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Abstract

Deformation of flexible vesicles suspended in a fluid medium due to an applied electric field can 

provide valuable insight into deformation dynamics at a very small scale. In an electric field, the 

response of the vesicle membrane is strongly influenced by the conductivity of surrounding fluid, 

vesicle size and shape, and the magnitude of applied field. We studied the electrodeformation of 

vesicles immersed in a fluid media under a DC electric field. An immersed interface method is 

used to solve the electric field over the domain with conductive or non-conductive vesicles while 

an immersed boundary method is employed to solve fluid flow, fluid-solid interaction, membrane 

mechanics and vesicle deformation. Initial force analysis on the membrane surface reveals almost 

linear influence of vesicle size, but the vesicle size does not affect the long-term deformation 

which is consistent with experimental evidence. Highly nonlinear effect of the applied field as well 

as the conductivity ratios inside and outside of the vesicle are observed. Results also point towards 

an early linear deformation regime followed by an equilibrium stage for the membranes. Modeling 

results suggest that electrodeforming vesicles can create unique external flows for different 

conductivity ratios. Moreover, significant influence of the initial aspect ratio of the vesicle on the 

force distribution is observed across a range of conductivity ratios.
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1. Introduction

Biological cell manipulation, cellular nutrient transport, and drug delivery are some of the 

most intensive topics in biophysical research. In each of these emerging research areas, bio-

vesicles are playing a fundamental role. Their functions are as varied as their size. For 

example, HIV-1 infected cells release nanoscale extracellular vesicles (exosomes) that 

mediate virus attachment and fusion to target cells [1]. At the same time, a host of 

biomimetic vesicles can be engineered as nanoscale drug carriers to target inflamed tissues 

[2,3]. Another important example is the endosomal vesicles which continuously perform 

innumerable intracellular tasks in cellular endocytosis and exocytosis. At the microscale, 

most eukaryotic cells themselves are yet another example of large biological vesicles (aka 

giant vesicle). Prediction of the adaptive response of each of these vesicles in a given 

environment requires the understanding of their behavior. More specifically, critical 

understanding of their dynamics is needed for proper manipulation in a specific targeted 

application like drug delivery. One promising approach is the study of lipid membrane or 

cell deformation through interaction with electric fields.

Application of an electric field on microparticles, such as vesicles, bubbles, and beads 

suspended in a liquid medium results in altered kinetics, electro-osmotic flow, and 

electrodeformation. Depending on the surface charge, geometry, and electrical properties, 

different vesicles produce varying levels of response. These responses include rotation, 

translation, assembly and orientation [4], deformation, electroporation and fusion [5]. Both 

alternating current (AC) and direct current (DC) fields are being actively employed in tissue 

ablation, cell deformation and characterization of the mechanical properties of lipid vesicles 

[6,7]. Application of DC fields facilitates the investigation of vesicle transport as well as 

electrodeformation [8], while AC fields allow for observation of a wide range of membrane 

mechanics using electric field magnitude and frequency as control parameters [9]. In 

biomedical and biotechnology applications, electrodeformation has been extensively used 

for studying mechanics of cell and label-free microfluidic characterization. For example, 

electrodeformation has been used to characterize TGF-β dependent epithelial to 

mesenchymal transition of cancer cells [10]. It has also been successfully employed to 

separate malaria-infected red blood cells from healthy ones in a microfluidic device [11]. 

Engineered giant lipid vesicles (generally a few tens of micrometers in diameter) is another 

major avenue under study with electric fields due to their close resemblance to biological 

cells [12]. The size of both naturally occurring and engineered vesicles can range from 

nanometers to tens of microns. Giant vesicles have been predominantly used for the 

measurement of rheological and mechanical properties of the membrane since they are 

easily observable under optical microscope and can be manipulated directly. They have also 

been studied to understand electric field induced deformation as well as fluid movement 

inside the vesicle [13].

Considering the varied functions and sizes of the bio-vesicles, continuous characterization of 

the membrane deformation under varying conditions is generally tedious and often very 

difficult to observe experimentally. Additionally, molecular interactions in smaller vesicles 

are affected by their membrane curvature which leads to uncertainties in experimental 

results [14]. Several analytical approaches have been presented to understand the 
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fundamental physics of the membrane behavior [15–17]. However, due to the complex 

multiphysics nature of the problem, the analytical solutions often require restrictive 

assumptions. Sadik et al. presented a detailed theoretical analysis on the effects of using 

strong DC electric field on vesicles with different conductivities and compared their results 

with experimental observations [18]. However, the analytical model in their work, as well as 

the works of Hyuga et al [16] only valid for vesicles that are regular ellipsoids at the start 

and must maintain an ellipsoidal shape while they deform. Moreover, a number of 

hydrodynamic assumptions and simplifications are required for these analytical models in 

order to solve the governing equations. Numerical treatments of the problems have opened a 

wide window of opportunities in understanding these complex behaviors. Li et al. studied 

frequency dependence of membrane deformation in a non-uniform AC electric field [7]; 

MacQueen et al. investigated the change in elastic properties of cells due to 

electrodeformation using an effective dipole moment assumption [19]. However, most of 

these studies were either limited to the linear small deformation regime of the vesicles [18] 

or used the dipolar approximation that is not valid for deformed cells [20]. More recently, 

Hu et al. have presented detailed works on an algorithm development combining immersed 

interface and immersed boundary approaches for studying electrodeformation [21,22].

Despite the importance of these vesicles, a complete understanding of membrane behavior 

as well as fluid-structure interactions under electric fields are still lacking. In the present 

work, we investigate the electrodeformation dynamics of lipid vesicles under a wide range of 

applied DC electric fields. The vesicle membrane is represented as a massless immersed 

boundary. The bulk conductivity of the vesicle is adjusted accordingly to consider the 

heterogeneous electrical properties of the vesicle. The induced force of electric field is 

obtained using Maxwell stress tensor approach. Effects of applied voltage, conductivity 

ratio, vesicle size and initial aspect ratios on the electrodeformation dynamics are 

investigated in detail. The model is validated using several experimental results.

The rest of the paper is arranged as follows. In Section 2, we present the mathematical 

model for a scenario where a vesicle placed inside a microfluidic setup and subjected to a 

uniform applied electric potential difference. In Section 3, we first compare experimental 

data with numerical results. Afterward, effects of the magnitude of the applied field and the 

conductivity ratio on the deformation dynamics are observed. We also present the interaction 

of surrounding fluid media with deforming membrane and explore the electrodeformation 

phenomena for different initial vesicle aspect ratios.

2. Mathematical Model

We consider a physical scenario where a vesicle is submerged in an aqueous medium as 

shown in Fig. (1a). This is similar to a biological cell suspended in buffer solution inside a 

microfluidic channel. The vesicle is subjected to a DC electric field. Here it is assumed that 

the vesicle is neutrally charged before the application of any external electric fields. 

Moreover, owing to a negligibly small electric double layer, electro-osmotic contributions 

can also be excluded [23]. Also, we do not consider van der Walls force since compared to 

electrostatic forces, the van der Walls and Brownian forces are negligible in these kinds of 

systems [24].
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It is also assumed that the submerged aqueous medium is Newtonian with viscosity μ and 

density ρ. The electrical conductivity of the fluid outside the membrane is σout and that of 

the content inside is σin. When an electric field is applied through voltage difference on the 

left and right electrodes, the ensuing scenario can be described as a coupled electrostatic and 

fluid dynamic problem. In a microfluidic system, the advection and diffusion currents are 

much smaller than the drift current. Thus, for a DC electric field, the charge conservation 

equation can be simplified as

∇ ⋅ (σE) = 0 (2.1)

The electric field (E) is related to the electrical potential (ϕ) through

E = − ∇ϕ (2.2)

Substituting Eqs. (2.2) into the charge conservation equation, we arrive at the relation for the 

electric potential in the domain

∇ ⋅ σin ∇ϕin = 0,   ∇ ⋅ σout∇ϕout = 0 (2.3)

where ϕin and ϕout are the potentials inside and outside the membrane. Imposing the jump in 

electric potential across the vesicle membrane and the continuity of normal current, we get 

the interface conditions on the membrane as

φout(x, y) − φin(x, y) = m(s) (2.4)

η ⋅ σout∇φout − η ⋅ σin∇φin = n(s) = 0 (2.5)

where η denotes the unit normal vector on the membrane, m(s) and n(s) are parametric 

representations of the jump conditions, and the parameter s tracks the material points of the 

interface. It must be noted that, every leaky dielectric, especially cell membranes will act 

like a capacitor and have a finite charging time in an electric field. From Maxwell’s 

equations, the characteristic time for electric phenomena is given by the ratio of dielectric 

permeability and conductivity of the membrane (εmemε0/σmem) [25], where εmem is the 

dielectric constant of the membrane, ε0 is the vacuum permittivity and σmem is the 

membrane conductance. Considering the membrane dielectric constant to be around 20 [26], 

and the conductivity on the order of 10−7 S/m [27], the characteristic time for electric 

phenomena is in the order of milliseconds. However, the capacitive charge build-up starts as 

soon as the lipid membranes are placed under an electric field leading to a voltage difference 

across it. Defining the transmembrane voltage Vmem as (ϕin-ϕout), the instantaneous 

membrane capacitive charging can be described by [22,28],

Cmem
dV mem

dt + GmemV mem = η ⋅ σinEin = η ⋅ σoutEout (2.6)

In Eq. 2.6, the membrane is modeled as a two-dimensional interface with effective 

capacitance Cmem = εmem/h and conductance Gmem = σmem/h where h is the membrane 

thickness.
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Force density on the membrane due to this electrostatic interaction can be found from the 

Maxwell stress tensor M as

Felec = ∇ ⋅ M = ∇ ⋅ ε EE − 1
2 E

2
I (2.7)

where ε is the permittivity of the media where the force is being calculated and I is a unit 

tensor. The rectangular domain has two insulating boundaries at the bottom and top surfaces 

as shown in Fig. 1(a). Electrodes are placed on the left and right boundaries, where a 

prescribed potential is maintained to create an electric field. For simplicity, the vesicle is 

always placed at the geometric center of the domain, while the electrodes carry potentials of 

equal magnitude but opposite sign. The boundary conditions for the electric potential are 

presented in Table 1.

The electric field driven viscous flow field can be described using the incompressible 

Navier-Stokes equations and continuity equation [29] as

ρ ∂u
∂t + (u ⋅ ∇)u = − ∇p + μ∇2u + BF(x, t) (2.8)

∇ ⋅ u = 0 (2.9)

Here, u is the local velocity and BF(x, t) is the body force density acting on the fluid. This 

body force is a combination of the elastic forces in the membrane as well as the tensile or 

compressive forces arising from the applied electric field. In the fluid description, the 

domain is considered periodic in the horizontal direction which implies,

u(x = 0, y) = u(x = a, y) (2.10)

The top and bottom channel walls are assumed solid with no slip and no penetration 

boundary conditions as listed in Table 1. All required geometric, mechanical, electrical 

parameters as well as fluid properties are reported in Table 2.

As shown in Figs. 1(a) and 1(b), the rectangular (a × b) computational domain Ω is 

discretized with a uniform and fixed Eulerian grid. The immersed membrane boundary is 

outlined as Γ, where the interface is tracked in a Lagrangian manner with control points 

distributed on the membrane. Both immersed boundary and immersed interface descriptions 

represent the membrane in terms of localized force density formulations, where the interface 

is taken as one dimension smaller than the overall domain problem (e.g. 1D interface for a 

2D domain) [30]. However, lipid vesicle membranes have a finite and often non-negligible 

thickness (~5–10 nm), and the properties of the membrane can be very different from the 

properties of the bulk fluid inside the vesicle. Therefore, the heterogeneous electrical 

characteristics of the vesicle, such as membrane electrical conductivity (σmem) and electrical 

conductivity of the fluid encapsulated by membrane (σenc) are replaced with an equivalent 

homogeneous conductivity, σin as [27,31]:
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σin = σmem
2(1 − β)σmem + (1 + 2β)σenc
(2 + β)σmem + (1 − β)σenc

;  β = 1 − ℎ
R

3
(2.11)

where R is the radius of the vesicle. It should be mentioned that, Eqs. (2.1) is valid only 

when h << R which is met by our description of the vesicle.

The elastic nature of membrane as well as the fluid media outside and inside the membrane 

allow it to deform under an applied force. The magnitude of the applied force depends on 

vesicle shape as well as the electrical properties of the media inside and outside of the 

vesicle. To study these forces and its effects on surrounding fluids, we formulated a hybrid 

immersed interface-immersed boundary method. The solution methodology for the coupled 

electric and hydrodynamic system and details of the membrane mechanical models for 

deformation due to electric field are given in the appendix.

3. Discussion of Results

Before analyzing electrodeformation in a microfluidic system, the parameters need to be 

chosen accordingly so that the investigation is meaningful, and the results can be translated 

to understand broader physical phenomena. In this study, we first adjusted the stiffness 

parameter of the membrane to represent a lipid vesicle undergoing electrodeformation. 

Following experimental conditions from [18], first, a sample case was chosen where a 

vesicle of 26 μm initial diameter is exposed to a uniform electric field of 0.9 kV/cm. The 

conductivity ratio λ = σin/σout was kept fixed at 53.0. Although the vesicle is initially 

circular, depending on the applied field, it generally takes an ellipsoidal shape after 

deformation. For the ease of discussion, we formally define the term aspect ratio, α, as the 

ratio of the ellipsoid axis along the horizontal (x-axis) to the axis along the vertical (y-axis). 

Thus, for a perfect sphere, α = 1.0; it is greater than 1.0 for an oblate spheroid and less than 

1 for a prolate one. After 500 μs, the experimental results show a deformation of the 

spherical vesicle (α = 1.0) to an oblate spheroid (α = 1.31), which is shown in Fig. 2(a) and 

2(b) with corresponding numerical results found after adjusting the stiffness parameter. 

Next, using the same stiffness parameter, we studied a different case with a nominal applied 

field strength of 1.5 kV/cm and λ = 46.9. The initial diameter of the vesicle was 28.8 μm 

and after 500 μs, it was deformed into an oblate spheroid with α = 3.43. Comparison with 

experimental data shows less than 4% difference as presented in Fig. 2(b) and 2(d). In this 

preliminary mechanical model of the artificial vesicle membrane, we decided to use the 

simplest model that adequately captures the experimental findings. Unlike biological cells, 

the lipid vesicles used in the experiments do not have any underlying cytoskeleton. For that 

reason, the simple Hookean springs connecting each immersed boundary points to all other 

points yields satisfactory results over a wide range of applied voltage and conductivity 

ratios. For all the cases considered in our study, the 150 μm square domain is discretized 

with a 512×512 uniform spatial grid and the step-size in time is 10 ns. Detailed convergence 

study of the numerical scheme, grid dependence and error analysis with the chosen domain 

parameters have been presented in [20].
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3.1 Effect of Electric Field Magnitude and Conductivity Ratio

The extent of deformation of the flexible membrane with respect to the applied electric field 

is not a linear phenomenon. While comparing our model results, for validation with 

experimental data from [18] as presented in Fig. 3(a), we can observe a couple of distinct 

features. Firstly, the variation of aspect ratio (α) shows a rapid rise as the conductivity ratio 

(λ) is increased from 1. Later, it reaches a plateau for high λ values for a given applied 

electric field. Secondly, the effect of increasing electric field has a dramatic effect on the 

deformation dynamics, which we will discuss in the Fig. 4 in detail. Theoretically, under 

some restrictive assumptions it has been shown that in the initial phase of increasing λ, the 

normal component of the Maxwell stress scales quadratically [18]. For larger values of λ, it 

converges to a constant value which explains the features in Fig. 3(a) where the normal 

component of the Maxwell stress is resulting in a horizontal pulling force on the vesicle 

from both directions. Our model results capture the experimental trends for a wide range of 

λ and different levels of the applied electric field. It should be noted that, for higher levels of 

applied voltage, electroporation occurs very early in the experiments. In this study, we have 

not considered that regime. It should be mentioned that experimental evidences did not point 

to any conclusive effect of initial vesicle size on the deformation dynamics (Fig. 3 in [18]). 

However, their analytical model which did not consider any capacitive charging of the 

vesicle membrane showed clear dependence of the final aspect ratio on the vesicle size (Fig. 

7 in [18]). In order to explore this scenario, we observed the deformations in our model 

under two different conditions. In the first case (Fig. 3(b)), the jump across the membrane is 

set to zero which corresponds to the analytical model in [18] while in the second case (Fig. 

3(c)), we computed the voltage jump across the membrane. In the first case, our model 

predicts higher deformations for smaller vesicles. However, when membrane charging is 

considered, there was no clear relation between size and deformation. These results strongly 

indicate the induced charging behavior of the membrane under applied electric field.

Most of the experimental studies involving bio-membranes are performed either in a buffer 

solution due to its chemical stability or in some other stable aqueous medium. In general, 

common buffer solutions have much higher (from 10 to 10,000 times higher) electrical 

conductivity compared to the bio-vesicles. However, in case of artificial biomimetic vesicles, 

it is possible to alter the vesicle conductivity by altering the internal fluid media. [18]. 

Therefore, it is possible to have a wide range of experimental scenarios depending on the 

magnitude of conductivities of the media inside and outside the membrane. In order to 

compare our numerical results to the experimental observations from [18], we chose the 

conductivity ratio within the range of 1–50. It should be noted that this range physically 

corresponds to different concentrations of NaCl in aqueous solution as membrane-enclosed 

media and glucose solution as the surrounding media. For cases where the bulk conductivity 

of the vesicle is greater than the surrounding fluid, the conductivity ratio λ is fixed at 30 

while for the opposite scenario, it is set at 1/30 in our model. Later, we also explore 

scenarios where λ itself is varying and discuss its implications. Several aspects of increasing 

the applied voltage on the electrodeformation are presented in Fig. 4. From a theoretical 

point of view, the electrostatic force obtained from the Maxwell stress tensor has a quadratic 

relation to the applied electric field as shown in Eq. (2.7). Analytic expansion of Eq. (2.7) 

for specific geometry have also shown this quadratic dependence [16]. This quadratic 
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scaling is evident in Fig. 4(a) where λ > 1 and 4(b) where λ < 1. In both cases, a range of 

voltages was applied on the vesicle and the deformation in terms of α is presented against 

time. For deformation from circular/spherical to oblate spheroids, α is greater than 1. For 

prolate spheroids, it is less than 1. The voltage range explored in our study is 7 to 20 volts 

which correspond to the nominal electric field strength of 46.667 kV/m to 133.33 kV/m. For 

cases with the weaker applied field, the vesicles show slow extension/compression and they 

reach an apparent steady state. However, for cases with stronger fields, the behavior switches 

to a rapid deformation. The quadratic scaling is more apparent in Fig. 4(c) where we 

calculated the time taken by the vesicle to reach an aspect ratio of α = 1.1 for λ > 1 or α = 

0.9 for λ < 1. Vesicles with an applied voltage lower than 7 volts never get extended (or 

compressed) enough to reach this level. However, as the voltage is further increased, the 

time needed to reach the deformed shape decreases in a quadratic manner. Coupled with this 

observation, we studied the level of deformation after 125 μs under the whole range of 

applied field for λ = 50 and 1/50. The choice of time cut-off is influenced by the tendency of 

loss of integrity of the vesicle membrane under the applied nominal potential (20 volts). As 

shown in Fig. 4(d), the applied field is a major factor in determining the extent of 

electrodeformation.

3.2 Effect of Vesicle Size

Theoretically, stress generated by the electric field, and hence the tensile or compressive 

forces acting on the boundary also shows dependence on the vesicle size. We varied the 

vesicle diameter from 10 to 30 μm and observed an almost linear increase in the initial force 

density with increasing size for a given applied voltage difference (Figs. 5(a) and 5(b)). It 

should be noted that we considered the tensile force generated when λ = 50 in Fig 5(a) to be 

positive. Consequently, for the case with λ = 1/50 shown in Fig. 5(b) the increasing 

compressive forces are more negative. The force vectors on the vesicles (shown as insets in 

Fig. 5(a) and 5(b)) also indicate this change in direction. However, the effect of vesicle size 

is not conclusive on the long-term deformation behavior of the vesicle as shown in Fig. 3(c) 

as well as in the experiments [18].

The contrast in electric field distribution between cases with λ > 1 and λ < 1 are presented 

in Fig. 6. In both cases, we start with a perfect circular shape (α = 1). The vesicle 

deformations are shown in the electric field plots with field lines at α = 1.5 for λ = 30 and α 
= 1/1.5 for λ = 1/30. Also, in both cases, applied voltage at the left electrode is 10 volts 

while at the right electrode it is −10 volts. When the aqueous electrolyte media is subjected 

to a DC voltage gradient, ions in the fluid media start to migrate towards opposite electrodes. 

The ions inside the vesicles also gets localized following the same principle. Thus, there is a 

build-up of opposite ions inside the vesicle (negative ions on the left side since the left 

electrode is the anode, and vice versa). However, since the fluid media outside is less 

conductive (Fig. 6(a)), the electric current cannot drive enough positive ions just outside the 

membrane to counter the build-up inside. As a result, a net negative charge accumulates 

around the left half of the vesicle with an equal amount of positive charge accumulating 

around the right half at the interface [32]. One critical point here is the time scale of this 

charge relaxation effect, which can be estimated from the electrical properties of the 

electrolyte in question. For the dilute aqueous media, this timescale is expressed as the ratio 
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of the Debye screening length squared to the diffusivity of the electrolyte l Debye 
2 /D . For 

aqueous solutions, the Debye screening length ℓDebye is between 1 to 100 nm while the 

diffusivity (D) is on the order of 10−9 m2/s [33]. This leads to rather fast bulk charge 

relaxation time which is on the order of nanoseconds. Consequently, the local changes in 

electric field is instantaneous which further justifies the use of the steady-state governing 

equation (Eqs. (2.1)) for electric potential.

Our numerical results indicate that the vesicle with an overall 30 times higher conductivity 

compared to the surrounding media behaves like a conductor with electric field lines 

entering and exiting the vesicle boundary as perpendicular lines (Figs. 6(a–b)). As the ions at 

the inner side of the membrane dominate over the fluid medium ions on the interface, they 

experience a tensile pull towards the electrodes at the boundaries as shown in the force 

vector in Fig 5(a). The exact opposite scenario (Figs. 6(c–d)), with the fluid medium 

conductivity being 30 times higher than the vesicle results in the vesicle behaving like an 

insulator. In this case, there is an accumulation of net positive charge on the left half of the 

vesicle while an equal amount of net negative charge accumulates at the right half. For this 

reason, electric field lines are expelled from the surface. The corresponding electric field 

induced force is shown in Fig. 5(b). In this case, the force distribution is compressive in 

nature i.e. vesicle experiences inward forces. In both cases, owing to the nature of the 

induced forces, the vesicle deforms continuously becoming an oblate ellipsoid for λ > 1 and 

a prolate one for λ < 1.

3.3 Electric Field Induced Flow Field

In most works with bio-vesicles, the surrounding flow patterns were ignored. However, for 

deformable vesicles, the fluid-solid interaction can produce interesting flow patterns. Two of 

these secondary flow patterns are shown as streamlines in Fig. 7(a) and 7(b), which are 

produced early in the transient deformation stage. Here, four vortices are created around the 

vesicle following bilateral symmetry with the major and minor axes of the spheroid as axes 

of symmetry. However, depending on the conductivity ratio, the vortices switch direction. 

When the vesicle is getting extended in the horizontal direction, the surrounding fluid layer 

follows it and generates vortices that follow the general direction of the force on the 

boundary to satisfy fluid continuity. The opposite is seen (Fig. 7(b)) in case of compressive 

deformation where all four vortices switch direction. It should be noted that these flow 

patterns are resulting from a short but continuous deformation resulting from the DC electric 

field. When the electric field is removed, the vesicle would try to return to its resting 

undeformed state. That will reverse the flow directions in both cases. Similarly, in case of an 

oscillatory pulsed DC field application, this reversal of local vortices can be used for micro-

scale mixing applications. The velocity field, in that case, is very similar to that of immersed 

bubbles in streaming motion. In future, we plan to see the fluid behavior for multiple 

vesicles with same or different conductivities.

3.4 Effects of Vesicle Shape

All our simulations thus far began with an initially circular/spherical vesicle. In general, the 

artificial vesicles or cells in experimental conditions have a wide range of initial aspect 

ratios. Here we compare the differences in the force dynamics for vesicles with several 

Morshed et al. Page 9

Phys Rev Fluids. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different initial aspect ratios. For this purpose, seven different initial aspect ratios were 

chosen (α = 1/3,1/2,1/1.5,1.0,1.5,2.0,3.0) with λ = 1/10,λ = 1/50 and λ = 1/100 while a 

nominal applied field of 133.33 kV/m is used (Fig. 8(a)). Since the vesicle is in equilibrium 

due to balancing forces on the left and right half, here we present the integration of force 

density on the left half with all the results normalized by the maximum force (778 μN/m) at 

α = 1/3 for λ = 1/100. As the aspect ratio decreases from 1, the effective area for the 

horizontal compressive force increases. This results in the increased compressive force. 

However, with increasing aspect ratio, this trend tends to become flattened. A logical 

reasoning could be drawn based on the magnitude of the available area for each case by 

comparing it with the perfectly circular case. With lower aspect ratios (α < 1), the 

compressive stress has a much higher normal surface to act upon. While in higher aspect 

ratios (α > 1) the available surface area normal to the horizontal compressive force drops off 

relatively slowly, which explains the force approaching an asymptote. The time required to 

deform such a vesicle to an aspect ratio of α = 1/3 consequently is smallest for the case with 

an initial aspect ratio α = 0.5 and largest for an initial aspect ratio α = 2.0, as shown in Fig. 

8(b). The time required is influenced by both the magnitude of the force and initial aspect 

ratio which controls the available normal surface for the force to act upon.

4. Conclusions

In the studies of bio-vesicles like cell, virus and artificial lipid vesicles, electric field 

application has become one of the most prominent manipulation techniques. Still, much 

remains unknown about the transient membrane deformation process due to electrostatic 

interactions arising from the differences in electrical properties of the media surrounding the 

membrane as well as membrane properties and cell configurations. Electrodeformation of 

flexible vesicles under a wide range of applied electric field has been studied in the present 

work. The electric field distribution was calculated using immersed interface method, while 

the fluid-membrane interactions were obtained by solving the flow-field using an immersed 

boundary approach. The membrane deformation dynamics under different electric fields and 

conductivity ratios were verified against experimental data. The numerical results show a 

number of transient deformation phenomena that are difficult to observe experimentally. Our 

study explores the transient deformation mechanisms which can help in the design of future 

experiments and assist in novel applications of electric field induced vesicle deformation.

Dependence on the electric field strength was clearly observed in our results. Numerical 

results demonstrated the scaling behavior of the applied force arising from the electric field 

which were substantiated with analytical results. Our study also pointed out the relative 

levels of force experienced by vesicles of different initial shapes. We plan to explore the 

implications of the initial membrane shape on a number of parameters such as stiffness and 

bending rigidity in a future work.

Interesting fluid behavior was observed around the deforming vesicle that also showed 

variation based on the change in conductivity ratio. Vortices created by these deforming 

vesicles can be used for mixing in microchannels. Also, an extension of the current model to 

a three-dimensional description of the vesicle will help to provide further insight into the 

discrepancies between current experimental and numerical studies.
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Appendix

A. Numerical Model and Methods

The coupled hydrodynamic and electric system is solved using a hybrid immersed boundary 

and immersed interface technique. Both these methods employ a non-body-fitted Cartesian 

gridding approach in discretizing the physical domain (Fig. 1). This is computationally 

advantageous due to almost no cost for grid generation. However, for the grid points near the 

membrane interface, which are much smaller in number compared to regular grid points, 

special treatment is required. In the immersed boundary method, the localized variables (e.g. 

force and velocity) on the membrane are interpolated to nearby grid point using an 

approximate delta function. The immersed interface approach avoids the smearing by 

altering the discretized equations near the interface. Due to the inherent numerical accuracy 

and stability, immersed interface method is very well suited for the elliptic electromagnetic 

interface problem [34]. The immersed boundary method, on the contrary, is appropriate for 

the fluid-structure interaction problem encountered in the electrodeformation of the 

immersed biological membranes [35,36]. Previously, we have combined the immersed 

interface and the immersed boundary methods to study particle-particle dielectrophoretic 

and electrophoretic interactions [20,24]. Recently, similar numerical approach was taken by 

Hu et al. to further develop the algorithm for electrodeformation problems [21,22]. Although 

the underlying numerical methods are same for both their and our works, there are 

difference in the implementations of both immersed interface and immersed boundary 

methods. For example, treatment of jump conditions, the membrane dynamics, localization 

and spreading of membrane forces are approached differently in each study. The specific 

details of the numerical method pertinent to the electrodeformation problem are presented 

below.

The electrostatic problem (Eqs. (2.1)–(2.5)) at a given instant is independent of the fluid 

description and hence, is solved directly by the immersed interface technique by first 

transforming it to an equivalent elliptic problem with piecewise constant conductivity and 

modified interface conditions. Here the governing equations and the jump conditions are 

modified as,

∇2ϕr, out + ∇σout
σout

⋅ ∇ϕr, out = 0 (A1)

∇2ϕr, in + ∇σin
σin

⋅ ∇ϕr, in = 0 (A2)
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ϕr, out(x, y) − ϕr, in(x, y) = m(s) (A3)

η ⋅ ∇φr, out − η ⋅ ∇φr, in = r(s) (A4)

where ϕr (x, y) is a solution set of the modified problem taken as a function of r(s). The 

instantaneous solution of the equation for capacitive charging (Eq. 2.6) at each immersed 

interface point yields the transmembrane potential which is used to calculate the voltage 

jump across the membrane in (Eq. A3). Now, if we consider ϕ*(x, y) as a solution to the 

original problem (Eqs. (2.1)–(2.5)) and define r*(s) = η ⋅ ∇φout* − η ⋅ ∇φin* , then it can be 

shown that ϕ*(x, y) also satisfies the modified problem and jump conditions, thus r(s) ≡ r* 

[34]. Which implies ϕr* (x, y) and

η ⋅ σout∇φr*, out − η ⋅ σin ∇φr*, in = n(s) (A5)

Thus, the original problem is solved by finding r(s) through r* and ϕr*(x, y) from the 

solution of the modified problem. The assumption of piecewise constant conductivity makes 

the modified description (Eq. A1–A4) a Poisson problem which can be solved by fast 

solvers. With h being the uniform mesh size in the Cartesian grid, and nx and ny as the 

number of grid points in the coordinate directions, the modified governing equation can be 

written in the discrete form for any arbitrary grid point inside the domain (p, q) as,

1
ℎ2 Φp + 1, q + Φp − 1, q + Φp, q + 1 + Φp, q − 1 − 4Φp, q = Cpq;   where, 1 ≤ p

≤ nx − 1;
1 ≤ q ≤ ny − 1

(A6)

Here the correction term Cpq on the right side is zero everywhere except at the grid points, 

where the interface cuts through the five-point stencil (points 2, 3 and 5 in Fig. 1(b)). In a 

compact matrix-vector form, Eq. (A6) can be written as

AΦ + BR = Θ (A7)

where A and B are coefficient matrices for the solution Φ, R is the discrete form of the 

modified interface jump condition r* and Θ is a vector. The correction term Cpq is also 

mapped into BR in Eq. (A7). Since ϕ*(x,y) satisfies the discrete form of Eq. (2.5), and the 

solutions inside and outside the interface depend linearly on Φ and R [34], we get the final 

equation as,

KΦ + ER = Ξ (A8)

where K and E are coefficient matrices and Ξ is a vector. The linear systems of equations are 

combined by eliminating Φ using G = (E – KA−1B) and H = (Ξ – KA−l·Θ) which gives,

GR = H (A9)
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Equation (A9) is solved for R using a GMRES routine with a weighted least squared 

interpolation scheme [37]. Finally, with the knowledge of R, the discretized system of 

equations is solved iteratively through successive calls to the PARDISO solver [38]. Further 

details on the formulation of the hybrid method, convergence, grid refinement, and accuracy 

can be found in [20,24].

Once the electric potential from the electrostatic equations are found, we can calculate the 

body force term (BF(x, t)) in Eq. (2.8), which is then supplied to the fluid flow equations. In 

order to solve Eqs. (2.8) and (2.9) using the immersed boundary approach, we assume the 

elastic immersed membrane to be neutrally buoyant. Based on this assumption, the 

membrane boundary Γ can be expressed as singular force density contributions in the body 

force term in Eq. (2.8) following the immersed boundary approach as [39],

FIB(x, t) = ∫
Γ

felastic(s, t)δ(x − X(s, t))ds (A10)

Here, FIB(x, t) is the Eulerian force density acting on the fluid, while felastic(s, t) is the 

Lagrangian boundary force density with respect to ds. In Eq. (A10), δ(x) is a two-

dimensional Dirac delta function which ensures the mathematical representation of the 

physical membrane as body force terms in the two-dimensional domain as required at a 

given time [20]. Although FIB(x, t) is singular on the immersed boundary, we note that in the 

numerical method we use a regularized Delta function such that the force density at the 

immersed boundary is well defined. This integral over the delta function provides the 

resulting force exerted by the section of the immersed boundary on the fluid in that control 

volume [40]. On the right side of Eq. (A10), the term X(s, t) represents the massless 

immersed boundary as a simple closed curve of length L with X(0, t) = X(L, t) and 0 ≤ s ≤ L. 

The parameter s tracks the material points of the boundary which is carried along with the 

fluid by the local fluid velocity u(x, t) as

∂X(s, t)
∂t = U(X(s, t), t) = ∫

Ω
u(x, t)δ(x − X(s, t))dx (A11)

The Eulerian forces due to the applied electric field (Felec) from Eq. (2.7) are interpolated on 

the Lagrangian immersed boundary points and added to the elastic force density (FIB) to 

compute the total body force on the membrane. Further details on the specific delta function 

and the numerical integration have been discussed in detail in [24].

The Lagrangian force density felastic(s, t) can be generated from the combination of elastic 

stretching, bending or stiff tethering of the immersed boundary. For our previous works on 

dielectrophoresis with rigid particles [20,24], we considered each immersed boundary point 

on the interface to be connected to all other points on that immersed boundary through 

elastic links which obey a generalized Hooke’s law following,

felastic(s, t) = S(X(s, t), t) (A12)
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Aforementioned equation describes the boundary force density at time t in terms of the 

boundary configuration at that time. The function S satisfies the generalized Hooke’s law 

[24]. For example, considering two arbitrary immersed boundary points i and j, the force 

felastic
ij  due to the elastic link between the two points can be obtained by,

felastic
ij = κ Xj − Xi − Lij

0 Xj − Xi
Xj − Xi

(A13)

where κ is the stiffness parameter of the link and Lij
0  is the initial resting length of the link. 

As the membrane deforms due to the applied field, it’s initial resting position is altered 

resulting in the generation of elastic forces. Consequently, these body forces alter the flow 

field surrounding the membrane. Therefore, after solving the electric field, discretized forms 

of Eqs. (2.8–2.9) are solved using Fast-Fourier-Transform (FFT) [41]. The discrete forms are 

given as,

ρ
unt + 1 − unt

Δt + ∑
ξ = x, y

uξ
ntDξ

± unt = − D0pnt + 1

+ μ ∑
ξ = x, y

Dξ
+Dξ

− unt + 1 + BF
nt

(A14)

D0 ⋅ unt + 1 = 0 (A15)

where D+, D−, and D0 are the forward, backward, and central spatial difference operators, 

uξ
ntDξ

± and D0 are the upwind and gradient difference operators respectively as defined in 

[40]. From the flow-field solution, local velocities of the immersed boundary points are 

updated using the discrete form of Eq. (A10). It should be mentioned that, owing to the very 

low Reynolds number in the microfluidic channel, solving only the Stokes equations might 

have been enough. However, numerical implementation of the solution procedure of time-

dependent Stokes flow using immersed boundary method with periodic boundaries does not 

offer significant computational advantage over solving the full Navier-Stokes equations. 

Moreover, we are using fast-Fourier transform based Navier-Stokes solvers which have been 

shown to perform very well at low Reynolds numbers [42].
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Fig. 1. 
Rectangular computational domain Ω used to model the vesicular microenvironment. (a) 

Boundary conditions for the electrostatic problems are shown. The vesicles in the domain 

have a finite size with membrane boundaries denoted by Γ. The undeformed circular vesicle 

has a radius of 10 μm while the domain dimensions are a = b = 150 μm. (b) Detail of the 

immersed boundary representation of the membrane. Vesicle membrane location in the 

regular Cartesian domain was calculated using spline interpolation [31].
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Fig. 2. 
Model result comparison with experimental data from Sadik et al [18]. Vesicles are initially 

circular before application of an electric field in (a) and (c). (b) The deformation dynamics 

was tuned using experimental data after 500 μs at 0.9 kV/cm nominal applied field with 

conductivity ratio, λ=53. (d) The tuned model captures vesicle deformation at higher applied 

voltage (1.5 kV/cm) and different conductivity ratio (λ=46.9) as seen in the experiments 

[18].
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Fig. 3. 
Calculated aspect ratio (α), with respect to changing conductivity ratio (λ) for different 

applied potentials. Experimental results from [18] are included for comparison. The electric 

fields shown are nominal. (b) Change in aspect ratio after 500 μs for different conductivity 

ratios at 1.5 kV/cm nominal applied field corresponding to Sadik et al [18] with the voltage 

jump across the membrane set to zero and the same scenario at (c) with voltage jump 

originating from membrane charging.
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Fig. 4. 
Effect of the magnitude of applied potential difference with different conductivity ratios. 

Deformation of the vesicle in terms of the aspect ratio (α) with time for (a) conductivity 

ratio, λ = 30 and (b) λ = 1/30. (c) Starting from a perfect circle (α = 1), the time required to 

reach α = 1.11 for λ = 30 and α = 0.9 for λ = 1/30. (d) Starting from α = 1, the aspect ratios 

for both λ > 1 and λ < 1 at 125 μs with increasing applied potential.
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Fig. 5. 
Calculated force density on vesicles with different initial diameters. (a) Increase in force 

with increasing applied potential for λ = 50 and (b) λ = 1/50.

Morshed et al. Page 20

Phys Rev Fluids. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Electric field distributions with field lines showing electrodeformation from spherical to 

prolate/oblate spheroids with an applied potential difference of 20 volts. (a-b) Deformation 

from circular (α = 1) to an oblate ellipse (α = 1.5) for λ = 30. (c-d) Deformation from 

circular to a prolate ellipse (α = 1/1.5) for λ = 1/30.
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Fig. 7. 
Response of the surrounding fluid media due to the deformation of vesicles for an applied 

potential difference of 7 volts. Streamlines for conductivity ratio (a) λ = 50 and (b) λ = 

1/50. The four vortices switch directions in case (b) due to compressive force.
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Fig. 8. 
(a) Effect of initial shape on the force experienced by the vesicle for different conductivity 

ratios with an applied potential difference of 20 volts. (b) Time required to deform to an 

aspect ratio of α = 1/3 for each case with the same applied voltage difference.
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Table 1:

Boundary conditions for the governing equation in the domain

Inlet (x = 0) Outlet (x = a) Bottom Wall (y = 0) Top Wall (y = b)

Electrostatic Description ϕ(x, y) = ϕL ϕ(x, y) = ϕR ∂ϕ(x, y)
∂y = 0 ∂ϕ(x, y)

∂y = 0

Fluid Dynamic Description Periodic Periodic n ⋅ u = 0;  t ⋅ u = 0a n ⋅ u = 0;  t ⋅ u = 0a

an and t  are the unit normal and unit tangent vectors to the walls
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Table 2:

Geometric, mechanical and electrical parameters used for the calculation of vesicle deformation

Parameter Value

Conductivity of the membrane, σmem 10−7 S/m [27]

Conductivity of the vesicle content, σenc 0.5 S/m [27]

Vesicle membrane thickness, h 5 nm

Vesicle radius, R 5~15 μm

Permittivity of the membrane, εmem 1.77×10−10 F/m [26]

Permittivity of the surrounding fluid medium, ε 7×10−10 F/m [20]

Density of the surrounding fluid medium, ρ 1000 kg/m3

Viscosity of the surrounding fluid medium, μ 0.001 kg/(m · s)
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