3D-QSAR analysis and that could potentially form H-
bonds with the residues of the ECL2 loop could significantly
increase the biological activity of novel SSTR1 ligands. The

results of this study could be helpful in the development of
novel and more potent ligands that target SSTR1.

■ MATERIALS AND METHODS
We have used software like MODELLER and Sybyl-X 2.1
installed in a Windows environment and Gaussian 16 A.03 and
GROMACS (v. 2016.3) installed in a Linux environment to
perform various molecular modeling calculations.

Homology Modeling and Model Validation. Homol-
ogy modeling was performed since there are no available
crystal structures of SSTR1 in the Protein Data Bank (PDB).43

Homology modeling could provide reliable three-dimensional
models of protein structures when only sequence information
of the protein is available.44 The amino acid sequence of
human SSTR1 (accession number: P30872) was procured
from the UniProt database.45 The sequence consisting of 391
amino acids was given as input in a BLAST (basic local
alignment search tool) search46,47 against PDB, and templates
acceptable for modeling the SSTR1 structure were identified.
Various statistics of the templates such as E-value, query
coverage, and sequence identity were identified, and eight
templates scoring satisfactory values were tabulated (Table 4).
All selected templates belong to the GPCR superfamily and

have query coverage between 71 and 78% of the SSTR1
sequence. Since it is crucial for the templates to have at least
30% identical sequence to the query for a reliable model
prediction, it becomes important to mention that the sequence
identity of the templates ranges between 40 and 48%.48 Figure
S6 represents the alignment of SSTR1 and template sequences
(4RWA). Two different modeling platforms were used to
perform homology modeling: EasyModeller49 and I-Tasser.50

EasyModeller 4.0 is an offline graphical user interface that
operates MODELLER51 in the background. I-Tasser (iterative
threading assembly refinement) is ranked as the best online
server for protein structure prediction in the recent
community-wide CASP experiments. I-Tasser runs based on
a hierarchical algorithm called LOMETS (local meta-
threading-server)52 to solve protein 3D conformations based
on its amino acid sequence. Different model validation tools
were used to select the best models developed using homology
modeling.
Root-mean-square deviation (RMSD) of the selected

structures in accordance with their respective templates was
calculated. Initially, the developed structures were prepared
using the structure preparation module in Sybyl-X 2.1.53 Using
the Powell algorithm54 and the Tripos force field,55 energy
minimization of the structures was performed for 1000
iterations to eliminate the poor contacts formed during the
model generation. Energy-minimized structures were subjected
to model validation by the Ramachandran (RC) plot,56

ERRAT plot,57 Verify3D,58 QMEAN,59 and ProSA.60 RC
plots were plotted using the RAMPAGE server (http://
mordred.bioc.cam.ac.uk/~rapper/rampage.php),61 and
ERRAT plots57 were developed using the SAVES server
(http://servicesn.mbi.ucla.edu/ERRAT/). To check for the
compatibility of the models with their respective amino acid
sequence, validation using Verify3D58 was followed. QMEAN-
DisCO59 and ProSA60 scores were also calculated using
respective servers to validate the quality of the developed
models.

Data Set Selection. Hurth et al. have studied the SSTR1
antagonistic ability of nonpeptide ligands having
octahydrobenzo[g]quinoline (obeline) and octahydro-indolo-

Figure 13. Simulation time-based progression of ligand bioactive
confirmation of compound 22 inside the protein binding site.
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[4,3-fg]quinoline (ergoline) structural elements in their
structures.28−30,42 We identified a common scaffold for the
data set and drawn 144 compounds using the scaffold (Table
S7). In Sybyl-X 2.1, the drawn compounds were minimized
using a distance-dependent dielectric function in a Tripos force
field.55 Powell’s gradient method54 was utilized to perform
minimization, and the partial charges to the compounds were
applied using the Gasteiger−Hückel (GH) method.62 To
analyze the ligand binding mode with the receptor, molecular
docking of the energy-minimized molecules with selected
homology models was performed. SRIF-28,15 the native ligand
peptide of SSTR1, and cortistatin-14,63 a neuropeptide that has
a similar structure to SRIF-28, were selected to study protein−
protein interactions with SSTR1. cortistatin-14 had a binding
affinity (pKd) of 10.0 with SSTR1,63,64 whereas the binding
affinity (pKi) of SRIF-28 ranged from 8.6 to 10.0.64−67 Since
there are no 3D structures present for both peptides in PDB,
we theoretically modeled their structure using homology
modeling. PEP-FOLD3,68 a de novo peptide prediction server,
was used in this regard.
Ligand Binding Site Prediction and Molecular

Docking. We have used two different platforms to predict
the probable binding site of SSTR1: COACH69 and SiteID
Find Pocket. COACH is a meta-server, which produces
complementary ligand-binding sites based on two comparative
methods, TM-SITE and S−SITE, which recognize from
ligand-binding templates available in the BioLiP protein
function database.69,70 Based on the weekly Continuous
Automated Model EvaluatiOn (CAMEO) experiments,71 the
COACH algorithm was considered to be the best online server
for ligand binding site prediction. SiteID Find Pocket is a
binding site prediction module available in Sybyl-X 2.1, which
uses a flood-fill solvation technique for prediction. Using both
tools, a group of residues that could probably construct the

binding site was propounded and evaluated with the binding
sites of the templates for its validity. Molecular docking of the
selected SSTR1 antagonist data set with selected SSTR1
homology models was carried out using the Surflex docking
program72 present in Sybyl-X 2.1. The Surflex algorithm works
based on a surface-based molecular similarity method,
postulating various postures of ligand fragments. It is self-
operating, flexible, and uses Hammerhead empirical scoring
function for calculations.73 It creates a theoretical representa-
tion of the binding site known as protomol74 with which ligand
molecules are docked. Threshold and bloat influence the
protomol formation, which corresponds to the degree to which
protein can be enfolded and the volume of protomol,
respectively. In addition to the mentioned factors, the
algorithm calculates various physical factors of a molecule in
computing the ligand binding affinities.73 To validate the
accuracy of the molecular docking algorithm used, we have
performed redocking of the cocrystallized ligand with the
template structure to ensure that the ligand resides inside the
same binding pocket.

Protein−Protein Docking. ClusPro 2.0,75,76 a protein−
protein docking server, was used to execute protein−protein
docking of SRIF-28 and cortistatin-14 with SSTR1. ClusPro is
the most extensively used server for performing protein−
protein docking, which is ranked as the best protein−protein
dock in the recent critical assessment of prediction of
interactions (CAPRI).77 ClusPro runs using a fast Fourier
transform (FFT) correlation algorithm called PIPER,78 which
can generate dependable native-like conformations.79 After
calculation, the resulting structures were grouped together and
refined by means of pairwise RMSD being the distance
measure.

3D-QSAR Study. 3D-QSAR studies based on both ligand-
based CoMFA and CoMSIA were followed.

Bioactive Conformer Determination and Partial
Charge Calculations. Using Sybyl-X 2.1, we assigned
Gasteiger−Hückel (GH) partial charges for the atoms of the
compounds. The existence of rotatable bonds in the
compound was recognized by incrementing the dihedral
angle from 120° via a systematic search conformation method.
We ascertained the minimal-energy conformer as the template,
and based on the identified template, a common scaffold for
aligning the data set was identified. For optimizing errors in the
conformation of molecules, a 10 000 step energy minimization
was performed, using the GH charging method in a Tripos
force field. For performing minimization, a convergence factor
of 0.05 kcal mol−1 was set. For alignment of compounds based

Figure 14. Change in the number of H-bonds formed by compounds with the protein over 100 ns.

Table 4. Templates Selected for Modeling of SSTR1

template PDB
ID_Chain

max
score

total
score

query coverage
(%)

E-
value

identity
(%)

5C1M_A 239 239 74 2e-76 43
4RWA_A 236 236 78 9e-74 45
4N6H_A 235 235 71 2e-73 47
5DHG_A 232 232 73 3e-72 44
4EA3_A 232 232 73 4e-72 44
4DJH_A 189 247 78 5e-55 42
4EJ4_A 185 245 71 8e-54 48
4DKL_A 183 245 75 4e-53 47
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on template conformation, the atom fit method available in
Sybyl 2.1 was used.
Generation of CoMFA and CoMSIA Fields. At every

intersection in an evenly spaced grid (2 Å), interactions due to
steric and electrostatic clashes were calculated while keeping
distance-dependent dielectric as constant. For calculating these
interactions, we fixed an sp3 carbon atom and a single positive
charge (+1) as the probe, respectively. The lattice energy
points lesser than the set limit of 2.0 kcal mol−1 were skipped
over to perk up the signal-to-noise ratio. A partial least-squares
(PLS) regression analysis was performed by way of the full
cross-validation method.80,81 To determine the number of
components, a non-cross-validation PLS method was executed
by means of the leave-one-out (LOO) method.82 We have
used the formula given below to determine the cross-validated
correlation coefficient (q2)

q 1
( )

( )
2 pred actual

2

actual mean
2

γ γ

γ γ
= −

∑ −

∑ −
γ

γ (1)

where γpred, γactual, and γmean symbolize the predicted, actual,
and mean values of the target property (pKi), respectively. To
calculate the standard error of estimate (SEE), the following
formula was employed

N
SEE

( )actual predγ γ
=

∑ −

(2)

where N represents the total number of molecules.
Density Functional Theory. Density functional theory

(DFT) is a quantum mechanical calculation method derived
from the Hohenberg−Kohn theorem.83 DFT can bestow
dependable foundation in the molecular (or atomic)-level
examination of a structure, based on its energetics.84 In
studying the structure−activity relationship of biologically
active molecules, DFT can be utilized to describe and
scrutinize important chemical descriptors. In this study, we
followed conceptual DFT, a subfield of DFT, which makes use
of electron-density-related ideas in studying molecular
chemical behavior.85 Ten diverse molecular descriptors were
derived for all compounds, which include total energy, highest
occupied molecular orbital (HOMO), lowest unoccupied
molecular orbital (LUMO), band energy gap, molecular dipole
moment, chemical potential, electronegativity, electrophilicity
index, absolute hardness, and global softness. All 144
compounds taken for the study were optimized using the
B3LYP function86−88 and 6-31G(d) basis set in Gaussian 16
A.03.89 Fukui’s molecular orbital theory was used to calculate
the molecular reactivity based on their frontier orbitals (EHOMO
and ELUMO).

31

Membrane-Protein Dynamics. The lipid bilayer is the
main gatekeeper for the transport of various substrates across
the cell membrane, which is crucial for various biological
events including cell-to-cell signaling. Molecular dynamics can
simulate the behavior of all atoms involved in the membrane
transport. Somatostatin is an important mediator of various
biological function roles controlled by an SSTR-related
signaling mechanism. Hence, we studied the dynamics of
SSTR1 in the presence of lipids surrounded by water. We have
selected high activity compounds 22, 42, 58, and 108 to study
their time-dependent conformational changes using molecular
dynamics. GROMACS molecular simulation software (v.
2016.3) was used to carry out the simulations. CHARMM-

GUI,90 a web-based platform, was used to place the modeled
receptor in a bilayer of lipid molecules. Using the platform,
inputs required for running dynamics simulation in GRO-
MACS were generated.91−93 To combine coordinates of
protein and bilayer, it is important for them to have the
same dimensions. Hence, the protein structure was initially
oriented in a way such that the hydrophobic region of the
protein is lined up with the nonpolar lipid tails. The
hydrophobic region of the membrane proteins consists only
of neutral residues; in other words, no charged residues are
present. The Orientations of Proteins in Membranes (OPMs)
database94 consists of spatial arrangements of various
membrane proteins aligned to the hydrophobic core of lipid
bilayers. The database consists of OPMs for all of the
experimentally solved membrane proteins present in PDB. It
can be freely accessible at https://opm.phar.umich.edu/. The
coordinates of the membrane-oriented proteins can be
downloaded from the database. In our case, as the starting
structure of SSTR1 was a homologically predicted model, the
orientation coordinates for SSTR1 were not present in the
database. Hence, we downloaded the orientation coordinates
of the template (4RWA) used for modeling the SSTR1
structure. The OPM file of 4RWA was downloaded from the
database, and the SSTR1 homology model was aligned with
the file. 4RWA is a synchrotron structure of the human δ-
opioid receptor deposited by Fenalti et al.95 in PDB. The δ-
opioid receptor is a GPCR having seven transmembrane
helices and heavily expressed in regions of the human brain. It
is important to note that SSTRs and opioid receptors are
∼40% identical to each other.
DPPC is one of the most studied phospholipids in studies

related to membrane-protein dynamics and extensively used in
modeling membrane interactions using highly acceptable force
field parameters. While constructing the bilayer using
Membrane Builder,96 200 DPPC molecules were packed on
both top and bottom layers of the bilayer. Using Membrane
Builder, a reasonably packed lipid bilayer was constructed
around the protein. Water thickness at the top and bottom
layers was maintained at 20.0 Å. After determining the system
size, the components of the bilayer such as lipid bilayer,
counterions, and bulk water were built using the replacement
method. Finally, minimization, equilibration, and production
MD of the system were carried out in six steps.93 Each step is
crucial to gradually equilibrate the assembled system by
changing different parameters that might affect the compo-
nents like lipids, proteins, ions, and water. Restraint forces like
planar restraints, repulsive planar restraints, and harmonic
restraints were reduced gradually during each equilibration
step. Simulations were carried out in an all-atom
CHARMM36m force field. Equilibration steps were performed
after minimizing the system energy using steepest descent
convergence. There are six steps in a general membrane
builder protocol: reading the protein input structure,
orientation of protein, determining the system size, construct-
ing the components of the bilayer, assembly of the
components, and finally equilibrating the system. Once the
user inputs a protein structure, the algorithm checks for any
errors in the structure like missing residues or chains, the
presence of unknown atoms, and other similar errors. After
checking the structure, the algorithm proceeds to perform the
orientation of the protein structure. However, in our case, as
we have already performed protein orientation for the
homology models, this step is skipped.
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B.; Gloriam, D. E. Trends in GPCR drug discovery: new agents,
targets and indications. Nat. Rev. Drug Discovery 2017, 16, 829−842.
(3) Wacker, D.; Stevens, R. C.; Roth, B. L. How Ligands Illuminate
GPCR Molecular Pharmacology. Cell 2017, 170, 414−427.
(4) Munk, C.; Harpsøe, K.; Hauser, A. S.; Isberg, V.; Gloriam, D. E.
Integrating structural and mutagenesis data to elucidate GPCR ligand
binding. Curr. Opin. Pharmacol. 2016, 30, 51−58.
(5) Nagarajan, S. K.; Babu, S.; Sohn, H.; Devaraju, P.; Madhavan, T.
Towards a better understanding of the interaction between

Somatostatin receptor 2 (SSTR2) and its ligands: a structural
characterization study using molecular dynamics and conceptual
Density Functional Theory (DFT). J. Biomol. Struct. Dyn. 2019, 37,
3081.
(6) Nagarajan, S. K.; Babu, S.; Madhavan, T. Theoretical analysis of
somatostatin receptor 5 with antagonists and agonists for the
treatment of neuroendocrine tumors. Mol. Diversity 2017, 21, 367−
384.
(7) Theodoropoulou, M.; Stalla, G. K. Somatostatin receptors: From
signaling to clinical practice. Front. Neuroendocrinol. 2013, 34, 228−
252.
(8) Bell, G. I.; Reisine, T. Molecular biology of somatostatin
receptors. Trends Neurosci. 1993, 16, 34−38.
(9) Tichomirowa, M. A.; Daly, A. F.; Beckers, A. Treatment of
pituitary tumors: somatostatin. Endocrine 2005, 28, 93−99.
(10) Hugues, J.-N.; Epelbaum, J.; Voirol, M.; Sebaoun, J.; Kordon,
C.; Enjalbert, A. Involvement of endogenous somatostatin in the
regulation of thyrotroph secretion during acute and chronic changes
in diet. Neuroendocrinology 1986, 43, 435−439.
(11) Iversen, J. Inhibition of Pancreatic Glucagon Release by
Somatostatin: In Vitro. Scand. J. Clin. Lab. Invest. 1974, 33, 125−129.
(12) Shimon, I.; Taylor, J.; Dong, J.; Bitonte, R.; Kim, S.; Morgan,
B.; Coy, D.; Culler, M.; Melmed, S. Somatostatin receptor subtype
specificity in human fetal pituitary cultures. Differential role of SSTR2
and SSTR5 for growth hormone, thyroid-stimulating hormone, and
prolactin regulation. J. Clin. Invest. 1997, 99, 789−798.
(13) Curry, D.; Bennett, L. Does somatostatin inhibition of insulin
secretion involve two mechanisms of action? Proc. Natl. Acad. Sci.
U.S.A. 1976, 73, 248−251.
(14) Raptis, S.; Schlegel, W.; Lehmann, E.; Dollinger, H.; Zoupas, C.
Effects of somatostatin on the exocrine pancreas and the release of
duodenal hormones. Metabolism 1978, 27, 1321−1328.
(15) Weckbecker, G.; Lewis, I.; Albert, R.; Schmid, H. A.; Hoyer, D.;
Bruns, C. Opportunities in somatostatin research: biological, chemical
and therapeutic aspects. Nat. Rev. Drug Discovery 2003, 2, 999−1017.
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