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Abstract

Background—Current lung cancer screening guidelines use mean diameter, volume or density 

of the largest lung nodule in the prior computed tomography (CT) or appearance of new nodule to 

determine the timing of the next CT. We aimed at developing a more accurate screening protocol 

by estimating the 3-year lung cancer risk after two screening CTs using deep machine learning 

(ML) of radiologist CT reading and other universally available clinical information.

Methods—A deep machine learning (ML) algorithm was developed from 25,097 participants 

who had received at least two CT screenings up to two years apart in the National Lung Screening 

Trial. Double-blinded validation was performed using 2,294 participants from the Pan-Canadian 

Early Detection of Lung Cancer Study (PanCan). Performance of ML score to inform lung cancer 

incidence was compared with Lung-RADS and volume doubling time using time-dependent ROC 

analysis. Exploratory analysis was performed to identify individuals with aggressive cancers and 

higher mortality rates.

Findings—In the PanCan validation cohort, ML showed excellent discrimination with a 1-, 2- 

and 3-year time-dependent AUC values for cancer diagnosis of 0·968±0·013, 0·946±0·013 and 

0·899±0·017. Although high ML score cohort included only 10% of the PanCan sample, it 

identified 94%, 85%, and 71% of incident and interval lung cancers diagnosed within 1, 2, and 3 

years, respectively, after the second screening CT. Furthermore, individuals with high ML score 

had significantly higher mortality rates (HR=16·07, p<0·001) compared to those with lower risk.

Interpretation—ML tool that recognizes patterns in both temporal and spatial changes as well as 

synergy among changes in nodule and non-nodule features may be used to accurately guide 

clinical management after the next scheduled repeat screening CT.

Keywords

Lung cancer; screening; Lung-RADS; volume doubling time; deep machine learning; ensemble 
learning; time-dependent ROC; survival analysis
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INTRODUCTION

The National Lung Screening Trial (NLST) showed a 20% lung cancer mortality reduction 

with screening using low-dose computed tomography (LDCT) compared to chest 

radiography.1 Recently, the Dutch-Belgium NELSON trial reported a 26% reduction in lung 

cancer mortality in men and up to a 61% mortality reduction in women with LDCT 

screening versus no screening.2 The annual screening recommendation by the US Preventive 

Services Task Force along with Medicare’s coverage of screening LDCT have substantially 

increased the number of both baseline and follow-up screening LDCT scans.

Management of lung nodules after the next scheduled repeat LDCT is generally determined 

by the most concerning interval change between the previous two scans, which can be 

changes in the diameter or volume of solid lung nodule, increase in diameter or density of 

subsolid nodule, or the size of a new lung nodule. In isolation, these changes may not 

necessarily reflect the overall risk of developing lung cancer in an individual, especially for 

those with multiple nodules.3–7 Current guidelines also do not provide estimates of 

malignancy risk beyond one year, tumor aggressiveness, or lung cancer specific mortality. 

An annual repeat screening protocol may result in unnecessary radiation exposure and health 

care resource utilization with added expense for individuals with low malignancy risk.

Recent advances in statistical modeling techniques, especially in machine learning (ML), are 

bringing forth a paradigm shift in analyzing complex biomedical data. Machine learning can 

rapidly process large amount of data and identify complex interactions and associations from 

high dimensional data to enable earlier and more accurate disease diagnosis.8–13 There are 

two major types of ML applications in lung cancer risk prediction. One uses computer-aided 

diagnosis (CAD) that includes nodule detection, segmentation, and feature extraction.14–17 

The other uses manual defined image region of interest (ROI) with expert crafted image 

features.18–20 Recent advances in deep ML technique allows the machine to learn from the 

input data through multiple layers and automatically derive optimal high-level features 

without need for human engineered features.8–10 Since the image processing of entire chest 

volume is computationally intensive, most studies were restricted to a few pre-specified 

ROIs without analyzing all identified lung nodules. The work from Google’s group is 

probably the first attempt in large scale to apply deep learning to the entire chest CT dataset.
10 Although the advantages of ML techniques have been well recognized,9–11 there are 

major hurdles in translating them to manage screen-detected lung nodules or to determine 

optimal screening intervals. Issues include sample selection bias, over-fitting due to model 

selection without blinding the external validation sample, use of non-validated threshold, 

inadequate statistical analysis that do not adjust for variable censoring times, and a lack of 

large robust independent validation datasets which can compromise the accuracy and 

reproducibility of the findings. To address a clinical need for a more accurate lung cancer 

screening protocol, we developed a deep ML prediction algorithm to estimate the 3-year 

lung cancer risk and lung cancer specific mortality to guide timing of diagnostic tests and 

screening interval after the next scheduled repeat screening CT using radiologist CT reading 

and other universally available clinical information.
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METHODS

Training and Validation Datasets

The datasets for training (NLST) and validation (PanCan) have been reported previously.1,21 

In brief, NLST recruited ever-smokers from 33 screening centers, 55 to 74 years of age, who 

had a history of at least 30 pack-years smoking history and last smoked within the previous 

15 years. The median follow-up was 6·5 years. 25,097 participants received repeat annual 

LDCT screenings. The PanCan study recruited current and former smokers from 8 screening 

centers across Canada, 50 to 75 years of age, with a 6-year lung cancer risk of at least 2% as 

determined by the PanCan model, a precursor to the validated PLCOM2012 model.22 The 

median follow-up was 5·5 years. Among the 2,350 PanCan participants who received 

follow-up screenings, 56 individuals were removed because they received investigational 

screenings before the next scheduled annual screening for suspicious lung nodules. Both 

datasets included demographics, radiology reports from the most recent follow-up LDCT 

scan (=“S2” scan) within two years from baseline screening and from the most recent prior 

scan (=“S1” scan) from all participants (supplement analysis samples).

Study Oversight

Investigators from three institutions, Johns Hopkins University (JHU), BC Cancer (BCC), 

and the National Cancer Institute (NCI), jointly conducted this double-blinded study using 

the PanCan study as a validation cohort.21 Blinded to the PanCan participant’s cancer 

outcome, the JHU team submitted ML risk scores to the NCI team. Blinded to the JHU 

team’s prediction, BCC provided the verified PanCan participant’s cancer outcomes to the 

NCI team. Both JHU team’s risk scores and BCC’s cancer outcomes were then locked by 

the NCI team who compared the JHU team’s prediction accuracy to the Lung-RADS3 and 

NELSON5 guidelines. After this evaluation was completed, both JHU team and BCC team 

were unblinded to the PanCan participants’ cancer outcomes and JHU team’s ML risk 

scores.

Deep Machine Learning Algorithm

The endpoint was the duration from follow-up S2 screening date to the last date the person 

was known to be free of pathologically confirmed lung cancer within three years after S2 

scan date. Input predictors are listed in Table 1 and Table S1. Observations were censored at 

the end of year 3. The 3-year period was selected since our intention was to demonstrate the 

long-term predictive ability of ML algorithm and determine whether an annual screening 

interval is appropriate in the lowest-risk group. Limiting the follow-up period to three years 

also increase the probability that incident cancers within this period could be in-part 

predicted by CT scan findings. Similar to NLST, only non-calcified nodules with size ≥4mm 

in PanCan were included. Supplementary Table S1 shows how different radiographic 

variables used in NLST and PanCan were reconciled. Nodule diameter was computed as the 

average of the longest diameter and the longest perpendicular diameter as measured on a 

single transverse image (high-spatial frequency, lung “windows”). Nodule margin was 

dichotomized to spiculation or no spiculation. Attenuation was replaced by a variable with 4 

categories: “ground-glass opacity”, “solid”, “semi-solid”, and “others”. Nodule location in 

PanCan data was converted to the corresponding NLST labels. The American College of 
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Radiology Lung-RADS category was determined for each screen-detected nodule as 

described previously.23 The highest Lung-RADS score for the S2 scan was assigned to each 

individual.

The diameter of a nodule that resolved at S2 was set to 1mm that was considered to be 

below the scanner detection limit; Similarly, if a nodule was seen in S2 but not in S1, its 

diameter in S1 was also set to 1mm. Nodule volume was estimated using V=πd3/6 where d 

is the nodule diameter, and nodule volume doubling time (VDT) in days was calculated for 

the largest non-calcified nodules from the S2 scan using formula VDT=
D log10 2

3 log10 d2/d1
 where 

d1 and d2 are diameters at S1 and S2 screenings respectively, and D is the number of days 

between S1 and S2 scan dates. For new nodules with d2>1mm, we set d1=1mm. Since this 

VDT formula does not provide finite values for individuals who did not have any or new 

nodules with d2>1mm, these individuals were assigned to an artificial VDT value of 

MaxVDT+1, where MaxVDT is the maximum of all finite VDT values (>36500). The 

reason is that larger VDT is considered to have lower risk, and such assigned value allowed 

us to compute AUC and to compare VDT with other predictors using all PanCan individuals. 

In the NLST training sample, since the same nodule may be labeled differently at different 

screenings, VDT cannot be calculated for individuals who had at least two nodules from the 

same lobe. Thus, VDT was only used to evaluate the ML’s performance on PanCan 

validation sample where nodule locations were consistently labeled. Two imaging variables 

unrelated to nodule characteristics were duration of emphysema and duration of 

cardiovascular disease; both were calculated by the number of days between the first date of 

reported abnormality (S1 or S2) and the S2 screening date. A new summary interval change 

variable, Nchg, was created using formula Nchg=∑(i: nodules in s2) Ci ×365/D where the 

summation is computed over all non-calcified nodules with a size of at least 4mm detected 

on the S2 screening, and Ci is the number of nodule changes among the following: (1) 

increase in size, (2) increase in density, (3) new from S1.

The neural network used to develop ML predictor was built using multilayer perceptron 

(MLP). We used two MLP structures with two hidden layers each. The first one has sizes 5 

and 2, and second one has sizes 51 and 8. The cross-entropy loss function with L2 penalty 

parameter was used. Weights were optimized using quasi-Newton method and stochastic 

gradient-based method.24. Following Faraggi and Simon’s suggestion,25 rectified linear units 

function was used in the network prior to the final layer where survival random forest was 

used.26 Since data were highly unbalanced, downsampling was used in the ensemble 

learning. The final output is a normalized continuous score ranging from 0 to 1.

Statistical Methods

This study was designed to analyze the residual survival time since the S2 screening date. 

Data were collected and analyzed based on conditional distribution that participants had 

received two CT screenings. The primary analysis was to compare the lung cancer 

prediction accuracy among three predictors (ML, Lung-RADS, and VDT) in the PanCan 

validation sample using time-dependent area under the ROC curve (AUC) at cut-off years 1, 

2, and 3 after the S2 scan.27,28 The AUC standard deviation and p-values used to compare 

two AUCs were computed using inverse probability of censoring weighted estimators29 in 
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500 bootstrap simulations. Secondary analysis compared cancer incidence rates (=one minus 

Kaplan-Meier estimates) among high-risk and low-risk subgroups. The high-risk subgroups 

of ML, Lung-RADS and VDT were defined by >0·3, >3 (i.e., 4A/4B/4X), and <400 days 

respectively. The corresponding low-risk subgroups were defined by <0·1, <3, and >600 

days respectively. Missing demographics were imputed using multiple imputation method. 

Missing nodule data were imputed using the last-observation-carrying-forward method.

An exploratory analysis was performed to compare the time-dependent positive predictive 

value (PPV) of all predictors under common sensitivity levels using PanCan dataset. The 

PPV was computed using Bays rule PPV(t)=(time-dependent sensitivity at time t)*(1-S(t)) /

P(test positive) where S(t) is the Kaplan-Meier estimate of cancer-free probability at time 

t=1, 2, or 3 years.

Since mortality data were not used in ML algorithm development, exploratory survival 

analyses were performed to study whether ML algorithm detected lung cancers that were 

biologically more aggressive using the NLST dataset only as mortality data was not 

available in PanCan. Deaths not from lung cancer were censored. ML and Lung-RADS were 

compared by: (1) the mortality rate within high-risk and low-risk subgroups; (2) the added 

value of ML to Lung-RADS’ high-risk subgroup to detect aggressive cancers; (3) the added 

value of Lung-RADS to ML’s high-risk subgroup to detect aggressive cancers. In all 

analyses, the hazards ratio (HR) was used to compare subgroups, and two-sided p-values 

were reported from the log-rank test.

Role of funders

Funders have no role in the study. Huang, Lam, and Aka-Khattra have access to all data. 

Huang, Lam and Lin were responsible for the final decision to submit the manuscript.

RESULTS

Study Samples

Table 1 summarizes participant’s demographics and radiology reports. Compared to the 

NLST, PanCan participants were older at follow-up S2 screening, were more likely to be 

current smokers, and had more individuals with ≥4mm nodules at both S1 and S2 

screenings. A total of 283 Lung-RADS high-risk nodules were found in 235 PanCan S2 

scans.

Machine Learning Predictors

An online web-based tool at https://www.caced.jhu.edu is available to provide ML score and 

estimated cancer incidence probabilities within 3 years after the S2 scan date.

Primary analysis

In the NLST training sample, time-dependent AUC ± standard deviation values of ML are 

0·99±0·003, 0·985±0·005, and 0·983±0·005 at years one, two, and three, respectively (Figure 

1). They are higher than the corresponding AUC values 0·909±0·019, 0·856±0·022, and 

0·811±0·024 from Lung-RADS (all p<0·001). The blinded ML prediction was originally 
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performed on all 2,350 PanCan individuals. But final analysis excluded 56 individuals who 

received investigational screenings (see supplement appendix for details). Final AUC values 

from ML were 0·968±0·013, 0·946±0·013, and 0·899±0·017 (Figure 1). They are higher than 

the updated Lung-RADS AUC values of 0·944±0·016, 0·908±0·019, and 0·858±0·022 

(p=0·202, 0·048, 0·028); and VDT AUC values of 0·830±0·030, 0·777±0·029, and 

0·762±0·026 (all p<0·001).

Secondary analysis

Using Lung-RADS, 5%(1,333/25,097) of the NLST participants were classified as high-risk 

(4A/4B/4X) compares to 2%(392/25,097) using ML>0·3 criterion (Table 2 and Figure 2). 

Among those that were deemed high-risk, Lung-RADS identified 77%(274/358) and 

66%(308/464) of all lung cancers diagnosed within 12 and 24 months respectively. The 

corresponding figures using ML were 87% (313/358) and 74·1%(344/464) (Table 2). In the 

PanCan study, 10%(235/2,294), 10%(221/2,294) and 8%(192/2,294) would be deemed high-

risk by Lung-RADS, ML and VDT respectively. Among those that were deemed high-risk, 

Lung-RADS identified 89%(48/54) and 81%(58/72) of all lung cancers diagnosed within 12 

and 24 months respectively. The corresponding figures were 94%(51/54) and 85%(61/72) 

with ML, and 57%(31/54) and 50%(36/72) with VDT (Table 2).

Using Lung-RADS, 93% (23,458/25,097) of the NLST participants were classified as low-

risk (1 or 2). With ML≤0·1, 97%(24,234/25,097) are classified as low-risk. The proportion 

of low risk participants with lung cancer diagnosed within 24 months are 0·62%(145/23,458) 

and 0·21%(51/24,234) for Lung-RADS and ML≤0·1 respectively. For PanCan, the 

proportion of participants classified as low-risk would be 74%(1,698/2,294), 

55%(1,266/2,294) and 90%(2,075/2,294) for Lung-RADS, ML≤0.1 and VDT respectively. 

The proportion of low-risk individuals diagnosed with lung cancer within 24 months are 

0·53%(9/1,698), 0·16%(2/1,266) and 1·49%(31/2,075) respectively (Table 2).

Exploratory analyses

When the common sensitivity level was set between 0·85 and 0·90, using all 1,070 PanCan 

individuals who had at least one non-calcified nodule with size 4mm or above in their S2 

scans, ML has higher time-dependent PPV than Lung-RADS and VDT in all three years 

(Figure S1).

Among all 353 and 327 lung cancers included in ML and Lung-RADS’ high-risk subgroups, 

231 and 206 of them were in pathological stage I. Higher lung cancer mortality rates were 

observed from ML high-risk subgroups as compared to the Lung-RADS high-risk subgroup 

(supplementary Figure S2). ML low-risk subgroup had uniformly lower mortality rate 

compared to Lung-RADS low-risk subgroups. Within both Lung-RADS=4A/4B/4X and 4B 

subgroups, individuals with ML high-risk scores also had significantly higher mortality rates 

(HR=16·07 and 31·79, both p<0·001, Figure 3, A and B). However, Lung-RADS could not 

stratify the mortality rate within the ML high-risk subgroup (Figure 3, C and D).
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DISCUSSION

We developed a deep learning algorithm that accounted for all relevant nodule and non-

nodule features on the screening chest CTs and accurately predicted the presence of lung 

cancer within a three-year period. The ML algorithm maintained high accuracy and was 

generalizable to an external dataset from another country. A double blinded experimental 

design was used to avoid multiple fitting attempts which could lead to non-reproducible and 

deceptively high accuracy. Compared to Lung-RADS, ML classified a high-risk group that 

was smaller and had a higher proportion of cancers (Table 2). ML also identified more 

accurately those with very low risk of lung cancer within 2 years (0·16%, compares to 

1·49% with VDT and 0·53% with Lung-RADS). The appropriateness of a biennial repeat 

screening protocol for very low risk participants requires further prospective validation 

studies.

To understand what information has been learnt by the ML algorithm, we have also 

extracted data from the first hidden layer of the ML algorithm to construct an explicit 

formula ML1 (Table S2). We found the most important features are related to the changes 

from S1 to S2, such as Nchg. Unlike Lung-RADS, the ML algorithm combined both 

temporal and spatial changes from S1 to S2 screenings in all nodules to improve cancer 

prediction. As illustrated in Figure S3, the presence of incidence nodules is more important 

than the nodule size measured at any single time point.

While mortality data was not a training variable in ML development, ML demonstrated 

added value in stratifying lung cancer mortality risk (Figure 3). In the NLST cohort, ML 

outperformed Lung-RADS in predicting deaths from lung cancer. Among participants 

deemed high-risk by Lung-RADS criteria, ML could further distinguish the subgroup with 

significantly higher risk of lung cancer mortality (Figure 3). Similar mortality data is not 

currently available from PanCan patients.

Our study was designed to avoid some common pitfalls in previous ML studies. Although a 

case-control design is helpful to demonstrate ML’s added value11,19,20, the study sample 

from such a design would not be representative of the general screening population and 

therefore its ML predictor could not be directly applied to clinical practice. Most ML studies 

did not blind the validation sample’s cancer outcomes. This could result in multiple attempts 

of fitting spurious associations that could lead to an artificially crafted highly accurate 

model. Many published ML studies did not differentiate cancers diagnosed at different time 

points in both ML algorithm development and its AUC evaluation.17,19,20 Our study 

outcomes were derived from survival analysis that takes an individual’s length of follow-up 

time into consideration. This approach not only reduces the bias from different follow-up 

lengths of participants, but also associates higher ML risk scores with earlier lung cancer 

diagnosis time. Early censored individuals were not treated as non-cancers in later years 

because these individuals could also develop cancers later. This is a critical difference 

between our approach and most existing methods.10,19 If this censoring was not adjusted, the 

sensitivity/specificity of the three predictors in PanCan validation sample would be 

80%/76% (Lung-RADS), 88%/60% (ML), and 54%/91% (VDT) respectively. The logistic 
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regression based AUC=90% from ML was significantly higher than AUC=86% (p=0·032) 

from Lung-RADS and AUC=76.% from VDT (p<0·001).

In contrast to currently available malignancy risk prediction tools or guidelines that are 

nodule-based which quantify an individual’s malignancy risk using the largest dominant 

nodule,3–6,21,23,30 ML takes into account the aggregate changes in nodule characteristics and 

non-nodule features for each individual. Examining the potential interactions between 

different nodules is important since 39% (2,852/7,307) of NLST individuals and 50% 

(532/1,070) of PanCan individuals had at least two non-calcified nodules with size ≥4mm on 

their S2 scans. Basing guidelines on the largest nodule can be problematic since the PanCan 

study has previously shown that 20% of malignancy arose from non-dominant nodules.7 

Although Google’s recent work has incorporated image features from multiple nodules,10 its 

prediction was limited to one-year cancer risk and not evaluated from the survival analysis. 

An additional strength of our study is the ability to recognize patterns in both temporal and 

spatial changes including the synergy among changes from different nodules. Our algorithm 

can be used to provide guidance to clinicians, to personalize the repeat screening interval 

(Figures 2 and Table 2), and to determine the urgency for diagnostic investigations to rule 

out lung cancer (Figure 3), in a manner that is not currently available in existing clinical 

practice guidelines.

Several limitations should be considered in this study. First, the LDCT imaging features 

were interpreted by experienced chest radiologists in large academic centers. Less stringent 

quality assurance in CT reporting may not produce the same results. Whether the use of 

CAD or radiomic features can improve the accuracy of our ML algorithm is the subject of 

future studies. Secondly, nodule size was calculated by averaging its long- and short-axis 

diameter on one axial image slice. The VDT was calculated from the mean diameter instead 

of volumetric measurement. The simplicity of using universally available radiologist’s 

reading and other clinical information makes our method applicable to a broader setting 

where image processing tools are not available. Thirdly, setting the threshold for ML high-

risk subgroup at 0·3 was arbitrarily (albeit blindly) chosen to balance the sample size in the 

ML high-risk subgroup and its prediction accuracy based on the NLST training sample. It 

may not be the optimal threshold value. Fourthly, individuals in our cohort on average 

underwent annual screening LDCTs. While our methodology allows for extrapolation of risk 

assessment in participants who had shorter (e.g. 3 or 6 months) or longer than 12 months 

interval between the last two screening CTs, additional validation studies are needed. Lastly, 

as a consequence of developing a “black-box” ML algorithm, the algorithm may not be 

easily reproduced and analyzed by others. The website: https://www.caced.jhu.edu was 

created to facilitate other investigators to obtain and further evaluate our ML algorithm using 

their own data. The interface of this website was designed to illustrate the variables that need 

to be entered in order to derive the risk score. In practice, the information can be 

automatically populated by the computer to generate the malignancy risk score. In 

institutions where structured reporting templates are utilized, it is possible to automate data 

extraction using natural language processing so long as the required data elements are 

recorded in radiology reports.
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To our knowledge, this is the first accurate and externally validated ML tool with practical 

application to guide clinicians in lung cancer screening programs. Our study provides the 

framework to prospectively evaluate different screening intervals and more urgent diagnostic 

approach for suspicious lung nodules based on malignancy risk.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

We searched PubMed, Medline, and the Cochrane Library from January 1, 1980 to 

March 31, 2019 using combinations of words or terms that included: “lung” or 

“pulmonary”, “cancer” or “neoplasm”, “screening” or “early detection”, “Radiomics”, 

“deep machine learning”, and “computer-aided diagnosis”. Previous lung cancer 

screening studies used a few (mostly one or two) prespecified lung regions of interest to 

predict a person’s lung cancer risk score except the paper by Ardila et al (Nature 

Medicine, 2019). None of the studies has used a double-blinded design in independent 

validation sample prediction, adjusted potential bias due to individual’s variable length of 

follow up (or censoring) time in both prediction algorithm development and prediction 

accuracy evaluation, provided estimates of malignancy risk beyond one year, tumor 

aggressiveness, or lung cancer specific mortality. Management of lung nodules after the 

next scheduled repeat screening computed tomography is based on changes in the 

diameter or volume of solid lung nodule, increase in diameter or density of subsolid 

nodule, or the size of a new lung nodule, which may not necessarily reflect the overall 

risk of developing lung cancer in an individual especially those with multiple nodules. 

Nor do these guidelines provide estimates of malignancy risk beyond one year, tumor 

aggressiveness, or lung cancer specific mortality.

Added value of this study

Current lung cancer screening guidelines and nodule management protocols recommend 

regular annual repeat CT, early recall imaging studies, or triage to a diagnostic pathway 

depending on the estimated malignancy risk. Our study is the first to develop a deep 

machine learning prediction algorithm using universally available nodule and non-nodule 

features without computer-aided diagnostic tools to estimate a person’s 3-year lung 

cancer risk and associated lung cancer-specific mortality. The deep learning algorithm 

identifies 10% of the screening population who may benefit from prompt diagnostic 

workup for biologically aggressive tumor on the one hand, and the 55% of individuals 

with a very low 2-year malignancy risk of 0·16% who can safely undergo the next 

scheduled screening CT in two years instead of annually. Our study addresses 

shortcoming in previous deep learning studies by using a large unselected dataset to avoid 

bias and over-fitting, adequate statistical models that combine information from multiple 

nodule and non-nodule associated lung abnormalities with adjustment for variable 

censoring times, and blinded validation in a well-annotated external dataset. Our 

algorithm can be used to provide guidance to clinicians, to personalize the repeat 

screening interval, and to determine the urgency for diagnostic investigations to rule out 

lung cancer, in a manner that is not currently available in existing clinical practice 

guidelines.

Implications of all the available evidence

Our study demonstrates that readily available clinical and radiologist-interpreted CT 

information can be mined using deep machine learning to personalize the repeat 

screening interval and to determine the urgency for diagnostic investigations to rule out 
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lung cancer. The added value of automated computer image analysis of CT scans needs to 

be compared with what can be achieved with radiologist reading alone.

At a Glance Commentary

The current study demonstrated that a deep machine learning algorithm that recognizes 

patterns in both temporal and spatial changes as well as synergy among changes in 

nodule and non-nodule features can identify individuals with higher lung cancer risk and 

higher lung cancer mortality. A risk based personalized strategy using an accurate lung 

cancer risk prediction model is expected to improve the effectiveness of lung cancer 

screening programs.
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Figure 1. 
Comparison of the area under the time dependent receiver operating characteristic curve 

(AUC) at cut-off time year = 1, 2, and 3 among two risk predictors: ML and Lung-RADS in 

the NLST training (N=25,097) samples, and three risk predictors, including volume 

doubling time (VDT), in the PanCan validation (N=2,294) samples. The VDT cannot be 

reliably estimated in the NLST sample. In the NLST, the p-values of AUC difference 

between ML and Lung-RADS were <0.001 in all three years. In PanCan, the p-values of 

AUC difference between ML and Lung-RADS were 0·202, 0·048, and 0·028 for years 1, 2, 

and 3 respectively; the p-values of AUC difference between ML and VDT were <0.001 for 

all three years.
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Figure 2. 
Comparison of high-risk and low-risk subgroups defined by ML and Lung-RADS for the 

NLST training sample, and three risk predictors, including volume doubling time (VDT), for 

the PanCan validation sample. The VDT cannot be reliably estimated in the NLST sample. 

The cancer incidence probability was computed as one minus Kaplan-Meier estimate of 

cancer-free survival probability estimate.
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Figure 3. 
Individuals with high ML scores had higher lung cancer associated mortality rate within the 

Lung-RADS high-risk subgroups (A and B). However, Lung-RADS did not separate lung 

cancer mortality risks within ML high-risk subgroup (C). When excluding ML low-risk 

individuals, the Lung-RADS high-risk subgroup had an even lower lung cancer mortality 

rate than the Lung-RADS low-risk subgroup (D). HR = hazards ratio, CI = confidence 

interval.
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Table 1.

Demographic, radiological and clinical outcome data

NLST Pan Can p value

Total number of participants 25,097 2,294

Age at S2 screening (mean±standard deviation) 62·4±5·0 64·3±5·9 < 0·001

Number of females (%) 10,281 (41%) 1,028 (45%) 0·0004

Current smoker (%) 11,905 (47%) 1,406 (61%) < 0·001

Pack-years 55·8±23·8 53·9±23·3 0·0002

Duration of smoking (years) 39·7±7·3 44·1±5·9 < 0·001

Age started smoking (years) 16·7±3·7 16·0±3·2 < 0·001

Average number of cigarettes per day 28·4±11·4 24·7±10·7 < 0·001

Family history of lung cancer (%) 5,460 (22%) 757 (33%) < 0·001

Emphysema (%) 9,048 (36%) 759 (33%) 0·005

Moderate or severe calcification left anterior descending artery, right circumflex, or right 
coronary artery at baseline

663 (29%)

Significant cardiovascular abnormality 1,500 (6%)

S1 screening

Number of participants with non-calcified nodule at least 4 mm 6,989 (28%) 1,099 (48%) < 0·001

Number of participants with 2 or more non-calcified nodule at least 4 mm 2,631 520

Total number of non-calcified nodules at least 4 mm 11,763 2,236

Largest non-calcified nodule size (mean±standard deviation) among participants with non-
calcified nodules. One largest nodule per person

6·7±4·5 6·6±3·4 0·0834

S2 screening

Number of participants with non-calcified nodule at least 4 mm 7,307 (29%) 1,070 (47%) < 0·001

Number of participants with 2 or more non-calcified nodule at least 4mm 2,852 532

Total number of non-calcified nodules at least 4mm 12,602 2,229

Total number of participants with Lung-RADS high-risk (4A/4B/4X) nodules 1,333 235

Largest non-calcified nodule size (mean±standard deviation) among participants with non-
calcified nodules. One largest nodule per person

6·89±5·57 6·79±3·90 0·2994

Number of days (mean±standard deviation) between S1 and S2 screenings 374·85±79·56 360·04±128·03

Number of cancers diagnosed in year 1 after S2 screening date 358 54

Number of cancers diagnosed in year 2 after S2 screening date 106 18

Number of cancers diagnosed in year 3 after of S2 screening date 110 20

Number of participants censored in year 1 after S2 screening date 303 37

Number of participants censored in year 2 after S2 screening date 294 47

Number of participants censored in year 3 after S2 screening date 340 60
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Table 2.

Cumulated number of cancers in different high and low risk subgroups at 6-, 12- and 24-months follow up 

visits after the S2 screening date

Number of individuals
Cumulative number of cancers diagnosed at follow up visit

6 months 12 months 24 months 36 months

NLST training sample

Total screened 25097 274 358 464 574

High-risk subgroup

Lung-RADS=4B 561 170 194 212 221

Lung-RADS= 4A/4B/4X 1333 227 274 308 327

ML>0.3 392 260 313 344 353

Low-risk subgroup
Lung-RADS=1 or 2 23458 43 75 145 234

ML ≤ 0.1 24234 6 15 51 95

PanCan validation sample

Total screened 2294 43 54 72 92

High-risk subgroup

Lung-RADS=4B 97 35 38 44 49

Lung-RADS=4A/4B/4X 235 41 48 58 65

VDT < 400 days 192 29 31 36 44

ML>0.3 221 41 51 61 65

Low-risk subgroup

Lung-RADS=1 or 2 1698 1 3 9 20

ML ≤ 0.1 1266 0 0 2 10

VDT >600 days 2075 13 19 31 43
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