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Abstract

Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of 
microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent 
research showed the remarkable importance and range of microbial partners for enhancing the growth and health of 
plants. However, plant–microbe holobionts are influenced by many different factors, generating complex interactive 
systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to 
the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a 
roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use 
microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and 
pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable 
pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a 
framework for advancing the application of microbial inoculants in agriculture.

Keywords:  Abiotic and biotic stress, DARWIN21, desert bacteria, endophytes, plant growth-promoting rhizobacteria (PGPRs), 
plant microbiome, plant–microbe interaction, soil microbial community, synthetic community (SynCom).

Introduction

According to the United Nations Organization, the current 
world population of 7.6 billion is expected to increase be-
yond 9.8 billion by the year 2050 (United Nations, 2017). 
Accompanying this dramatic growth in population is the an-
ticipated increase in the demand for agricultural food and feed 
products and the evident rise in environmentally destructive 
human activities, such as deforestation and the overuse of 
chemical fertilizers and pesticides in agriculture. The con-
tinuous deforestation, industrialization, and excessive use 
of fossil fuels have escalated the rise of CO2 concentrations 

in the atmosphere, leading to higher greenhouse gas emis-
sions and average global temperatures (Mgbemene et al., 
2016). Subsequently, these activities and phenomena have 
led to reductions in cultivatable land and crop productivity. 
Furthermore, the scarcity of freshwater resources or its in-
accessibility and the high costs of water treatment and de-
salination further present a challenge to meet water demand 
for the agriculture sector (Beltrán and Koo-Oshima, 2006; 
Rosegrant et al., 2009). The combination of all these prob-
lems and challenges poses a serious threat to global food 
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security and stability of economies, especially in developing 
countries.

The solution to those challenges necessitates multiple ap-
proaches, including the use of plant growth-promoting mi-
crobes as biostimulants to increase crop productivity. The 
concept of using biostimulants in agriculture is not new, and 
application of microbial consortia or single microbes as in-
oculum was previously addressed (Kong et al., 2018; Woo 
and Pepe, 2018). However, the successful transfer of micro-
bial inoculants from the lab to the field remains a challenge. 
This is primarily due to the presence of many crop species 
and crop varieties, variable environmental conditions between 
fields, and the exponential increase in the number of micro-
bial isolates. Therefore, a holistic approach towards the use of 
‘biostimulants’ is needed via ‘diagnostics’ of the field environ-
ment (e.g. soil) and desired crop (e.g. genotype), selecting best 
agricultural practices, screening for inoculants from available 
culture collections, increasing scientific research in the field 
of microbiomes, and, finally, incorporating all the latter into 
large-scale industrial production and field application (Mitter 
et al., 2019; Pascale et al., 2019).

In this review, we will shed light on the different biotic (e.g. 
plants or pathogens) and abiotic (e.g. soil or climate) factors 
shaping microbial communities in the soil, rhizosphere, and 
plant. The limitations and complexities of microbial commu-
nity experiments and their applications in agriculture will also 
be discussed. Finally, a roadmap will be presented for the suc-
cessful application of microbial inoculants in agriculture.

We are not alone: the concept of holobiont 
and plant-associated microbiota

Plants, animals, and almost all multicellular organisms are no 
longer considered as standalone individual organisms. Instead, 
they co-exist and are in constant interactions with their sur-
rounding biota (Margulis and Fester, 1991; Turnbaugh et al., 
2007; Bosch and McFall-Ngai, 2011). In the late 19th cen-
tury, Karl Möbius named this interaction or co-existence as 
‘biocenosis’ or ‘living community’ (Möbius, 1877). In 1991, 
Lynn Margulis proposed the term ‘Holobionts’—Holo is de-
rived from the ancient Greek word ȍλος (hólos) for ‘whole’. 
Margulis described that any physical association between indi-
viduals of different species for a significant part of their life span 
is termed symbiosis and all participants in the symbiotic inter-
action are symbionts (Margulis and Fester, 1991; Bordenstein 
and Theis, 2015). A strictly microbe-dependent lifestyle has 
profound evolutionary consequences and suggests that the 
phenotype of a healthy host cannot be explained exclusively 
by its genome (Bosch and McFall-Ngai, 2011).

The advent of next-generation sequencing (NGS) opened 
up possibilities to study these close interactions between a 
host—human, animal, or plant—and its associated microbial 
community (Bosch and Miller, 2016; Greer et al., 2016; Sender 
et al., 2016). In addition, NGS can provide evidence for an ac-
tive dialogue within the holobiont (host and associated micro-
biota) in coordinating and synchronizing signaling pathways 
and metabolic activities for maintaining a long-term, healthy 

co-existence (Rosenberg et al., 2010; Wier et al., 2010; Walter 
et al., 2011; Gilbert et al., 2012). Biological signals within the 
holobiont ecosystem could function as ‘Zeitgebers’ or time 
tuners (Leone et al., 2015; Lee et al., 2019). For example, 
signaling molecules produced by gut microbes were required 
for the functioning of the circadian clock in the host intes-
tinal epithelial cells (Mukherji et al., 2013; Leone et al., 2015). 
Other living organisms, such as insects and plants, carry sym-
biotic microbes that provide defense against natural enemies 
(Arnold et al., 2003; Jaenike et al., 2010).

Advances in NGS and culture-independent methods dem-
onstrated that terrestrial plants are heavily colonized by a 
wide diversity of microorganisms, including bacteria, fungi, 
oomycetes, and protozoa (Kemen, 2014; Bulgarelli et al., 2015; 
Hacquard et al., 2015). Plants accommodate and interact with 
different microbes (Fig. 1) within their tissues (endosphere); 
they also interact with the surrounding microbial commu-
nity present in the narrow region of soil surrounding the root 
system (rhizosphere) and around the stems, leaves, flowers, and 
fruits (phyllosphere). It is also clear now that microbiota play 
a major role in plant health and fitness (Müller et al., 2016). 
These microbes can colonize different plant organs either in-
side (endophytic) or attached to the surface (ectophytic).

The last two decades saw a steady increase in the number 
of studies investigating microbial communities of both 
above- and below-ground plants species. In the model plant 
Arabidopsis (Arabidopsis thaliana), a core microbial community 
was identified, where the bacterial community and function in 
the leaves overlapped with those in the roots (Lundberg et al., 
2012; Bodenhausen et al., 2013; Bai et al., 2015). Similar studies 
were also shown for crop plants such as lettuce (Lactuca sativa) 
and tomato (Solanum lycopersicum) (Ottesen et al., 2013), wild 
and domesticated barley (Hordeum vulgare) (Bulgarelli et al., 
2015), and maize (Zea mays) under field conditions (Peiffer et 
al., 2013) and in the greenhouse (Rastogi et al., 2012; Williams 
and Marco, 2014). Several pioneer desert plants such as Agave, 
Atriplex, Tribulus, Panicum, Euphorbia, and Zygophyllum were also 
studied (Kaplan et al., 2013; Coleman-Derr et al., 2016; Eida 
et al., 2018). All the aforementioned studies collectively agree 
that the plant root endosphere is dominated by a small number 
of bacterial lineages, with Actinobacteria, Bacteroidetes, and 
Proteobacteria being the dominant phyla when compared 
with soil and rhizosphere bacterial communities. Nevertheless, 
the relative abundances of individual phyla or genera are de-
pendent on multiple physical, chemical, and biological factors.

In almost all ecosystems, multidimensional interactions exist 
between microbes and their hosts, and these are governed by 
biotic and abiotic factors. Biotic factors are the living com-
ponents of an ecosystem, such as microbes, insects, plants, and 
animals. Abiotic factors are the non-living chemical and phys-
ical parts of the environment and are commonly affected by 
time (day/night) and seasonal or climate changes, such as soil 
chemical and physical properties, temperature, UV levels, pre-
cipitation (rainfall), and CO2 levels (Fig. 1). Abiotic factors, 
including stresses such as drought, soil salinity, or extreme 
temperatures, are very complex and affect the physiochemical 
properties of both the soil and plants, and their associated mi-
crobial communities.
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The soil dictates which microbes are 
accommodated by a host plant

Soil represents a highly complex system comprising a var-
iety of environments with different physical, chemical, and 
biological properties. It is one of the largest reservoirs of 
microbial biomass and diversity, and thus serves as a pool for 
recruitment of microbes and enrichment of root endophytic 
communities (Whitman et al., 1998; Hartman et al., 2008; 
Bulgarelli et al., 2012; Yeoh et al., 2017). The soil microbial 
community structures, functions, and compositions are sus-
ceptible to physical (e.g. soil structure), chemical (e.g. nu-
trient content), and biological (e.g. presence of pathogenic 
or beneficial microbes) changes in their surroundings (Fig. 
1; Table 1) (Truog, 1947; de Vries et al., 2012; Fierer et al., 
2012). High-throughput molecular techniques coupled with 
NGS have enhanced our ability to characterize prokaryotic 
(e.g. bacterial) and eukaryotic (e.g. fungal) communities in 
the soil in terms of taxonomic and phylogenetic structure, 
enzymatic activity, microbial function, and abundance and 
composition. Various factors influence soil microbial com-
munities including pH, nutrient (e.g. carbon, nitrogen, phos-
phorus) content and availability, water/moisture content, 
temperature, and soil type, texture, and particle size. 

Soil pH

Soil pH has a strong influence on the solubility and availability 
of nutrients (Cerozi and Fitzsimmons, 2016), such as carbon 
(C), nitrogen (N), phosphorus (P), potassium (K), iron (Fe), 
and zinc (Zn), which most living organisms need for survival 
and growth (Lindsay, 1995; Tack et al., 1996; Andersson et al., 
2000; Wakelin et al., 2008; Griffiths et al., 2011). Accordingly, of 
all soil properties, the soil pH seems to be the most important 
factor in affecting soil bacterial diversity and community com-
position (Fierer and Jackson, 2006; Lauber et al., 2008). In 
agricultural soils, the bacterial and fungal community structure 
and catabolic function are also strongly correlated with soil 
pH (Lauber et al., 2009). Shen et al. (2013) further demon-
strated that the bacterial community composition and diversity 
were strongly affected by pH, but no similar effects are ob-
served for the fungal community. The authors suggest that the 
strong influence of pH on bacterial community composition 
but not on fungi may be due to the narrow range of pH for 
the optimal growth of bacteria as compared with fungi that 
tolerate a wider pH range. Similar findings indicated that soil 
pH was the best predictor for bacterial diversity (e.g. highest 
diversity at near-neutral pH), richness, and community com-
position, while the soil nutrient status was a stronger driver 

Fig. 1. Microbial communities are shaped by several factors that must be considered in agricultural applications. Seasonal and climatic factors alter soil 
physicochemical properties and plant physiology. Microbial communities in the soil are affected by seasonal and climatic factors and soil factors. Plant 
factors alter microbial communities in the phyllosphere, endosphere, and rhizosphere, with the latter being via root exudates. Agricultural management 
practices can cause changes in the microbial communities in the soil either directly or via altering soil properties. Microbes associated with plants, in 
either the rhizosphere or the endosphere, are capable of promoting plant growth by making nutrients available or producing/modulating phytohormones.
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for the fungal community (Maestre et al., 2015; Zhang et al., 
2017; Shen et al., 2018). However, a continental-scale study on 
dryland sites revealed that the soil pH does not correlate with 
bacterial diversity, possibly due to higher overall pH values (Li 
et al., 2017).

Fertilization and nutrient availability

Since soil pH controls nutrient availability and accessibility 
and, consequently, changes in bacterial and fungal commu-
nity structure, then fertilization practices (e.g. chemical versus 
organic fertilization) and soil amendments must also play an 
important role. Francioli et al. (2016) showed that a combin-
ation of organic and inorganic fertilization led to increased 
total N and organic C, causing changes to the bacterial com-
munity composition, which correlated with taxa involved in 
organic matter decomposition and nutrient transformation. 
Goldfarb et al. (2011) found significant differences in the bac-
terial and fungal communities between mineral, organic, and 
mineral–organic combined fertilization. Organic fertilization 
(manure) increased bacterial diversity, stimulating microbial 
groups known to thrive in nutrient-rich environments, while 
soils without manure contained microbial groups adapted to 
nutrient-limited conditions (Eilers et al., 2010). In addition, 
fertilization altered the relative abundance of plant-beneficial 
and plant-pathogenic microbes. Overall, pH and total organic 
C were identified as the major factors driving the structure and 
activity of the soil microbial community.

One of the most essential nutrients required for cellular me-
tabolism and growth of bacteria is C. Carbon soil amendments 
can also affect microbial communities (Maestre et al., 2015). 
Indeed, low molecular weight C amendments, particularly citric 
acid, of three soil types resulted in shifts in the bacterial com-
munities (Siciliano et al., 2014). However, the responses in these 
shifts can vary depending on the soil type. Kuramae et al. (2012) 
concluded that organic C content had a direct positive effect 
on the diversity and abundance of bacteria and fungi. Further 
studies showed that other nutrients such as N and P were the 
major factors influencing bacterial and fungal community struc-
tures in the soil and rhizosphere (Marschner et al., 2004).

Soil water content and temperature

Seasonal cycles and, more importantly, global warming change 
the temperature, CO2 levels, daylight duration, wind, precipi-
tation (rainfall), and/or humidity (Fig. 1). These changes can 
alter biological and chemical processes in living organisms, 
such as photosynthesis in plants, or nutrient recycling in the 
soil (Schuur and Matson, 2001; Borjigidai et al., 2006; Alvarez-
Clare and Mack, 2011). Changes in precipitation, temperature, 
and vegetation as a result of seasonal changes caused shifts in 
the microbial community structure and function (Habekost 
et al., 2008; Bell et al., 2009; Koranda et al., 2013). For ex-
ample, soil moisture had the highest impact on some microbial 
parameters (e.g. community structure, substrate activity) at the 
end of winter and the second highest impact at the end of 
summer (Bell et al., 2009). In addition, other parameters such 
as microbial biomass and fungal substrate activity highly cor-
related with temperature in different seasons (Table 1).

Temperature affects microbial growth and activity, and thus 
can cause shifts in community composition and function 
(Pettersson and Bååth, 2003; Bell et al., 2009). In some cases, 
temperature changes of 3 °C resulted in changes in the abun-
dance of fungal and bacterial communities (Bárcenas-Moreno 
et al., 2009). In contrast, Castro et al. (2010) revealed undetect-
able effects on cyanobacterial abundance or bacterial commu-
nity by a 2–3 °C increase in soil temperature, while altered 
precipitation had significant effects. Taking into account the 
different experimental settings, it is thus unclear which of the 
two—water content or temperature—has a larger effect on 
microbial communities in the soil.

Among a range of climate change drivers (CO2, tempera-
ture, and precipitation), precipitation had the largest effect on 
bacterial and fungal community composition (Johnson et al., 
2012). By testing the effects of wetting events, Castro et al. 
(2010) found that the amount of water added had a much 
greater impact than the irrigation frequency on shaping the 
bacterial and fungal community structures. In another study, 
the abundance and community structure of fungi was un-
affected by extreme precipitation events compared with more 
frequent moderate events, which increased bacterial abundance 
(Frossard et al., 2015). These effects may be due to changes in 
soil pH or availability of nutrients upon precipitation. For ex-
ample, the continental-scale study of Zhang et al. (2019) on 
dryland sites revealed that aridity indirectly affected soil pH 
and organic C content, leading to reduced diversity and abun-
dance of soil bacteria and fungi.

Soil type, texture, and structure

Soil type can be a primary determinant of microbial com-
munities because soils comprise a range of characteristics, 
such as nutrient and water content, cation exchange capacity, 
or texture and structure. A variety of studies have shown that 
the soil type can have a strong influence on the soil micro-
bial communities (Girvan et al., 2003; Maestre et al., 2015), 
as observed in the rhizosphere of grass (Lolium perenne) and 
lettuce (Gelsomino et al., 1999; Singh et al., 2007; Schreiter et 
al., 2014). The soil texture/structure can affect the size and dis-
tribution of particles and pore spaces (Table 1), influencing the 
flow of water and nutrients and, consequently, lead to changes 
in the soil microbial community (Girvan et al., 2003; Lauber et 
al., 2008). Bach et al. (2010) showed that the microbial com-
munity differed between silty clay loam and loamy fine sand 
soil. Chau et al. (2011) observed that soil texture affected bac-
terial species richness but not bacterial diversity. The microbial 
community structure was also significantly affected by par-
ticle size, whereby higher microbial diversity was attributed 
to smaller silt and clay particle size than coarse sand fractions 
(Sessitsch et al., 2001). Moreover, particle size fraction affected 
the bacterial community structure more than the type of or-
ganic soil amendment (Sessitsch et al., 2001).

Soil salinity and drought: abiotic stresses affecting 
microbial communities in plants

Plant microbiome studies showed the complex relationship 
between environmental factors and bacterial community 
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structures, especially in open field conditions, emphasizing the 
possible bias in laboratory experiments due to the absence of 
the variability of environmental changes. Extreme environ-
mental changes or abiotic stresses, especially in light of climate 
change, can cause changes in microbial communities. The soil 
microbiome can be affected by abiotic stresses both directly 
(e.g. survival of drought-, salt- or heat-tolerant taxa) (Martiny 
et al., 2017; Naylor and Coleman-Derr, 2017) or indirectly 
(e.g. through altered soil chemistry or diffusion rates) (Schimel 
et al., 2007; Liptzin et al., 2011). Soil salinity and drought are 
arguably the biggest threats to global food security, and are 
clearly important factors affecting the structure and dynamics 
of soil microbiomes and, in turn, the plant microbiota, espe-
cially root endophytes. Recently, Berens et al. (2019) demon-
strated that salinity treatment, along with leaf age, were crucial 
factors in determining the microbial community composition 
in Arabidopsis leaves. The study also identified a leaf age/devel-
opmental stage-dependent response to biotic and abiotic stress.

A meta-analysis of soil microbial communities revealed that 
the global microbial composition in saline soils is more af-
fected by salinity than by any other abiotic factor (Lozupone 
and Knight, 2007). A significant difference in the endophytic 
microbial community composition was observed in black alder 
(Alnus glutinosa Gaertn.) roots grown in saline soil, with a de-
crease in the bacterial diversity and species richness and even-
ness (Thiem et al., 2018). In date palm (Phoenix dactylifera), the 
endophytic bacterial community in salinity-treated plants con-
tained a higher number of total operational taxonomic units 

(OTUs) and higher species evenness and diversity, compared 
with control plants (Yaish et al., 2016). The root microbiome 
under drought stress conditions is determined by how the 
stress shapes both the host plant and the surrounding soils, 
where the total bacterial biomass is reduced (Hueso et al., 
2012; Alster et al., 2013). Bogino et al. (2013) demonstrated 
that the rhizosphere of alfalfa (Medicago sativa) plants exposed 
to differing water-limiting conditions harbor distinct bacterial 
communities with different abilities to develop biofilms, and 
thus to establish themselves in this microenvironment. A recent 
study on the root microbiome of sorghum (Sorghum bicolor) 
demonstrated that drought causes enrichment of a distinct set 
of roots microbes. The discovery of this drought-induced en-
richment and associated shifts in metabolite exchange between 
the plant and the microbes revealed a potential blueprint for 
manipulating plant microbiomes for improved crop fitness (Xu 
et al., 2018).

Suppressive soil: effects of soil biotic factors on plant 
health and microbial communities

Soil microbiome studies increasingly focus on improving soil 
health, quality, and fertility by promoting growth of benefi-
cial while suppressing pathogenic microbes (Schlatter et al., 
2017). This is particularly evident when discussing suppres-
sive soils, which are soils that possess the ability to limit the 
growth and survival of plant pathogens (Baker and Cook, 
1974). Suppressive soils fall into two general categories: general 

Table 1. Soil factors that are responsible for shaping microbial communities

Factors Summary References

Soil and abiotic factors pH can alter the solubility and availability of nutrients 
influencing microbial diversity and composition with stronger 
influence on bacteria than fungi.

Fierer and Jackson (2006); Lauber et al. (2008); Lauber 
et al. (2009); Shen et al. (2013); Maestre et al. (2015); 
Zhang et al. (2017); Shen et al. (2018)

Soil fertilization (e.g. NPK) and soil amendment (e.g. carbon) 
practices can affect nutrient status and influence bacterial 
and fungal communities in soil; C content is important for 
microbial growth and survival

Marschner et al. (2004); Eilers et al. (2010); Goldfarb et 
al. (2011); Kuramae et al. (2012); Siciliano et al. (2014); 
Maestre et al. (2015); Francioli et al. (2016)

Changes in temperature and water content (or precipitation) 
can affect soil pH and nutrient status, and influence microbial 
community composition and function

Pettersson and Bååth (2003); Habekost et al. (2008); 
Bárcenas-Moreno et al. (2009); Bell et al. (2009); Castro 
et al. (2010); Koranda et al. (2013); Zhang et al. (2019)

Soil type, texture, structure, and particle size can affect the 
flow and status of nutrients and water, and influence micro-
bial communities in soil and rhizosphere

Gelsomino et al. (1999); Sessitsch et al. (2001); Girvan 
et al. (2003); Singh et al. (2007); Bach et al. (2010); 
Chau et al. (2011); Schreiter et al. (2014)

Soil salinity can affect soil and plant-associated microbial 
communities

Lozupone and Knight (2007); Yaish et al. (2016); Thiem 
et al. (2018); Berens et al. (2019)

Drought can affect soil and plant-associated microbial com-
munities

Bachar et al. (2010); Hueso et al. (2012); Alster et al. 
(2013); Bogino et al. (2013); Naylor and Coleman-Derr 
(2018); Xu et al. (2018)

Soil and biotic factors Distinct microbial communities are correlated with the pres-
ence or occurrence of plant pathogens or diseases; sup-
pressive soils could contain more microbes with antagonistic 
activity; initial differences in the soil microbiome composition 
can affect plant health

Sanguin et al. (2009); Mendes et al. (2011); Meng et 
al. (2012); Rosenzweig et al. (2012); Siegel-Hertz et al. 
(2018); Wei et al. (2019); Zhou et al. (2019)

Agricultural management practices and land use can cause 
changes in microbial community composition and diversity

Steenwerth et al. (2002); Garbeva et al. (2006); Lauber 
et al. (2008); Postma et al. (2008); Reeve et al. (2010); 
Carbonetto et al. (2014); Peralta et al. (2018); Sun et al. 
(2018); Le Guillou et al. (2019)
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disease suppression is attributed to the soil’s total microbiome 
antagonistic activity against a broad range of soil-borne patho-
gens, while specific suppression is attributed to an individual 
taxon or group of microbes and is transferrable by adding 
pure cultures or small amounts of suppressive soil to condu-
cive (non-suppressive) soil (Weller et al., 2002; Schlatter et al., 
2017). The microbial community composition and diversity in 
soil is important for pathogen suppression, as demonstrated by 
the lower suppression rates of sterilized or semi-sterilized soil 
compared with unsterile soil (Garbeva et al., 2006; Mendes et 
al., 2011; Meng et al., 2012; Svenningsen et al., 2018). Studies 
have revealed changes in the rhizosphere microbial community 
upon pathogen infection and identified key taxa that may be 
involved in suppression of plant pathogens or diseases (Mendes 
et al., 2011). A 10 year long wheat (Triticum aestivum) field study 
revealed that the outbreak, decline, and suppression of the take-
all disease, caused by the pathogenic fungus Gaeumannomyces 
graminis var. tritici, was correlated with changes in the rhizo-
sphere bacterial communities (Sanguin et al., 2009). Distinct 
microbial communities also exist in potato (Solanum tuberosum) 
when comparing common scab-conducive soil, caused by 
pathogenic bacteria Streptomyces scabies, with suppressive soil 
(Meng et al., 2012; Rosenzweig et al., 2012).

Meta-barcoding analysis of Fusarium wilt-suppressive and 
conducive soils demonstrated that specific genera of fungi 
were exclusively present, and some bacterial genera were more 
abundant in suppressive soils (Siegel-Hertz et al., 2018). Zhou 
et al. (2019) also observed a higher fungal and bacterial rich-
ness and diversity in Fusarium wilt-conducive than suppressive 
soils. Furthermore, the type of soil pathogen and soil properties 
may also play a role in the suppressive potential. Postma et al. 
(2008) found that, depending on the pathogen, soil suppression 
correlated not only with specific antagonistic microbes but also 
with different soil properties. More importantly, a recent study 
revealed that small initial differences in the soil microbiome 
composition can affect plant–pathogen interactions and, there-
fore, plant health under natural field conditions (Wei et al., 
2019).

Additionally, agricultural management practices can affect 
the suppressive potential of soils, primarily due to changes in 

the microbial communities. Garbeva et al. (2006) revealed a 
correlation between agricultural management practices on soil 
microbial community structure and its effect on soil suppres-
sion of the pathogenic fungus Rhizoctonia solani AG3. Based 
on crop rotational diversity practices, Peralta et al. (2018) sug-
gested that microbial community composition might be more 
crucial than microbial diversity in disease suppression.

Plant-associated microbial communities

Since plant phenotype and fitness depend on the associated 
microbiome, plants try to recruit the best microbial commu-
nity under given conditions (e.g. nutrient availability, patho-
genic infection, and abiotic stresses). These factors not only 
affect the plant microbiota but also shape the soil microbiome 
and, more specifically, the rhizosphere. Hereafter, we will de-
scribe different plant-related factors responsible for defining 
the selected microbial communities (bacteria and fungi) in 
different plant organs (e.g. seeds, roots, or shoots) (Fig. 1; 
Table 2).

Plant seeds harbor their own microbial community

Seed coating is an efficient tool to deliver beneficial mi-
crobes for agricultural applications (Rocha et al., 2019). 
Interestingly, the seeds of native plants harbor a more spe-
cific microbiota than that reported for crop plants, allowing 
plant populations to survive, persist, and germinate under 
harsh natural conditions (Fenner et al., 2005; Wassermann et 
al., 2019). Different studies have investigated the dynamics 
of the seed microbiota during germination and emergence. 
Eight plant genotypes mostly affiliated to Brassicaceae were 
evaluated at three physiological stages: seed, germinating 
seed, and seedling states (Barret et al., 2015). Similar to 
bacterial and fungal taxa associated with the rhizosphere 
and the phyllosphere of various plant species (Toju et al., 
2019), the seed microbiota was shown to be composed of 
three major bacterial phyla, Actinobacteria, Firmicutes, and 
Proteobacteria, and two fungal classes, the Dothideomycetes 

Table 2. Plant factors that are responsible for shaping microbial communities

Factors Summary References

Plant factors Host genotype dictates the development of plant 
phenotypes and influences the microbial commu-
nity composition of the rhizosphere, roots, leaves, 
and seeds

Adams and Kloepper (2002); Lindow and Brandl (2003); Fenner et 
al. (2005); Berg and Smalla (2009); Delmotte et al. (2009); Aira et al. 
(2010); Berendsen et al. (2012); Knief et al. (2012); Bálint et al. (2013); 
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and Tremellomycetes (Barret et al., 2015). This suggests that 
the seeds might serve as a microbial bank for other plant com-
partments (van Overbeek et al., 2011) where the plants can 
select for beneficial microbes, which explains the high con-
tent of β-Proteobacteria, γ-Proteobacteria, and Firmicutes 
to suppress diseases (Berendsen et al., 2012). Indeed, bac-
terial endophytes of maize and rice (Oryza sativa) seeds were 
also found in the root endosphere and rhizosphere of these 
plants (Johnston-Monje and Raizada, 2011; Hardoim et al., 
2012). Notably, Wassermann et al. (2019) conducted a study 
on seeds of eight native alpine plant species and highlighted 
the importance of the plant genotype as the main driver of 
the seed microbial community composition and diversity.

Plant genotype determines microbiome composition

In the past 20 years, evidence has accumulated that plant 
genotypes dictate the development of plant phenotypes and 
influence the microbial community composition of roots, 
leaves, and seeds (Table 2) (Adams and Kloepper, 2002; Bálint 
et al., 2013; Sapkota et al., 2015; Müller et al., 2016; Wagner 
et al., 2016; Adam et al., 2018). For example, Delmotte et 
al. (2009) investigated the microbiome of different plants of 
the Fabaceae and Brassicaceae families (e.g. clover, soybean, 
and Arabidopsis) and highlighted that, despite the ~130 mil-
lion years of evolutionary divergence between the families 
(Hyung et al., 2014; Johnston-Monje et al., 2016), ~70% of 
the phyllosphere microbiota were conserved. This indicates 
the presence of a large core microbiome with minor host-
specific functions of the microbiota. Balint-Kurti et al. (2010) 
revealed consistent differences among maize genotypes in the 
diversity of the epiphytic microbial population and identified 
UV-B-specific loci that genetically correlated with resistance 
to fungal pathogen infection. The microbes inhabiting the 
phyllosphere and rhizosphere are affected by the plant spe-
cies to different degrees due to different plant phenotypic 
characteristics (Delmotte et al., 2009; Jones et al., 2019). 
The phyllosphere microbial community is affected by time 
(day/night) and exclusively by the plant genotype because 
the compounds secreted in the leaves are limited (Lindow 
and Brandl, 2003). Sapkota et al. (2015) observed that plant 
genotype at the species level of cereals (wheat, barley, oat, 
rye, and triticale) provides 43% of the variance in the total 
fungal community. By investigating the phyllosphere of five 
dominant temperate forest tree species (Acer saccharum, Acer 
rubrum, Betula papyrifera, Abies balsamea, and Picea glauca), 
Laforest-Lapointe et al. (2016) demonstrated that host spe-
cies features, such as wood density and leaf N content, drive 
the bacterial community structure. Similar results were found 
for fungal communities in European beech (Fagus sylvatica), 
which were more impacted by leaf physiological character-
istics (Unterseher et al., 2016). Moreover, Li et al. (2018) 
showed that the leaf and root microbiomes of spruce trees 
grown in a common garden are affected by host genotype, 
with differences found between the phyllosphere and soil and 
between bacteria and fungi. Therefore, phenotypic character-
istics of the host plant shape the composition of its associated 
microbial community (Li et al., 2018; Jones et al., 2019).

Root exudates and their interactions with root-
associated microbes

Interactions between plants and their microbial communities 
are not unidirectional. The host plant provides novel metabolic 
capabilities to its microbial associates, leading to the adaptation 
of niche-specialized inhabitants that can have either a posi-
tive (mutualist), neutral (commensal), or deleterious (pathogen) 
impact on plant fitness (Thrall et al., 2007). The rhizosphere is 
a complex habitat that is surrounded by a soil matrix where 
the plant roots constantly produce and secrete a diverse suite of 
metabolites and compounds called root exudates (Knief et al., 
2012; Zhalnina et al., 2018). Root exudates are commonly pro-
duced with great variation in the chemical composition which 
is under genetic control of the host (Inderjit and Weston, 2003; 
Canarini et al., 2019). Root exudates are mainly comprised of 
primary metabolites such as sugars, amino acids, and carboxylic 
acids, as well as a diverse set of secondary metabolites (Cesco et 
al., 2010; Hu et al., 2018).

Root exudates, which represent up to 20% and 15% of fixed 
C and N, respectively (Haichar et al., 2016; Venturi and Keel, 
2016), enrich the soil and rhizosphere and lead to changes in 
the microbial communities. The rhizosphere community is 
influenced by both the soil and plant genotype due to dif-
ferences in root exudate quality and quantity secreted in the 
soil (Berg and Smalla, 2009; Aira et al., 2010; Gomes et al., 
2018). Typically, the quality and quantity are determined by 
the size, age, and physiological condition of the plant root 
system. Abiotic stresses can also affect plant root exudates and 
the microbial community, as shown for citrus plants under sal-
inity and temperature stress (Vives-Peris et al., 2018). Exudates 
from Macrophylla salt-stressed plants were able to promote the 
growth of Pseudomonas putida KT2440 and Novosphingobium 
sp. HR1a, whereas exudates from Carrizo salt-stressed plants 
did not promote bacterial growth. Moreover, in the presence 
of exudates from Macrophylla salt-stressed plants, growth pro-
motion by Novosphingobium sp. HR1a was higher than with P. 
putida KT2440, which could be due to the higher tolerance of 
this strain to salinity stress (Vives-Peris et al., 2018).

Root exudates can also play a role as signaling molecules, at-
tractants, or stimulants in establishing a symbiotic relationships 
with different microbes and, additionally, function in defense 
against pathogens (Perret et al., 2000; Kobayashi et al., 2004; 
Cesco et al., 2010; Baetz and Martinoia, 2014). The growth 
of soil microbes is usually C limited and the high amounts of 
sugars, amino acids, and organic acids that plants deposit into 
the rhizosphere represent a valuable nutrition source for mi-
crobial growth (Bais et al., 2006). However, depositing C will 
attract both pathogenic and beneficial microbes, suggesting 
that plants not only evolved recognition mechanisms to dis-
criminate between beneficial and pathogenic microorganisms 
(Passera et al., 2019), but can also change root exudate com-
position to serve such selective mechanisms. Clear examples are 
the secretion of communication molecules/attractants such as 
flavonoids, strigolactones (SLs), or terpenoids (Bais et al., 2006; 
Venturi and Fuqua, 2013; Massalha et al., 2017). Flavonoids 
(2-phenyl-1,4-benzopyrone derivatives) are the most im-
portant molecules from the symbiotic perspective. Although 
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found throughout the plant kingdom, flavonoids specifically 
trigger the expression of the rhizobial genes (nod, nol, and noe) 
required for nodulation and efficient N2 fixation of different 
legume members (Kobayashi et al., 2004; Zgadzaj et al., 2016; 
Saad et al., 2019). The nodulation capacity varies with fla-
vonoids and rhizobia; and, in some cases, flavonoids may in-
hibit nodulation (Cooper, 2007; Hassan and Mathesius, 2012). 
Interestingly, plant fitness determines exudate quality, as seen 
in non-infected healthy Arabidopsis and rice plants that consti-
tutively produce and release metabolites such as antimicrobial 
diterpene rhizathalene A or momilactone A to protect plants 
against infection (Vaughan et al., 2013).

The role of root exudates in defense responses
Upon pathogen infection, plants produce low molecular 
weight antimicrobial compounds, called phytoalexins, that are 
not detectable in healthy plants (VanEtten et al., 1994). Clear 
evidence for this comes from Fusarium graminearum-infected 
barley roots, where the infected plant induced the production 
of antifungal compounds (Lanoue et al., 2010). Glucosinolates 
are another group of plant metabolites with antimicrobial 
activities that are specifically produced by Brassicaceae. An 
Arabidopsis CYP79A1 transgenic line, which produces ex-
ogenous glucosinolates, altered the bacterial and fungal com-
munities in the rhizosphere and root tissues (Bressan et al., 
2009). The synthetic SL analog GR24 inhibits the growth of 
an array of phytopathogenic fungi when present in the growth 
medium (Dor et al., 2011), indicating that secreted SLs can af-
fect natural enemies directly or indirectly by modulating hor-
monal defense pathways and contribute to below-ground plant 
biotic stress responses (Torres-Vera et al., 2014). Triterpenes are 
another group of plant metabolites that possess antifungal and 
antibacterial activities, suggesting potential roles in shaping 
the plant microbes (Brown et al., 1963; Papadopoulou et al., 
1999; Augustin et al., 2011). Recently, Huang et al. (2019) 
demonstrated that Arabidopsis produces a range of specialized 
triterpenes that direct the assembly and maintenance of an 
Arabidopsis-specific microbiota, enabling it to shape and tailor 
the microbial community within and around its roots for its 
own purposes.

Root exudates shape the rhizosphere microbiota
Plants also use root exudates to alter the root microbial (bac-
terial and fungal) communities and exploit them for their own 
benefits. Maize plants were found to produce and release a mix-
ture of metabolites from the roots, including benzoxazinoids 
(BXs) such as DIMBOA, which influence the composition of 
the root-associated microbiota (Hu et al., 2018; Cotton et al., 
2019). DIMBOA is relatively short lived and is rapidly con-
verted to the more stable MBOA that accumulates in the soil. 
As a result, MBOA triggers changes in the structure of the 
root-associated microbiota in the next plant generation. The 
microbiota-mediated BX-dependent effects on plant growth 
and defense were strongly associated with changes in the bac-
terial, rather than the fungal, rhizosphere community. These 
changes resulted in increased leaf defense, suppression of herbi-
vore growth, and decreased plant growth, and the latter de-
pended on the plant genetic background (Hu et al., 2018).

Stringlis et al. (2018b) provided direct evidence of how a 
specialized root exudate, the antimicrobial coumarin scopoletin, 
can cause changes in the microbial community structure and di-
versity in the rhizosphere. Scopoletin inhibits the fungal patho-
gens Fusarium oxysporum and Verticillium dahliae but not the 
growth-promoting rhizobacteria Pseudomonas simiae WCS417 
and P. capeferrum WCS358. Voges et al. (2019) showed that the 
lack of coumarin biosynthesis in ‘f6′h1’ mutant lines caused a 
shift in the root microbial community specifically under Fe 
deficiency, demonstrating a potential role for Fe-mobilizing 
coumarins in shaping the Arabidopsis root bacterial commu-
nity by inhibiting the proliferation of a relatively abundant 
Pseudomonas species via a redox-mediated mechanism.

Overall, the secretion of the root exudates (genotype) leads 
to chemical changes in the soil composition, soil properties, 
available nutrients (see below), and toxic elements in the rhizo-
sphere (Neumann and Römheld, 2000; Marschner et al., 2004). 
All the above studies suggest that molecules derived from these 
specialized metabolites may play a role in the local adaptation 
of the plant to the soil environment and microbial ecology. 
Therefore, the exudation of bioactive compounds in root ex-
udates probably defines the assembly of the plant-specific root 
and rhizosphere microbial communities for the benefit of the 
plant.

Cycling of nutrients between the soil, plant, and 
associated microbes

Plants are dependent on the growth of soil microbes which pos-
sess the metabolic machinery to depolymerize and mineralize 
organic forms of N, P, K, S, and Fe. In soil, most compounds 
are bound to organic molecules and are, therefore, minimally 
bioavailable for plants. To access these nutrients, plants adopt 
different strategies to interact with their environment for the 
solubilization and acquisition of nutrients (Lambers et al., 
2008; Orwin et al., 2010; Grigulis et al., 2013). These strategies 
strongly influence plant–microbiota interactions due to the 
competition between plants and microorganisms for soil nu-
trients. The impact of plant nutrient resource strategies, plant 
functional traits, and the diversity of active microbiota through 
root exudation was studied extensively in the last decade 
(Guyonnet et al., 2018).

Nitrogen, phosphorus, and potassium (NPK)
The relationships between the plant and soil microbiome are 
governed by the trade-off theory where the plant provides C 
and, in return, can benefit from essential nutrients provided 
or facilitated by microbes, such as N, P, and K. For example, 
different studies highlighted the involvement of N2-fixing mi-
crobes (free-living ‘non-symbiotic’ or mutualistic ‘symbiotic’) 
in promoting plant growth (Vitousek et al., 2002; Graham and 
Vance, 2003; Bahulikar et al., 2014; Gaby and Buckley, 2015). 
Some bacteria and fungi can solubilize inorganic P or min-
eralize organic P (Eida et al., 2017; Nehls and Plassard, 2018). 
Many of these P-mobilizing strains are growth-promoting mi-
crobes which can promote plant growth via a wide variety 
of mechanisms. Thus, it is difficult to correlate P-mobilization 
mechanisms to the observed growth promotion elicited by 
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these strains (Richardson and Simpson, 2011). However, 
under P-deficient conditions, plants respond by shaping the 
root microbial community (Castrillo et al., 2017; Finkel et 
al., 2019), which could enrich P-solubilizing/mobilizing mi-
crobes. Another vital nutrient considered as a key parameter 
of soil fertility and plant growth is K. As described by Sheng 
and He (2006), the inoculation of plants by Bacillus edaphicus 
NBT strains increased the production of citric, oxalic, tartaric, 
succinic, and α-ketogluconic acids, leading to K mobilization 
from K-containing minerals (e.g. mica and biotite) and chela-
tion of silicon.

Iron
Fe is another essential element needed by all living organ-
isms and is considered as a key micronutrient for soil fertility. 
The combination of the low concentration of Fe3+ together 
with high demand from both plants and microbes leads to 
a competition for Fe3+ in the rhizosphere (Guerinot and Yi, 
1994). Bacteria and plants employ different strategies to over-
come Fe limitations. For example, different groups of bacteria 
(e.g. Pseudomonas, Azotobacter, Bacillus, Enterobacter, Serratia, 
Azospirillum, and Rhizobium) produce low molecular weight 
proteins called siderophores with high affinity to chelate Fe 
from the soil (Loper and Buyer, 1991; Glick, 2014). Depending 
on the genotype, plants have adapted different strategies for 
Fe acquisition, such as the secretion of protons (Guerinot and 
Yi, 1994), the plasmalemma transport of Fe2+ by transporters 
(Eide et al., 1996; Vert et al., 2002), and/or the reduction of 
Fe3+ to the more stable Fe2+ by an NADPH-ferric chelate re-
ductase (Yi and Guerinot, 1996). On the other hand, grasses 
can synthesize phytosiderophores to form complexes with Fe3+ 
complexes for uptake by specific transporters (von Wirén et 
al., 2000).

As a part of the adaptive responses to Fe deficiency, plants 
such as Arabidopsis can produce coumarins: active metabol-
ites that change microbial dynamics by limiting the growth 
of a plant pathogenic Pseudomonas strain (Voges et al., 2019). 
Moreover, plant iron homeostasis is not only affected upon 
pathogen infection (Aznar et al., 2015), but also upon root 
colonization by plant growth-promoting rhizobacteria 
(PGPRs) (Zamioudis et al., 2015; Verbon et al., 2017). PGPRs 
are known to trigger induced systemic resistance (ISR) that 
primes plant tissues for enhanced defense against a broad spec-
trum of pathogens (Lugtenberg and Kamilova, 2009). A clear 
connection between ISR and iron homeostasis was demon-
strated by Leeman et al. (1996), where the elicitation of ISR 
against Fusarium wilt in radish (Raphanus sativus) by benefi-
cial Pseudomonas spp. was shown to be more effective under 
low-iron conditions. Siderophores secreted by Pseudomonas 
spp. were subsequently shown to act as elicitors of ISR in 
tomato (Meziane et al., 2005) and rice (De Vleesschauwer et 
al., 2008).

Phytohormones and their roles in shaping plant 
microbiota

Plant hormones (phytohormones) play diverse roles in plant 
physiological processes including mutualistic interactions with 

soil microbiota (Shigenaga and Argueso, 2016). The well-
studied phytohormones are jasmonic acid (JA), salicylic acid 
(SA) (Boatwright and Pajerowska-Mukhtar, 2013), ethylene 
(ET) (Ju et al., 2015), abscisic acid (ABA) (Finkelstein, 2013), 
auxin (Austin et al., 2002), gibberellins (GAs) (Binenbaum et 
al., 2018), cytokinins (CKs) (Jiang et al., 2013), brassinosteroids 
(BRs) (Nolan et al., 2017), and SLs (Zwanenburg et al., 2016).

Auxin
Indole acetic acid (IAA) plays a role in shaping the microbiome 
because it regulates the development of lateral and secondary 
roots, which represent the preferential sites for microbial colon-
ization (Kaldorf and Ludwig-Müller, 2000; Contreras-Cornejo 
et al., 2009; Zamioudis et al., 2013; Stringlis et al., 2018a). 
Applications of various forms of auxins (IAA, indole-3-butyric 
acid, 2,4-dichlorophenoxyacetic acid, and 1-naphthaleneacetic 
acid) promoted the spread of arbuscular mycorrhizal (AM) 
fungi and arbuscular abundance (J. Liu et al., 2016). The auxin 
(IAA)-deficient bushy mutant (Symons et al., 1999) showed 
reduced AM colonization but did not alter AM fungal struc-
tures inside the roots (Foo, 2013). Moreover, the tomato 
auxin-resistant diageotropica (dgt) mutant showed lower AM 
fungal development in both monoxenic and ex vitro conditions 
(Hanlon and Coenen, 2011). On the other hand, different soil 
microbes, either free-living or plant-associated, produce IAA 
themselves. Interestingly, 60% of phyllosphere bacteria and 
80% of epiphytic bacteria can produce IAA (Spaepen et al., 
2007; Kim et al., 2011; Spaepen and Vanderleyden, 2011). The 
synthesis of IAA and its derivatives was reported for Acidovorax, 
Agrobacterium, Arthrobacter, Bacillus, Chryseobacterium, Enterobacter, 
Pseudomonas, Ochrobactrum, Mycobacterium, Methylobacterium, and 
Stenotrophomonas species (Omer et al., 2004; Egamberdieva, 
2009; Egamberdieva et al., 2015; Eida et al., 2018; Tsolakidou 
et al., 2019). This large number of bacterial IAA producers sug-
gests that IAA synthesis might be a trait that contributes to sur-
vival in the plant environment (Kim et al., 2011). This idea is 
supported by several reports of different bacteria: IAA mutants 
of Erwinia herbicola (Brandl and Lindow, 1998; Manulis et al., 
1998) and Pseudomonas savastanoi (Spaepen et al., 2007) showed 
reduced bacterial proliferation on leaves. Together with the 
plant endogenous IAA pool, bacterial auxin stimulates plant 
cell growth and proliferation, as well as plant tolerance to abi-
otic stresses (Panwar et al., 2016; Sorty et al., 2016; Barnawal 
et al., 2017).

Abscisic acid
Among other functions, ABA is a key regulator of abiotic 
stress responses. Therefore, ABA-producing bacteria could be 
selected by plants to promote abiotic stress tolerance. Different 
soil microorganisms can produce ABA, including several 
phytopathogenic fungi, such as Cercospora rosicola, C. cruenta and 
Botrytis cinerea (Zeevaart and Creelman, 1988; Sharon et al., 
2007), or bacteria, such as Azospirillum (Forchetti et al., 2007; 
Cohen et al., 2008). Interestingly, bacteria commonly found in 
the human body, which can live in soil and in water (Proteus 
mirabilis, P. vulgaris, Bacillus megaterium, B. cereus, Klebsiella 
pneumoniae, and Escherichia coli), are also capable of producing 
ABA (Karadeniz et al., 2006).
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Cytokinin
A number of bacteria produce CKs, such as Arthrobacter, 
Bacillus, Azospirillum, Pseudomonas, and Methylobacterium (Naz et 
al., 2009; Jorge et al., 2019). The CK-producing B. subtilis strain 
IB-22 enhances growth of lettuce and wheat, with high col-
onization rates throughout the vegetative period and increased 
wheat productivity (Arkhipova et al., 2006, 2007). Other B. 
subtilis isolates stimulated root biomass of Platycladus orientalis 
by 14% and increased CK levels in leaves by 47% under water 
stress conditions (Liu et al., 2013). Similar increases of shoot 
and root biomass were observed in soybean (Glycine max) in-
oculated with Pseudomonas and Arthrobacter spp. under salinity 
stress (Naz et al., 2009). Pseudomonas aurantiaca TSAU22 and 
P. extremorientalis TSAU6 and TSAU20 enhanced the growth 
of wheat under salinity stress (Egamberdieva, 2009). Moreover, 
different members of the Methylobacterium genus produce high 
levels of CKs and increase the tolerance of plants to abiotic 
stresses (e.g. salt and drought stress) (Knief et al., 2012; Lee et 
al., 2015; Chanratana et al., 2017; Jorge et al., 2019).

Ethylene
A variety of plant processes involve the olefin hydrocarbon 
ET, including nodulation of legumes by rhizobia (Tamimi and 
Timko, 2003) and mycorrhizal root interaction (Gamalero 
et al., 2008). Plants use ET as a regulator of stress responses, 
such as extreme temperatures, water, UV light, and insect and 
nematode damage and wounding, as well as in interactions 
with fungi and bacteria (Abeles et al., 1992). Plant geno-
type, organ, developmental stage, and the associated micro-
biota are major determinants of ET signaling and responses 
(Pierik et al., 2007; Dugardeyn and Van Der Straeten, 2008). 
Interestingly, more than one-third of all cultivable soil bac-
teria can produce ET via different pathways (Nagahama et al., 
1992). Several plant-associated microbes can increase plant ET 
levels by 1-aminocyclopropane-1-carboxylate (ACC) synthase 
(ACS) activity (Suganuma et al., 1995) or produce intermedi-
ates, such as KMBA, that cav n be converted to ET in planta 
(de Zélicourt et al., 2018). Plant-associated microbes can also 
decrease ET levels by producing ACC deaminase, an enzyme 
responsible for the cleavage of the plant ET precursor ACC 
into ammonia and α-ketobutyrate. Engineering bacteria with 
ACC deaminase activity promoted resistance of banana (Musa 
spp.) to Fusarium (Liu et al., 2019). ACC deaminase-containing 
bacteria are relatively common in soil, possibly providing these 
bacteria with a competitive advantage over other rhizosphere 
microorganisms by using ACC as an N source (Glick, 2014).

Jasmonic acid
JA and its volatile methyl ester, MeJA, play crucial roles in 
plant defense responses against insects and microbial pathogens 
(Bari and Jones, 2009). Interestingly, JAs also act as signaling 
molecules that facilitate interactions between plants and root-
associated microorganisms (Pieterse et al., 2009). Current 
evidence indicates that JA influences the composition of the 
Arabidopsis root-associated microbiome (Carvalhais et al., 
2017). Induction of JA signaling increased the relative abun-
dance of bacterial populations closely related to taxa that are 
reported to suppress phytopathogens and insects (Schlaeppi 

and Bulgarelli, 2015). Interestingly, the host genotype deter-
mines the effect of JA signaling. For example, JA signaling in 
rice restricts endophytic colonization by certain N2-fixing 
Azoarcus bacterial strains when the host–bacterium inter-
action is less compatible (Miché et al., 2006) and suppresses 
nodule formation in the legume Lotus japonicus (Nakagawa and 
Kawaguchi, 2006). On the other hand, JA signaling does not 
impact the structure of the phyllosphere and root microbiomes 
of wild tobacco (Nicotiana attenuate) (Santhanam et al., 2014). 
Carvalhais et al. (2013) reported that JA signaling pathways 
affected the composition of root exudates and rhizosphere 
bacterial and archaeal communities, and these changes signifi-
cantly correlated with each other. D cFurthermore, a correl-
ation between root exudate content and the abundance of the 
bacterial communities was reported by Liu et al. (2017). The 
authors demonstrated that activation of JA signaling in wheat 
reduced the diversity and changed the composition of bacterial 
communities in the root endosphere but not in the shoots or 
rhizosphere. All this evidence suggests that the changes in root 
endophyte communities in response to JA signaling may reflect 
a co-evolved mechanism by which plants recruit microbial 
symbionts that enhance host biotic stress tolerance (Carvalhais 
et al., 2015, 2017).

Salicylic acid
SA mediates plant defense responses against pathogens (Loake 
and Grant, 2007; An and Mou, 2014) and establishes beneficial 
symbioses in legume–rhizobia interactions (Martinez-Abarca 
et al., 1998). SA has also been shown to modulate the compos-
ition of the root microbiota at the family level in Arabidopsis 
(Lebeis et al., 2015). Depending on the host plant species, dif-
ferent responses of the microbial community were reported 
for SA. For example, activation of the SA signaling pathway 
in wheat had no significant impact on the diversity of root-
associated microbiomes (Liu et al., 2018). A comparison of the 
bacterial root microbiome of wild-type Arabidopsis with a set 
of mutants lacking biosynthesis and/or signaling of SA, JA, and 
ET (Lebeis et al., 2015) demonstrated clear microbial com-
positional changes of the root microbiome. Moreover, it was 
shown that certain bacterial endophytic families may require 
SA-related processes to colonize the root system. Exogenous 
application of SA altered the microbial community profile 
composition in both bulk soil and endophytic compartment 
samples, indicating SA-mediated selection for microbial fam-
ilies. Moreover, different bacterial strains can use SA in dif-
ferent ways, whether as a growth signal or as a C source. Thus, 
SA may influence the microbial community structure of the 
root by ‘gating’ bacterial taxa via a homeostatic control of im-
mune system outputs (Lebeis et al., 2015).

The plant immune system during beneficial microbe 
interactions

The plant immune system is a prime microbial target to es-
tablish beneficial or pathogenic interactions. Plants can detect 
both beneficial and pathogenic microbes via pattern recogni-
tion receptors that bind microbe-associated molecular patterns 
(MAMPs), such as chitin for fungi or flagellin for bacteria, 
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triggering a basal defense system to halt the growth of most 
microbes. This defense mechanism is known as MAMP-
triggered immunity (MTI) (Boller and Felix, 2009). Some 
microbes secrete effector proteins to suppress MTI, allowing 
successful plant infection via effector-triggered susceptibility 
(ETS). Another plant defense system relies on plant resistance 
proteins that can recognize microbial effector proteins to ac-
tivate effector-triggered immunity (ETI). ETI activates local 
and systemic responses, such as the SA signaling and expres-
sion of pathogen-related (PR) proteins. Activation of systemic 
acquired resistance (SAR) confers a l ong-lasting protection 
against a wide variety of pathogens (Glazebrook, 2005).

Rhizobial PGPRs: manipulation of the host immune 
system
Beneficial microbes evolved different strategies to modulate 
the plant immune system for beneficial association/symbi-
osis. In legumes, rhizobia evolved different mechanisms to 
avoid pathogen recognition (Cao et al., 2017). For example, 
rhizobial flagellin appears to lack the flg22 epitope required for 
flagellin sensing-2 (FLS2)-mediated MAMP activity (Lopez-
Gomez et al., 2012). In contrast to pathogens, the identified 
rhizobial MAMPs, including flagellin, lipopolysaccharides, 
peptidoglycans, and K-antigen-type polysaccharides, ap-
pear to lack MAMP activity and do not trigger MTI in their 
hosts (Lopez-Gomez et al., 2012). However, rhizobia induce 
MTI in the early stages of the infection process in legume 
roots (Libault et al., 2010). Similar changes in defense-related 
gene expression patterns were also reported in two other leg-
umes (i.e. L. japonicus and Medicago truncatula) when inocu-
lated with Rhizobia species (Stacey et al., 2006; Jones et al., 
2008). For successful invasion and nodule formation, rhizobia 
can also modulate plant SA levels. Interestingly, when alfalfa 
plants were inoculated with a non-compatible rhizobium 
strain, the plants showed increased levels of endogenous SA. 
However, no changes of SA levels were detected upon inocu-
lation with a compatible rhizobium strain (Martinez-Abarca 
et al., 1998). Similar results were obtained using a Nod factor 
synthesis-impaired mutant, indicating the role of Nod fac-
tors (host-determined compatibility) in suppressing MTI and 
SA-triggered responses (Liang et al., 2013).

Similar to pathogens, rhizobium strains manipulate the plant 
immune system by using effector proteins secreted via type 3 
secretion systems (T3SSs), collectively named Nodulation outer 
protein ‘Nops’ (Marie et al., 2003; Saad et al., 2005; Songwattana 
et al., 2017). In Sinorhizobium fredii strain NGR234, NopL acts 
as a virulence factor when ectopically expressed in tobacco 
plants, down-regulating virus-induced PR protein accumula-
tion (Bartsev et al., 2004). Similar to NopL, NopM is involved 
in the inhibition of plant immunity through misregulation 
of host mitogen-activated protein kinase (MAPK) activation 
and by inhibiting reactive oxygen species (ROS) production 
(Bartsev et al., 2004; Xin et al., 2012). Another effector protein, 
NopT, induces immune responses and cell death, suggesting the 
presence of a cognate resistance protein (Dai et al., 2008). The 
same is likely to be true for the rhizobial effector NopP, as nopP 
mutants in NGR234 showed enhanced nodule formation and 
lower Pathogenesis-Related 1 (PR1) gene expression when 

inoculated in soybean (Skorpil et al., 2005; López-Baena et 
al., 2009). T3SS effector suppression of MTI responses is most 
probably superimposed on the dominant suppressive functions 
of exopolysaccharides (EPSs) and Nod factors (Zamioudis and 
Pieterse, 2012).

Strategies employed by non-rhizobia PGPRs
Non-rhizobial PGPRs also evolved different strategies to over-
come the plant immune system. The presence of T3SSs was 
also reported in a number of plant-associated PGPR (non-
rhizobia) strains including different species of Pseudomonas with 
a potential to synthesize and deliver effector proteins (Loper et 
al., 2012). Pseudomonas fluorescens strains SBW25 and Q8r1-96 
have a complete T3SS machinery, and SBW25 secretes multiple 
effectors including members of the AvrE family (e.g. RopE) 
(Preston et al., 2001), while Q8r1-96 secretes RopAA of the 
HopAA1-1 effector family. All the T3SS effectors can suppress 
typical innate immune responses when ectopically expressed 
in tobacco (Nicotiana benthamiana) (Mavrodi et al., 2011). The 
supramolecular structure of the T3SS in P. fluorescens strain 2P24 
was resolved and shown to have retained the ability to secrete 
effector proteins (P. Liu et al., 2016). The presence of T3SS and 
potential effector proteins of other beneficial Pseudomonas spp. 
(e.g. P. simiae WCS417 and P. defensor WCS374) was reported 
by Stringlis et al. (2019). Effector delivery via T3SS may be one 
mechanism by which PGPRs can either assist in the suppres-
sion of MTI responses or manipulate certain host metabolic 
processes (Zamioudis and Pieterse, 2012).

PGPRs can activate ISR, which involves both JA and ET 
signaling pathways, leading to the expression of defense-related 
genes. Both SAR and ISR are activated for different responses, 
and, although ISR-mediated protection is less effective, SAR 
and ISR can also work together to provide the best protec-
tion and resistance against pathogens (van Wees et al., 2000). 
Induction of ISR against a broad range of pathogens through 
activation of SA-, JA-, or ET-responsive defense-related genes 
in plants w shown for Bacillus spp., Serratia liquefaciens, Penicillium 
spp., and Trichoderma spp. (Djonović et al., 2006; Hossain et al., 
2007; Ongena et al., 2007). In Arabidopsis, the activation of 
ISR in roots by Pseudomonas simiae WCS417r (PGPR) is not 
accompanied by SA-responsive PR protein gene expression, 
indicating that WCS417r-mediated ISR functions independ-
ently of SA (Pieterse et al., 1996). WCS417 is able to sup-
press flagellin-triggered MTI responses in Arabidopsis roots 
via apoplastic secretion of low molecular weight molecules 
(Millet et al., 2010; Stringlis et al., 2018a). By using large-scale 
transcriptomic analysis and reverse genetics approaches, several 
components, such as MYB72, β-glucosidase U42 (BGLU42), 
and MYC2, were shown to be involved in rhizobacteria-
mediated ISR (Van der Ent et al., 2009; Zamioudis et al., 
2014). Recently, it was shown that the root-specific transcrip-
tion factor MYB72 plays an important role in rhizobacteria-
induced secretion of coumarins that shape the assembly of 
the microbiome in the rhizosphere, potentially optimizing 
the association with ISR-inducing rhizobacteria (Stringlis et 
al., 2018b). Other strategies employed by different PGPRs 
to suppress the root immune system were reported by Yu et 
al. (2019). For example, P. capeferrum WCS358 and P. simiae 
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WCS417 quench local Arabidopsis root immune responses by 
lowering the environmental pH via bacterial gluconic acid (Yu 
et al., 2019).

Another strategy to modulate the plant immune system by 
PGPRs is phenotypic variation, where bacteria switch between 
different morphologies (flagella, lipopolysaccharides, pigmen-
tation, etc.) or change their genetic make-up (Davidson and 
Surette, 2008; Wisniewski-Dyé and Vial, 2008). A clear example 
of such a process was observed with P. brassicacearum NFM421 
(Achouak et al., 2004), which was isolated as a major root-
colonizing population from Arabidopsis. NFM421 showed 
morphological phase variation during root colonization of 
Arabidopsis, resulting in different colony appearances on agar 
surfaces. Phase II cells localized to the surface of young roots 
and root tips, whereas phase I cells localized to root basal parts. 
The ability of phase II cells to spread and colonize new sites 
on the root surface correlated with the overproduction of 
flagellin. Phenotypic variation on plant roots is likely to be a 
colonization strategy that may explain the high colonization 
power of P. brassicacearum (Achouak et al., 2004) which, simi-
larly to animal pathogens, employs phase variation to avoid de-
tection by the immune system (Kingsley and Bäumler, 2000). 
Phase variation could also be a strategy of PGPRs to prime the 
plant immune system. The idea of priming could be explained 
by the plant–microbiota interaction, where plants discriminate 
friend from foe and respond by either ignoring, supporting, 
or eliminating microbes. Furthermore, the response pattern 
to non-pathogenic bacteria can be determined by the plant 
genotype (Ofek-Lalzar et al., 2014) and can differ across acces-
sions in their recruitment of P. fluorescens (Haney et al., 2015). 
All these factors must be considered when studying plant-
associated microbial communities and selecting individuals for 
inoculants.

Synthetic holobiont communities

Recent culture-independent analyses and culture collections 
have paved the way for developing artificially constructed 
communities, called synthetic communities (SynComs), for 
studying plant–microbe interactions and promoting plant 
growth and health (Lundberg et al., 2012; Bulgarelli et al., 
2013; Bodenhausen et al., 2014; Bai et al., 2015; Helfrich et al., 
2018; Carlström et al., 2019). SynComs can be assembled by ra-
tional bottom-up principles by co-culturing several individual 
microbes. For example, using a culture-dependent collection 
from sugarcane (Saccharum sp.), Armanhi et al. (2018) designed 
a SynCom comprised of highly abundant bacterial groups 
and successfully exploited the SynCom for promoting plant 
growth (increased biomass) in maize. By genome sequencing 
and comparative genomic analysis of this SynCom, coupled 
with colonization experiments, de Souza et al. (2019) found 
that functions related to nutrient acquisition were enriched 
in robust colonizers. Lebeis et al. (2015) revealed the import-
ance of SA in shaping the root microbiota. Durán et al. (2018) 
demonstrated the importance of bacterial root commensals 
for Arabidopsis survival and biocontrol against filamentous 
eukaryotes and the importance of bacteria–fungi–oomycete 

consortia for plant growth promotion. Tsolakidou et al. (2019) 
used tomato rhizosphere bacteria for designing SynComs that 
were able to promote tomato growth and suppress Fusarium 
wilt symptoms. Using a bacterial SynCom composed of 
185 members, Finkel et al. (2019) showed that excluding 
Bulkholderia isolates from the SynCom resulted in the accu-
mulation of higher phosphate shoot levels in plants under P 
starvation compared with the full SynCom. Finally, drop-out 
and late introduction experiments using a SynCom made up 
of 62 leaf bacterial strains by Carlström et al. (2019) revealed 
that established microbiota are subject to change by late col-
onizers. The authors also showed that keystone taxa could play 
important roles in shaping the community structure, especially 
of strains that are present at very low relative abundance.

It is important to note that in previously mentioned experi-
ments, the assembly of SynComs was performed by choosing 
either the most abundant taxa or whole collections based on 
what was cultured. However, we suggest that the selection 
should be based on the functional traits and abilities of each 
SynCom member (e.g. hormone production/modulation, nu-
trient solubilization, volatile production, colonization abilities, 
and production of antimicrobial compounds) (Fig. 1). In this 
way, unique traits of each member can complement each other. 
Furthermore, functional redundancy of SynCom members can 
increase the resilience of the inoculants, especially in a com-
plex field system. It is also crucial to determine if the SynCom 
members are compatible with each other or with the plant and 
environment.

Desert plants and endophytic bacteria: a model 
approach for application of microbial inoculants

Hyper-arid deserts and semi-arid grasslands represent two of 
the harshest terrestrial environments and occupy >20% of the 
land surface of Earth. Agriculture in these areas faces many chal-
lenges, especially considering climate change-driven increases 
in temperature and aridity and the detrimental effects of abiotic 
stresses on crop productivity (Boyer, 1982; Bray et al., 2000). 
Here, we propose that microbial stimulants, whether single 
isolates or SynComs, should be selected on the basis of their 
target environment (e.g. bacteria isolated from salinity-stressed 
environments to promote salinity stress tolerance in plants). For 
example, pioneer desert plants or crops grown in semi-arid 
conditions could serve as a target source for isolating bacterial 
inoculants or SynComs, which can be exploited for semi-arid 
agriculture to increase the yield of cash crops (Marasco et al., 
2012; Eida et al., 2018). The rhizosphere of drought-sensitive 
pepper (Capsicum annuum), cultivated in the North-Western 
desert region of Egypt, was enriched in PGPRs with growth-
promoting abilities on pepper under drought stress (Marasco 
et al., 2012). Daur et al. (2018) and de Zélicourt et al. (2018) 
showed that bacterial strains isolated from the rhizosphere and 
endosphere of desert plants, respectively, in Saudi Arabia were 
able to boost the yield of alfalfa plants under desert agricultural 
conditions. The endophytic bacterium Enterobacter sp. SA187 
from one of these collections survives under abiotic stresses 
and has PGPR traits (Andrés-Barrao et al., 2017). Application 
of SA187 was successful in field trials with alfalfa using low and 
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high saline irrigation under desert conditions (de Zélicourt 
et al., 2018). The success of transferring beneficial microbe-
induced abiotic stress tolerance from the lab to the field was 
probably because the field trials were performed in a similar 
environment to that from which the bacteria were isolated.

In an effort to achieve sustainable agriculture on semi-arid 
land, the DARWIN21 project (http://www.darwin21.org/) 
provides a database of bacterial strains isolated from pioneer 
desert plants native to the Middle East deserts (e.g. Jordan, 
Saudi Arabia, and Pakistan). Specific strains showed a great po-
tential for desert agriculture (Bang et al., 2018; de Zélicourt et 
al., 2018; Bokhari et al., 2019), and draft genome sequences of 
some of these bacterial isolates have been released (Lafi et al., 
2016a, b, c, 2017a, b, c, d), in addition to complete genome se-
quence analyses (Andrés-Barrao et al., 2017; Eida et al., 2020). 
We suggest that root-associated microbiota isolated from plants 
living in extreme conditions, possibly due to evolutionary se-
lection, are ideal for obtaining plant growth-promoting mi-
crobes with traits for plant growth and promotion of abiotic or 
biotic stress tolerance.

Limitations of microbial community 
experiments and their applications in 
agriculture

Plant beneficial microbes become increasingly important for 
application in agriculture, primarily due to the significant ef-
fects of indigenous microbial communities on plant growth 
and health and the possibility of engineering microbiomes 
to control plant traits and produce antimicrobial compounds 
(Mueller and Sachs, 2015; Gopal and Gupta, 2016; Helfrich et 
al., 2018; Herrera Paredes et al., 2018). However, to understand 
the molecular and ecological functions of individual members 
in host-associated microbiomes is a major scientific challenge. 
This is due to the high complexity and genetic diversity at the 
species level in microbial communities, including the changing 
abiotic and biotic factors that dramatically structure microbial 
communities and the limitations in culturability of many mi-
crobes and in nucleic acid-based ‘omic’ approaches (Curtis et 
al., 2002; Morales and Holben, 2011). Furthermore, the lack of 
both systematic and comprehensive microbial culture collec-
tions for reconstruction experiments and model organisms for 
understanding plant–microbe interactions limits the progress 
in this field.

Culture-dependent community analysis and culture 
collections

Many studies demonstrate the limitations of culture-dependent 
community analysis when compared with culture-independent 
approaches. Two main problems arise when comparing these 
two methods: culturability and presence of rare taxa. Only a 
small fraction of the bacterial community can be cultured and 
those microbes often occur at very low abundance (Sogin et al., 
2006; Pereira et al., 2011; Yashiro et al., 2011; Shade et al., 2012; 
Lee et al., 2016; Eida et al., 2018). The detection of rare species 
in culture-independent approaches depends on the sequencing 

technology or, more specifically, the sequencing depth and 
quality, the amplicon size, and primer pairs (Hiergeist et al., 
2015; Beckers et al., 2016). Furthermore, DNA extraction and 
marker gene sequencing often do not discriminate between 
intracellular DNA from intact cells and extracellular DNA 
from lysed or dead cells (Nielsen et al., 2007). Challenges in 
culturability arise due to several reasons: (i) different species 
require different growth media and/or fastidious growth con-
ditions; (ii) some microbes are obligate endophytes and need a 
host to survive; (iii) fast-growing or antagonistic microbes can 
constrain or inhibit growth of slow-growing strains; and (iv) 
growth or dominance of some species relies on the presence of 
others (Vartoukian et al., 2010; Yashiro et al., 2011; Niu et al., 
2017; Sarhan et al., 2019).

Microbial community studies under natural, field, and 
laboratory settings

There are also other limitations in understanding community 
changes under natural or field settings. First, natural or field 
settings contain multiple interdependent factors that cannot be 
controlled. The soil properties, biological components, and cli-
mate all converge, giving rise to a complex environment where 
a certain microbial community structure is formed and where 
the root microbiota’s function could be affected (Fig. 1). Any 
change in one factor could affect all others, leading to false 
correlations as to which determinant factor caused changes in 
the community. For example, Bárcenas-Moreno et al. (2009) 
reasoned that changing soil pH would introduce changes in 
several other factors, making it difficult to separate pH from 
the other effects on soil. Often, comparing one factor (e.g. soil 
pH) from different natural soils can introduce further prob-
lems due to the presence of other factors (e.g. soil nutrients) 
which may play important roles in shaping the microbial com-
munity. Experimenting on microbial communities using single 
factors is only possible under laboratory conditions allowing 
an understanding of how each component of the soil envir-
onment plays a role in changing the microbial communities.

Technical aspects of community experiments

The sampling method, such as taking soil samples from dif-
ferent depths, can also lead to variable conclusions. For ex-
ample, the bacterial and fungal communities differ depending 
on soil depth (topsoil versus subsoil) over long-term fertiliza-
tion studies (Gu et al., 2017). Many studies have shown that the 
microbial diversity typically decreases with soil depth, probably 
owing to the decreased exposure to fertilizers from topsoil to 
subsoil (Li et al., 2014; Feng et al., 2019). Sampling of bulk soil 
can introduce high variability and, therefore, it is important 
to take into consideration sampling strategies to account for 
this variability (Ogram et al., 2007). Similarly, sampling plant 
tissue (e.g. leaves) of different age or developmental stage could 
introduce variability (Fig. 1).

The efficiency of genomic DNA extraction and the 
number of 16S rRNA copies per cell can vary depending 
on the bacteria (Frostegård et al., 1999; Klappenbach et al., 
2000; Shrestha et al., 2007; Ketchum et al., 2018). Therefore, 

http://www.darwin21.org/
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obtaining accurate abundances of each bacterial strain without 
knowing the number of 16S rRNA copies within their gen-
omes is an additional limitation. Furthermore, contamination 
of samples, whether during sampling or during library prep-
aration, can give rise to sequences not representative of the 
reality (Tanner et al., 1998). Finally, human factors such as agri-
cultural management practices and land use can also affect mi-
crobial communities and soil health, and thus should also be 
considered when performing community experiments (Fig. 1) 
(Steenwerth et al., 2002; Lauber et al., 2008; Reeve et al., 2010; 
Carbonetto et al., 2014; Peralta et al., 2018; Sun et al., 2018; Le 
Guillou et al., 2019).

A roadmap for successful applications of 
plant-associated microbial inoculants

The construction and application of customized inoculants 
serve an important purpose for enhancing sustainable agricul-
ture by increasing crop health and productivity. Microbiome 
studies and application of SynComs would greatly advance 
our knowledge of plant–microbe interactions when com-
plemented with efforts to study and develop model systems 
from these synthetic communities. As discussed earlier, micro-
bial community structure, function, and composition largely 
depend on the plant host/genotype, soil properties, the indi-
genous microbial community, and abiotic factors (Fig. 1; Tables 
1, 2). Thus, there are many limitations and challenges of ap-
plying microbial inoculants in real, large-scale agricultural field 
settings. Here, we propose a framework in which the farmers, 

scientific community, and agricultural technology companies 
collectively contribute to reach the goal of successful microbial 
inoculant applications (Fig. 2).

The first aspect in this framework is the thorough analysis 
of the target field environment and crop of interest (Fig. 2, left 
panel). Due to the presence of many factors that could affect 
microbial communities, the inoculants have to be customized 
to the target crop, field, environmental conditions, and agricul-
tural management practices. Here, a characterization and solid 
understanding of the climate of the geographical location of 
the field (e.g. temperature, annual precipitation and humidity 
levels, and wind speeds) and soil properties (e.g. pH, nutrient 
status, moisture content, temperature, and microbial com-
munity) is performed. Then, the choice of crop plant and its 
genotype/variety are determined, specifically based on com-
patibility with climate/soil and economic feasibility. This also 
requires analysis of the indigenous seed microbial community 
as it may interfere with the applied inoculants.

The second aspect is a cornerstone in this framework and 
is pivotal for the success of inoculant application over a wide 
geographical context. This step requires an increase in scien-
tific research on plant microbiomes and lab-based experiments 
as well as more culture-dependent isolations. Culturability 
of environmental microbes can be challenging, therefore its 
increase will require clever integration of omics (e.g. meta-
transcriptomics) and novel culturomics techniques (e.g. plant-
based media) (Bomar et al., 2011; Kwak et al., 2018; Sarhan 
et al., 2019). More importantly, characterization of the single 
isolates’ functions, survival abilities, plant growth-promoting 
traits, growth/stress tolerance-promoting mechanisms. and 

Fig. 2. Proposed framework for the successful application of microbial inoculants in agriculture. A framework in which the farmers/farming industry, 
scientific community, and research and agricultural technology companies collectively contribute to reach the goal of successful microbial inoculant 
applications. Microbial inoculants must be customized for the target crop, climate, and soil properties (left panel). An increase in scientific research of 
plant microbiomes, culture collections, and functional characterization of potential microbial inoculants paves the way for meeting farmers’ requirements 
(right panel). The integration of available microbial inoculants with farmers’ requirements and the large-scale production and formulation (especially for 
SynComs) is performed by agricultural technology companies (center panel). Collaboration and constant feedback between all three entities is required 
for the success of field application.
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their compatibility with the desired crop is crucial (Fig. 2, right 
panel). Efforts to achieve this require the increase of whole-
genome sequencing, functional characterization of isolates, 
plant phenotyping, and application of meta-omics (genomics, 
transcriptomics, proteomics, and metabolomics) approaches, in 
addition to developing sequencing technologies, bioinformatics 
models, and tools (Grosskopf and Soyer, 2014; Levy et al., 2018; 
Sergaki et al., 2018; Marco and Abram, 2019). For example, 
Rodrigues et al. (2018) recently developed a user-friendly web 
tool that makes use of the large amounts of microbiome data 
sets to identify the core microbiome associated with different 
habitats. Cross et al. (2019) used a reverse genetics approach 
to isolate and cultivate previously uncultured bacteria. Carper 
et al. (2019, Preprint) developed advanced computational 
programs that could overcome the limitations of amplicon 
sequencing in distinguishing members of a diverse community 
while maintaining desired member attributes.

The formation of systematic culture collections that cover 
a broad range of microbial domains (e.g. bacteria, archaea, and 
eukaryotes) must be considered (Fig. 2, right panel). Although 
most microbiome studies take into account bacteria and fungi, 
other microorganisms are also present in soil and could interact, 
symbiotically or antagonistically, with plants. For example, a re-
cently isolated ammonia-oxidizing archaeon can promote the 
growth of Arabidopsis and induce systemic resistance against 
necrotrophic and biotrophic bacteria (Jung et al., 2016; Song et 
al., 2019). Indeed, archaea are important players in plants (e.g. 
rice), and their community composition responds to changes 
(e.g. plant aging and development) or stresses (e.g. drought) 
(Erkel et al., 2006; Edwards et al., 2018). Interestingly, bacterio-
phages have been recently shown to control soil-borne patho-
gens and thus should not be disregarded as a factor in selecting 
inoculants (Wang et al., 2019). Therefore, future community 
experiments and culture-dependent isolation should not disre-
gard the presence of other microbial players, which could pro-
vide a clearer picture of the complex nature of microbiomes 
and improve their field application.

The third aspect of our proposed framework is the inte-
gration of the field data from farmers and available microbial 
resources from scientific research by agricultural technology 
companies in order to customize a suitable inoculant for the 
prescribed purpose (Fig. 2, center panel). First, the strain(s) 
are selected from the culture collections based on the desired 
traits and function, which are determined by field analysis. 
Large-scale production of the strains is then needed, followed 
by other processes, such as lyophilization for long-term 
storage and transport. For formulation of inoculants, the as-
sembly of SynComs and testing the compatibility and sur-
vival of each SynCom member with each other is necessary. 
The single strain or SynComs inoculants can then be de-
livered for field testing either as lyophilized powder or by 
coating of seeds of the target crop. Finally, the performance 
of the inoculant in a field setting similar to the target field/
environment is evaluated.

Finally, the framework relies on the constant feedback be-
tween all three aspects. Additionally, the increase in soil and 
plant microbiome data and development of models could assist 
in predicting how SynComs respond, adapt, and/or survive in 

the target environment and crop plant. The increase in funding 
for plant–microbiome research and formation of policies for 
the use of microbial inoculants in different countries are also 
needed to be considered for the overall success of achieving 
global food security in the future.
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