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ABSTRACT: A novel coumarin derivative (5) was synthesized and used as a colorimetric and fluorescent probe for selective
detection of Cu?* ions in the presence of other metal ions, with the detection limits of 5.7 and 4.0 ppb, respectively. Cu** ion reacts
with probe § to form a 1:1 stoichiometry complex, resulting in a remarkable redshift of absorption maximum from 460 to $10 nm, as
well as almost completely quenching fluorescence intensity of probe $ at the wavelength of 536 nm. These changes can be distinctly
observed by naked eyes. In addition, the working pH range of probe § is wide and suitable for physiological conditions, thus probe §
may be used for detection of Cu®* ions in living cells. The stable structures of probe § and its 1:1 complex with Cu®" ion were
optimized at the PBE0/6-31+G(d) level of theory. The presence and characteristics of bonds in compounds were studied through
atoms in a molecule and natural bond orbital analysis. The formation of the complex led to a strong transfer of electron density from
probe 5 as a ligand to Cu®" ion, resulting in breaking the 7-electron conjugated system, which is the cause of fluorescence quenching
and color change of 5-Cu®** complex.

1. INTRODUCTION Cu’" ions at ppb levels, which is simpler and less expensive
than the above methods.'”'® PFurthermore, a fluorescence-
based analytical method can be used to monitor substances in
living cells to detect abnormal cases and causes of
diseases.” ™" Therefore, the development of new fluorescent
probes for Cu®" ions has attracted special attention of
scientists.”>~* So far, many fluorescent probes for Cu** ions
have been reported. The development of new fluorescent
probes is, however, still being concerned due to the limitations
of reported probes such as low sensitivity and selectivity,””*° a
2027722 working in solutions with a high
2939 and excitation wavelength

Copper is both an essential trace element and a toxic substance
to plants, animals, and humans."”” Copper toxicosis is very rare
compared to its deficiency in plants.” This element exhibits
high toxicity to microorganisms such as algae, bacteria, viruses,
and aquatic animals.” Copper is present in almost all tissues of
the human body and plays an important role in physiological
processes, immunity, and resistance to oxidative stress.”~ The
copper deficiency or copper overload is believed to be related

to diseases like Alzheimer’s, Parkinsons, Menkes, Wilsons, and ¢
. 8-11
Prion. narrow range of pH,

There are different methods that can determine Cu?* ions at proportion of organic solvents,

ppb levels such as absorption atomic spectrometry (AAS),">"?

inductively coupled plasma mass spectrometry (ICP-MS),"* Received: June 27, 2020
inductively coupled plasma optical emission spectrometry Accepted:  July 28, 2020
(ICP-OES),” and voltammetry.' However, these methods Published: August 13, 2020
require expensive equipment, with complicated sample

preparation and measurement techniques. Meanwhile, a

fluorescence-based analytical method can also determine
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Figure 1. Synthetic pathway for the probe S.
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Figure 2. (a) Absorbance titration spectra of probe § (S uM) in ethanol/4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, pH 7.4, 1/1,

v/v) at 25 °C with gradual addition of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

, 0.8, 0.9, 1.0, 1.5, and 2.0 equiv of Cu** ions. (b) Fluorescence titration

spectra of probe § (5 uM) in ethanol/HEPES (pH 7.4, 1/1, v/v) at 25 °C with gradual addition of 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5,

and 2.0 equiv of Cu®* ions with an excitation of 460 nm.
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Figure 3. (a) Job plot of probe 5 and Cu®" ions. (b) Plot and linear fitting of the fluorescence intensity of probe 5 (5 uM) with different
concentrations of Cu* ions (excitation wavelength: 460 nm, emission wavelength: 536 nm).

in the ultraviolet region.Z(”m’sl’32 These limitations reduce the

application of probes to monitor Cu** ions in living cells.

In this study, a novel derivative of coumarin, (E)-3-((2-
(benzo[d]thiazol-2-yl)hydrazono)methyl)-7-(diethylamino)
coumarin (5) that was successfully synthesized could be used
as a colorimetric and fluorescent probe for detection of Cu®*
ions in the preeminent operating conditions such as high
sensitivity and selectivity, a wide range of pH, and excitation
wavelength in the visible region. In addition, quantum
chemical calculations have also been used to determine the
optimized geometry of 5-Cu*" complex and shed light on the
cause of the changes in fluorescence properties.

2. RESULTS AND DISCUSSION

2.1. Synthesis of (E)-3-((2-(Benzo[d]thiazol-2-yl)-
hydrazono)methyl)-7-(diethylamino)coumarin (5).
Probe S was synthesized through four steps as shown in

21

Figure 1. First, 7-diethylamino-3-ethylacetate-coumarin (2)
was synthesized from a condensation reaction between 4-
diethylaminosalicylaldehyde (1) and diethylmalonate in the
presence of triethylamine. Second, 7-diethylamino-coumarin
(3) was obtained from the decarboxylation reaction of 2 using
concentrated HCI and glacial acetic acid. Third, 7-diethylami-
nocoumarin-3-aldehyde (4) was obtained from the aldehyde
reaction of 3 in the presence of POCI; and N,N-
dimethylformamide (DMF). Finally, probe § was obtained
from the condensation reaction of 7-diethylaminocoumarin-3-
aldehyde (4) with 2-hydrazinobenzothiazole in about 30%
overall yield (Supporting Information). The structures of the
products 3, 4, 5, and intermediates were confirmed by 'H
NMR, “C NMR, and electrospray ionization mass spectrom-
etry (ESI-MS) analysis (Figures S1—S4, Supporting Informa-
tion).
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Figure 4. Absorption spectra (a) and fluorescence spectra (b) of probe 5 (S M) in ethanol/HEPES (pH 7.4, 1/1, v/v) at 25 °C upon addition of

1 equiv of Cu®* ions and other metal ions including Na*, K*, Ca**, Mg*, Fe**, Co**, Ni**, Zn>*, Pb**, C

460 nm, emission wavelength: 536 nm).
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Figure 5. Color changes (a) and fluorescence changes (b) of probe § with Na*, K*, Ca®*, Mg™*, Fe*, Co®", Ni**, Cu**, Zn**, Pb**, Cd**, Cu**, and

Hg2+.
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Figure 6. Fluorescence spectra of probe 5 (5 uM) in ethanol/HEPES (pH 7.4, 1/1, v/v) at 25 °C (a) upon addition of 1 equiv of Hg*" ions and

NaCl (0—-50 uM) and (b) upon addition of 1 equiv of Cu®*

ions and EDTA (50 M) (excitation wavelength: 460 nm).

2.2. Experimental Characterization and Application
of Probe 5. The absorption and fluorescence titration spectra
of probe 5 with Cu* ions in aqueous solution are presented in
Figure 2. It shows that free probe § has a characteristic
absorption band peaked at the wavelength of 460 nm in
aqueous solution. The absorption maximum is progressively
redshifted with gradual addition of Cu®** ions. The absorption
maximum at 460 nm is gradually decreased, whereas a new
absorption maximum at 510 nm appears. In companion with
this, there is a change in the color of the solution from orange
to pink. Furthermore, three distinct isosbestic points are
observed at 340, 400, and 475 nm. These results indicate that
the concentration of the light-absorbing compounds has been
converted back and forth in the solution. This is seen as a piece
of evidence for the formation of a new compound between
probe § and Cu*" ions.* ™

As shown in Figure 2, free probe § has a strong emission
band peaked at the wavelength of 536 nm with an excitation
wavelength of 460 nm. The fluorescence quantum yield (®) of
free probe 5 in aqueous solution is determined to be 10.5%,
using the fluorescein in 0.1 N NaOH solution as a reference.*

Addition of Cu® ions greatly quenches the fluorescence

21243

intensity of probe $, along with a slight redshift in the emission
maximum. Upon addition of 1 equiv of Cu®* ions to the
solution of probe §, the fluorescence intensity is quenched over
95% of its original intensity, along with a shift in the emission
maximum from 536 to 545 nm. The fluorescence quantum
yield (@) of the product between probe 5 and Cu®' ions in
aqueous solution is found to be 0.15% based on the obtained
experimental data.

The Job plot in Figure 3a shows a complexation between
probe 5 and Cu’" ions in a molar ratio of 1:1. The
stoichiometry is also confirmed by the plot of the fluorescence
intensity of probe § with different concentrations of Cu’* ions.
Figure 3b shows that the fluorescence intensity is gradually
quenched upon an increasing addition of Cu®** ions. Upon
addition of 1 equiv of Cu?®* ions, the fluorescence intensity is
quenched to more than 95% and then becomes almost
unchanged as the concentration of Cu®*" ions is further
increased.

The selectivity of probe § toward Cu** ions compared to the
other metal ions was investigated. Figure 4 gives the variations
of absorption and fluorescence spectra of probe $ caused by
miscellaneous ions including Na*, K*, Ca**, Mg*', Fe**, Co™,

https://dx.doi.org/10.1021/acsomega.0c03097
ACS Omega 2020, 5, 21241-21249
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Figure 7. (a) Absorption intensity at 510 nm and (b) fluorescence intensity at 536 nm of probe 5 (S #M) in the absence and presence of 1 equiv of
Cu*" ions in ethanol/HEPES (pH 7.4, 1/1, v/v) solution.
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Figure 8. (a) Changes of absorbance at 510 nm and (b) fluorescence intensity at 536 nm of probe 5 (5 M) after adding 1 equiv of Cu** ions in
ethanol/HEPES (pH 7.4, 1/1, v/v) with different times.
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Ni*', Zn®*, Pb**, Cd*, Hg?*, and Cu*" ions. The results show
that Cu® ions cause a remarkable redshift in absorption
maximum from 460 to 510 nm with increased intensity; Hg**
ions induce a medium change from 460 to 500 nm, whereas
other metal ions only produce slight changes in their
absorption spectra (Figure 4a). On the other hand, probe §
shows a strong emissive band peaked at 536 nm. Cu* ions can
quench the fluorescence of probe § to more than 95%, whereas
Hg** ions can quench fluorescence to about 40%. Other
miscellaneous competitive ions do not lead to any significant
changes in fluorescence (Figure 4b). The above changes in
color and fluorescence can be distinctly observed by naked
eyes, and their photos are presented in Figure 5. All these show
a remarkably high selectivity of probe 5 for Cu®** ions over
other competitive ions except for Hg** ions.

The possibility of using probe 5 to quantify Cu®" ions in the
presence of Hg*" ions is also investigated. As shown in Figure
6a, the influence of Hg*" ions on the quantification of Cu*"
ions can be prevented by adding 8—10 equiv of NaCl to the
solution containing Hg*" ions. Furthermore, when 10 equiv of
Na, EDTA is added to the solution of probe 5 containing 1
equiv of Cu’" ions, the solution returns to strong fluorescence
with the same intensity as the solution of free probe 5 (Figure
6b). This result shows that the reaction between Cu** ions and
probe § is reversible. Therefore, probe § acts as a chemosensor
for Cu* ions.

For practical applicability, a proper range of pH values for
probe S was also evaluated. Figure 7a shows that the
absorbance of free probe § and of probe $ in the presence
of Cu®" ions reaches a plateau in the pH range from $ and 9.
Under acidic conditions (pH < S) or alkaline conditions (pH >
9), the absorbance of these solutions is not stable upon pH
changes, it decreases as pH increases. A similar result also
comes from the fluorescence spectra with the change of pH
conditions, as presented in Figure 7b. These results show that
probe § can detect Cu®" ions with a wide pH span, from § to 9.

The changes of absorbance and fluorescence intensity of
probe 5 (5 uM, in ethanol/HEPES, pH 7.4, 1/1, v/v) after
adding 1 equiv of Cu’* ions with different times are
investigated and presented in Figure 8. The results show that
the complexation process between probe § with Cu®* ions is
very fast. It can reach the equilibrium within several seconds,
indicating that probe 5 can be used for real-time detection of
Cu’" ions.

The possibility to use § as a chemosensor for quantification
of Cu®" ions by colorimetric and fluorescent methods was
investigated. The results obtained from the absorption spectra
show that the optimal absorption wavelength for quantification
of Cu*" jons is 525 nm, where the difference between
absorbances is the largest, and the absorbance of Cu?" ions is
approximately equal to zero (Figure 9a). Figure 9b,c show that,
in the concentration range of Cu*" ions from 0 to 300 ppb, the
linear relationships between the concentration of Cu** ions
and the absorbance or fluorescence intensity of § solution (S
uUM) are very good and expressed by the equations that were
found from calibration curves: Asyq,m = (0.013 + 0.002) +
(0.001 + 0.000) X [Cu®**] (ppb) or Flssnm = (967.793 +
4.262) — (3.004 + 0.029) X [Cu®*"] (ppb). The calculated
linear correlation coeflicients are 0.9996 and 0.9996,
respectively. These results indicate that S can be used as a
colorimetric or fluorescent chemosensor for quantification of
Cu’ ions. The limit of detection is 5.7 ppb for the colorimetric
method and 4.0 ppb for the fluorescent method (Figure SS),

much lower than that for the recently published colorimetric
and fluorescent sensors.”’~** The method of using probe § to
quantify Cu®* ions in the presence or absence of Hg’* ions has
been assessed for accuracy through the repeatability (relative
standard deviation, RSD) and recovery rate. The obtained
results were reliable (see more details in Supporting
Information).

2.3. Investigations on the Structural Properties of
Probe 5 and Its Complex with Cu?' ions. For the
optimized geometries of probe S, the 1:1 complexes between
probe § and Cu’' ions were optimized at the PBE0/6-
31+G(d) level of theory. The stable structures corresponding
to minima on the potential energy surface are shown in Figure
10. All their Cartesian coordinates are presented in Tables S1

Figure 10. Stable structures of probe S (a) and its 1:1 complex with
Cu? ions (b) at the PBE0/6-31+G(d) level of theory.

and S2 of Supporting Information. The calculated bond
lengths, bond angles, and dihedral angles of probe § and its 1:1
complex with Cu®" ions are presented in Table S3 of
Supporting Information.

The calculated results show that in free probe S, most of the
atoms are coplanar except for the ones of ethylamino groups.
Two chains C(16)—C(15)—C(17)—N(36) and N(36)—
N(35)—C(41)—N(34) in free probe S are in trans-config-
urations (Figure 10a). Meanwhile, the 1:1 complexation leads
to the changes in configurations of these two chains, being cis-
configuration (Figure 10b).

The calculated values of p(r) and V?*(p(r)) and the
topological properties of 5-Cu’** complex at the critical points
obtained from AIM analysis are presented in Table 1 and
Figure 11, respectively. The calculated results confirmed the
presence of chemical bonds in each of the O(2)--Cu(49),
N(36)---Cu(49), and N(34)---Cu(49) contacts. All values of
V2(p(r)) for these contacts are negative. In addition, the
contact distances of atom pairs O(2)--Cu(49), N(36)--
Cu(49), and N(34)---Cu(49) are 1.845, 1.952, and 1.898 A,
respectively. They are significantly smaller than the sum of the
van der Waals atomic radii of corresponding atom pairs (2.920,
2.950, and 2.950 A). As a result, these contacts are thought to
form covalent bonds. RCPs are found in the center of O(2)-
C(16)---C(15)---C(17)--*N(36)---Cu(49) and N(36)-
N(35)--C(41)--N(34)---Cu(49) atom groups, indicating a
cyclic structure present in each group of atoms.

The intermolecular orbital interaction and bond properties
are investigated by natural bond orbital (NBO) analysis to

https://dx.doi.org/10.1021/acsomega.0c03097
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Table 1. Electron density (p(r), in au) and the Laplacian (V*(p(r)), in au) at the contact points of atom pairs in 5-Cu**
complex at the PBE0/6-31+G(d) level of theory

bond p(r) A Ay A3 V3(p(r)) critical point

0(2)-+-Cu(49) 0.1127 —0.1589 —0.1573 0.9036 —0.1469 BCP
N(36)-Cu(49) 0.1032 ~0.1393 —0.1343 0.6041 —0.0826 BCP
N(34)--Cu(49) 0.1148 —0.1525 —0.1488 0.6977 —0.0991 BCP
0(2)-+C(16)-+C(15)-+C(17)~N(36)--Cu(49) 0.0146 ~0.0101 0.0367 0.0526 ~0.0198 RCP
N(36)-+N(35)-C(41)-N(34)--Cu(49) 0.0275 —0.0229 0.0642 0.1283 —0.0424 RCP

% e explain the fluorescent properties of probe 5 and $-Cu*

ot | “ e e complex. The calculated results in Table 2 and Figure 11

: ? B/CP . R y show that in free probe $, the presence of 7 bonds between

R T f .. . atom pairs with their significantly large interactive energies

Figure 11. Topological properties of 5-Cu

©

(yellow points) and RCPs (red points).

>* complex at the BCPs

(E?), including C4—C10, C11-C8, C14—C15, C17—C36,
and O02—C16, has led to the formation of a m-electron
conjugated system in the first moiety of probe § containing the
diethylaminocoumarin. This 7-electron conjugated system also
enhances electron density from the electron pair of the N3
atom by the donor—acceptor interaction, with the interactive

Table 2. Significant second-order interaction energies at the PBE0/6-31+G(d) level of theory (kcal'mol ') between donor and
acceptor orbitals in § and 5-Cu®" complex

donor NBO (i)

5

7(C4—C10)
7(C4—C10)
7(C7-C9)
#(C7—-C9)
7(C8-C11)
7(C8—Cl11)
7(C8—Cl11)
7(C14—C15)
7(C14—C15)
7(C14—C15)
LP (O1)

LP (O1)

LP (02)

LP (02)

LP (N3)
5*%(01-C16)
7%(02—C16)
7*(C4—C10)
7%(C8—Cl11)
7#(C17—-N36)
7*(C4—C10)
n(N34—C41)
7(C37—C38)
7(C37—C38)
7(C37-C38)
7(C39—C42)
7(C39-C42)
7(C40—C43)
7(C40—C43)
LP (S33)

LP (S33)

LP (N34)

LP (N35)

LP (N35)
7*(N34—C41)
7*(C37—-C38)
7*(C37—C38)

acceptor NBO (j)

7*(C7-C9)
7*(C8—Cl11)
7*(C4—C10)
7%(C8—Cl11)
7*(C4—C10)
7*(C7-C9)
7*#(C14—C15)
7%(02—C16)
7%(C8—Cl11)
7*(C17—-N36)
7%(02—-C16)
7*#(C7-C9)
5*%(01-C16)
5*%(C15—C16)
7*(C4—C10)
5%(01-C9)
7*(C14—C15)
7#(C8—C11)
7#(C14—C15)
7*(C14—C15)
7#(C7—C9)
7*(C37-C38)
7*(N34—-C41)
7*(C39—C42)
7*(C40—C43)
7*#(C37—C38)
7*(C40—C43)
7%(C37—-C38)
7*(C39—C42)
7*(N34—C41)
7%(C37—C38)
5*%(S33—C41)
7%(C17—-N36)
7*(N34—C41)
7*(C37-C38)
7#(C39—C42)
7*(C40—C43)

E®

14.80
32.07
24.47
13.91
17.70
27.97
24.83
27.96
13.99
19.81
40.59
33.17
39.11
18.09
52.50
22.77
125.95
431.68
218.22
76.60
352.98
18.64
10.85
21.99
17.54
19.24
20.75
22.80
20.58
29.69
17.92
19.21
33.15
53.86
119.73
197.32
158.69
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donor NBO (i) acceptor NBO (j) E@
5-Cu®*

7(C7-C9) 7*(N3—C4) 14.05
7(C8—Cl14) 7*(C7-C9) 12.19
#(C10—C11) 7*(N3—C4) 13.15
7*(N3—C4) 7*(C7-C9) 48.82
7*(N3—C4) 7#(C10—C11) 24.57
7*(C8—Cl4) 7#(C10—C11) 23.42
LP(01) LP*(C16) 43.31
LP(O1) 7*#(C7—C9) 14.11
LP(02) LP*(C16) 64.86
LP(C15) 7#(C8—Cl14) 30.79
LP(C15) 7*(C17—-N36) 57.01
LP(N35) 7#(C17-N36) 12.97
LP(02) LP*(Cu49) 13.89
LP(02) LP*(Cu49) 20.19
LP(N34) LP*(Cu49) 19.52
LP(N34) LP*(Cu49) 23.49
LP(N34) LP*(Cu49) 11.14
LP(N36) LP*(Cu49) 14.70
LP(N36) LP*(Cu49) 29.53
7(C37-C39) LP*(C42) 20.29
7(C37-C39) 7*(N34—C38) 13.32
7(C40—C43) LP*(C42) 22.65
7(C40—C43) 7*(N34—C38) 19.41
7*(N34—C38) 7*(C37—-C39) 42.65
7*(N34—C38) 7*(C40—C43) 29.85
LP(C41) 7*(N34—C38) 24.08
LP*(C42) 7#(C37-C39) 51.77
LP*(C42) 7*(C40—C43) 34.21
7(C34—C38) LP*(C41) 45.19
LP(N35) 7*(C17—-N36) 12.97
LP(S33) LP(C41) 66.00
LP(N35) LP(C41) 47.19
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energy (E?) of 52.50 kcal-mol .. These intermolecular orbital
interaction and bond properties are typical in fluorescent
compounds.”'~* These findings are considered as evidence
for the fluorescence of probe §.

In 5-Cu®* complex, the binding between $ ligand and Cu**
ion is stabilized by the electron donor—acceptor interactions
between electron lone pairs (LP) on the O and N atoms of the
ligand and on the Cu atom. The hyperconjugation energies of
the LP(2)02 — LP*(5)Cu49, LP(2)02 — LP*(6)Cu49,
LP(1)N34 — LP*(5)Cu49, LP(1)N34 — LP*(6)Cu49,
LP(1)N34 — LP*(7)Cu49, LP(1)N36 — LP*(5)Cu49, and
LP(1)N36 — LP*(6)Cu49 in the complex are 13.89, 20.19,
19.52, 23.49, 11.14, 14.70, and 29.53 kcal'mol ™!, respectively.
These interactions have caused a strong transfer of electron
density from $ ligand to Cu®* ion. The calculated charge of Cu
atom in 5-Cu®" complex is +1.00e, indicating that § ligand
becomes deficient in electron density. The charge of the first
moiety of § in the complex is +0.62¢, while the charge of the
second moiety of 5 in the complex is +0.38e. The charge values
of C17 and N3 in the complex are significantly more positive
than those in free S (The NBO charges of atoms are presented
in Table S4). The deficiency in electron density at C17 and N3
has resulted in breaking the 7z-electron conjugated system in
the first moiety of § at the C15 atom. The 7 bonds between
C15—C14 or C15—C17 are not found, while the LP(1)C15 —
7*(C8—C14) and LP(1)C15 — #*(C17—N36) interactions
are found with the hyperconjugation energies of 30.79 and
57.01 kcal'mol™, respectively. On the other hand, the
calculated results have confirmed the presence of the 7(N3—
C4) bond and the absence of interactions from the electron
lone pairs of the N3 atom in the form of donor—acceptor
interaction. These findings shed light on the cause of
fluorescence quenching in 5-Cu** complex.

3. CONCLUSIONS

A novel coumarin derivative was synthesized and could be used
as a colorimetric and fluorescent probe for detection of Cu®*
ions with the detection limits of 5.7 and 4.0 ppb, respectively.
This probe could operate over a wide range of pH from S to 9
and was not affected by the presence of other metal ions,
including Na*, K*, Ca**, Mg*", Fe*, Co*", Ni**, Zn**, Pb*,
Cd*, and Hg*". The stable structures of probe § and its 1:1
complex with Cu?" ions have been identified at the PBE0/6-
31+G(d) level of theory and is confirmed by AIM analysis.
The results from NBO analysis showed that the formation of
the complex led to a strong transfer of electron density from $§
ligand to Cu?* ion. As a result, the z-electron conjugated
system was broken, resulting in fluorescence quenching and
color change in the complex.

4. MATERIALS AND METHODS

4.1. Instruments. A Shimadzu UV-1800 UV—Vis spec-
trophotometer was used for the UV—Vis absorption spectra. A
Shimadzu RF-5301PC series fluorescence spectrometer was
used for the fluorescence spectra. A Varian instrument was
used for the '"H NMR and *C NMR spectra. A Finnigan
4021C instrument and Daltonics flex analysis software were
used for the mass spectra.

4.2. Reagents. 4-Diethylaminosalicylaldehyde, diethylmal-
onate, 2-hydrazinobenzothiazole, triethylamine, acetic acid,
HEPES, POCIl,, HCl, NaOH, and all ions of Na*, K, Ca’*,
Mg*, Fe**, Co’, Ni*, Hg*", Zn**, Pb**, Cd*', and Cu*" as
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their chloride or perchlorate were purchased from Aldrich
Chemical Corporation and used as received. DMF was an
HPLC reagent and redistilled prior to use. Ethanol was of
HPLC grade without fluorescent impurity. All solvents were
purchased from Merck and used as received. Deionized water
was used for all experiments.

4.3. Computational Methodology. The optimized
geometries of compounds were determined at the PBEO/6-
31+G(d) level of theory,** ** using the Gaussian 09 program
package.””*® The structures and the nature of the bonds in
these compounds have also been investigated through the
atoms in molecules (AIM) topological analysis,”’ using the
AIM2000 software.”® The calculated results, including the
electron density (p(r)), Laplacian V*(p(r)), the bond critical
points (BCPs), and the ring critical points (RCPs), were used
to evaluate the stability of bonds, the characteristics of bonds,
the presence of bonds, and ring structure."*'™>* The
electronic properties of compounds were investigated by the
natural bond orbital (NBO) analysis, using the NBO 3.1
program available in Gaussian 09 package, at the PBE0/6-
31+G(d) level of theory. The calculated results, including
NBO charge of atoms, the second-order stabilization energy
(E(z)) between the donor NBO(i) and the acceptor NBO(j),
were used to evaluate interactions and shed light on the
fluorescent characteristics of compounds.*"**~>’
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