
DeepDDK: A Deep Learning based Oral-Diadochokinesis 
Analysis Software

Yang Yang Wang*, Ke Gao*, Yunxin Zhao*, Mili Kuruvilla-Dugdale†, Teresa E. Lever‡,1, Filiz 
Bunyak*,1

*Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, 
Missouri 65211

†Department of Speech, Language and Hearing Sciences, University of Missouri, Columbia, 
Missouri 65211

‡Department of Otolaryngology - Head and Neck Surgery, University of Missouri, Columbia, 
Missouri 65211

Abstract

Oromotor dysfunction caused by neurological disorders can result in significant speech and 

swallowing impairments. Current diagnostic methods to assess oromotor function are subjective 

and rely on perceptual judgments by clinicians. In particular, the widely used oral-diadochokinesis 

(oral-DDK) test, which requires rapid, alternate repetitions of speech-based syllables, is conducted 

and interpreted differently among clinicians. It is therefore prone to inaccuracy, which results in 

poor test reliability and poor clinical application. In this paper, we present a deep learning based 

software to extract quantitative data from the oral DDK signal, thereby transforming it into an 

objective diagnostic and treatment monitoring tool. The proposed software consists of two main 

modules: a fully automated syllable detection module and an interactive visualization and editing 

module that allows inspection and correction of automated syllable units. The DeepDDK software 

was evaluated on speech files corresponding to 9 different DDK syllables (e.g., “Pa”, “Ta”, “Ka”). 

The experimental results show robustness of both syllable detection and localization across 

different types of DDK speech tasks.
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I. Introduction

Diagnostic and prognostic accuracy as well as timely intervention and treatment monitoring 

are important for progressive neurological disorders such as Parkinsons disease (PD), 

amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), since earlier intervention 

is associated with improved quality of life and survival in these patient populations. 

Diagnosis and monitoring of neurological disorders involve various medical tests, some of 
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which can be invasive and expensive, prohibiting their effective use. Recent advances in 

mobile health technologies have lead to the development of non-invasive, more accessible, 

and affordable new methods and devices not only for diagnosing and monitoring medical 

conditions, but also for tracking functional decline induced by these diseases. This paper 

focuses on development of an oral-diadochokinesis (oral-DDK) analysis software for non-

invasive, objective, and quantitative assessment and monitoring of speech disorders that are 

common in PD, ALS, MS, and other neurological disorders.

Oral-DDK tasks are universally used by speech-language pathologists (SLPs) for assessment 

and monitoring of motor speech disorders (e.g., dysarthria and apraxia) [13]. These tasks 

involve repetitions of single syllables like “Pa”, “Ta”, “Ka”, or sequential multi-syllables 

such as “Pa-Ta-Ka ”, “Buttercup”, etc. as fast as possible, in one breath or within a fixed 

period of time. SLP use these tasks to estimate diadochokinetic (DDK) rate to provide 

information about a person’s ability to make rapid speech movements using different parts 

of the mouth [5]. Manual analysis of DDK rate from audio files is subjective, time intensive, 

and error-prone. Furthermore, since manual analysis only estimates syllable count, not the 

locations (timestamps), or production accuracies of the events, rich information that can help 

diagnosis or monitoring is lost.

In this paper, we present an oral-DDK analysis software that can detect syllables and 

estimate their timestamps in DDK audio files. The software consists of two main modules, a 

deep learning based fully automated syllable detection module, and an interactive 

visualization and editing module that allows inspection and correction of automated syllable 

detection results. The aim of this work is to enable computation of objective, quantitative 

outcome measures from the oral-DDK signals to aid early diagnosis and treatment 

monitoring of neurological disorders.

II. Related Work

Recent studies have started to show the potential of speech in general and oral-DDK in 

particular to be a functional biomarker for neurological disorders. DDK task derived 

measures were explored for the diagnosis of PD [4] [7], traumatic brain injury [3], MS [2], 

ataxic dysarthria [1], etc. using a variety of computational approaches.

For example, syllables in oral-DDK task can be detected by first computing the signal 

envelope, then by thresholding the envelope or locating local maxima in the envelope. This 

process requires parameter selection for envelope computation and thresholding. However, 

complexity of the signals, and high variations in frequency and amplitude (Figure 1) make 

parameter selection challenging and result in under or over-detection of the syllables. Wang 

et al. [11] proposed a multi-threshold syllable detection system in which a threshold is 

automatically selected based on a 7-second DDK sample and the gender of the participant. 

Threshold can be adjusted to re-perform the analysis if needed. However, if the lowest peak 

intensity during consonant-vowel (CV) is lower than the highest peak intensity during inter-

syllable pauses, the DDK sample gets labeled as nonexecutable. The approach results in 

more than one third of their DDK samples being unanalyzable. Tao et al. [8] proposed use of 

Gaussian Mixture Models and Hidden Markov Models (GMM-HMM) to automatically 
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detect syllable boundaries in DDK data. In recent years, deep learning based audio analysis 

has started to become popular, such as [6] [12] [9]. In this paper, we propose a deep learning 

based audio signal analysis system for automated detection and localization of syllables in 

oral DDK samples.

III. METHOD

Deep learning is a subfield of machine learning that allows learning of high-level 

abstractions in data through its multilayer architecture [10]. Inspired by the recent successes 

of deep learning in speech and image analysis, we have developed DeepDDK, a deep 

learning based system for automated detection and localization of syllables in oral-DDK 

tasks.

A. Network Architectures

DeepDDK consists of a cascade of two convolutional neural networks (CNNs). The first 

CNN (CNN-1) segments the 1D audio signal into syllable vs. non-syllable (silence, breath, 

etc.) regions. CNN-1 is a classification network that operates on 1D temporal array of audio 

samples. Input size is 1 × 5292, where 5292 = 120ms × 44.1kHz corresponds to the product 

of average syllable duration and sampling rate. Output size is two, corresponding to syllable 

and non-syllable labels. The CNN-1 network structure is shown in Figure 2a and Table I.

The second CNN (CNN-2) locates syllable timestamps within the syllable regions detected 

by CNN-1. CNN-2 is a 2D regression network that operates on a sequence of audio frames 

(temporal windows) with length of average event duration 120ms in Table II to predict the 

precise timestamp of a syllable. For each frame in the input, CNN-2 predicts the probability 

to contain a syllable. Input size is 15×5292, where 15 is the number of audio frames 

analyzed and 5292 is the length of a frame as in CNN-1. The CNN-2 network structure is 

shown in Figure 2b and Table I.

B. Convolutional Neural Networks Training

Using our custom DDK data collection iOS App, we conducted an IRB-approved study to 

collect oral-DDK data from seventeen testers for nine tasks (corresponding to syllables “Pa”, 

“Ta”, “Ka”, “Da”, “Ba”, “Ga”, “La”, “Ma”, and “Ha”). Following study consent, subjects 

were instructed to repeat each syllable as fast as they could for 15 seconds. Each task was 

repeated twice, resulting in 306 audio files of length 15 seconds. All audio files were 

sampled at 44.1 kHz. Our DeepDDK system relies on availability of labeled training data. In 

order to label data, we have developed a preliminary unsupervised automated syllable 

detector (envelope with local maxima) with a user interface for visualization, navigation, and 

editing of the results. Results form unsupervised detector were inspected by three experts 

and corrected according to consensus using our visualization and editing interface. The 

ground truth consists of a timestamp for each syllable, instead of a region in the audio 

signal. Locations of these timestamps typically correspond to the sample value maxima in 

the syllable/event. Instead of using a sliding window, considering average event duration 

(see Table II), a 120ms temporal window (also called ‘frame’) centered around each syllable 

timestamp is used as positive sample (syllable) to train CNN-1 as well as to reduce false 
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positive training data. So 70 timestampes will have 70 positive frames. Shaded regions in 

Figure 3 show these positive samples. As negative samples (non-syllable) to train CNN-1 

and to reduce false negative training data, 120ms temporal windows centered at each 

midpoint between two consecutive syllable timestamps are used. In order to prevent 

information loss, instead of extracting hand-crafted audio features, raw audio sample value 

is fed into CNN-1. CNN-2, the regression module, aims to predict precise timestamps of the 

detected syllables. To train the network, 15 sequential frames (one centered on, K centered 

before, and 15 − K − 1 centered after the ground truth timestamp, where K is a random 

number in the range 1 to 13 for robustness) are extracted with a step size of 12ms. Each 

frame is assigned a score indicating its probability to contain a syllable:

Pi = 1 − i − iGT
15 − 1 (1)

where i is the index of the specific frame in the sequence and iGT is the index of the frame 

centered on the ground-truth syllable timestamp.

C. Convolutional Neural Networks Testing

DeepDDK syllable detection and localization processes can be summarized as follows. The 

intermediate outputs from classification network (CNN-1) and regression network (CNN-2) 

are shown in Figure 4b and 4c.

Step-1 Classification: Raw audio sample value is fed into CNN-1. For each sliding 

window with stride 12ms, CNN-1 predicts a class label (syllable vs. non-syllable), which is 

then assigned to the sliding window. The process produces a binary 1D array, ℒ, where 

ℒ(t) = 1 indicates presence of a syllable at time t.

Step-2 Interval Preprocessing: Morphological closing is applied to ℒ to fill small gaps 

in class labels. Syllable event time intervals ℰ = ℰ1, .., ℰn  are identified by applying 

connected component labeling to ℒ. ℰi represents a region of a syllable. n indicates syllable/

event count in the file.

Step-3 Syllable Timestamp Prediction: From each syllable event interval ℰi, 15 

sequential frames are extracted. If the duration of ℰi is less than 15 frames, the negative 

frames around ℰi will be included until ℰi duration has 15 frames. Extracted frames are fed 

into CNN-2 for timestamp score prediction. The center of the frame with the maximum 

CNN-2 score is marked as the timestamp for event ℰi.

IV. Experimental Results

As described in Section III-B, we have collected 306 audio files corresponding to seventeen 

subjects, nine different syllable/event types, and two files for each event type. These files 

were first analyzed by our unsupervised gammatone-based syllable detection program. The 

detections were then corrected by expert speech pathologists using our visualization and 

editing interface to produce ground-truth data. Out of these 306 files, 225 files (74%) were 
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used to train the proposed DeepDDK software, and 81 files (26%) were used to test the 

syllable detection and localization performance. Each audio file was 15sec long. The 

average number of events per audio file was 74.

We evaluated the system performance in terms of syllable/event count accuracy and syllable/

event localization accuracy. Event counting accuracy is evaluated by comparing the number 

of detected events (DT) to the number of ground truth events (GT). The average event count 

difference 1
N ∑i = 1

N # DT (i) − # GT (i)| between DeepDDK and ground-truth for N = 81 test 

files is 1.6 events. The average execution time per test file is 1.9s. Figure 5 shows detailed, 

comparative, syllable count accuracy analysis for the proposed DeepDDK and a very recent 

pre-linguistic speech segmentation tool [14]. DeepDDK results in low syllable count errors 

and outperforms the pre-linguistic speech segmentation tool [14]. For 81% of the test files, 

DeepDDK count error is 2 or less (|#DT(i) − #GT(i)| ≤ 2). Considering that the average 

number of events per file is 74, this corresponds to 2.70% error. For the case of [14], only 

72% of the test files have a count error of 2 or less. Figure 5 also shows that DeepDDK’s 

highest error for any file is 5, which corresponds to an error of 6.75%, whereas when [14] is 

used, 17% of the files have a count error higher than 5. We also compared our results with 

another DDK software from Smekal et al. [15] [16], and linear support vector machine 

(SVM) with Mel-frequency cepstral coefficients (MFCC) features. Table II presents overall 

and type-specific event localization performances for Deep-DDK. Localization performance 

is measured in terms of recall (Recall = # TP
# GT ) and precision (Precision = # TP

# DT ) for a given 

temporal distance threshold. Two temporal distance thresholds T = 30ms and T = 60ms were 

used to evaluate performance. If the timestamp of the detected event is located within T 
milliseconds of the ground-truth event, the detection is considered a true positive detection 

(TP). We can see in Table II that event types ‘Pa’, ‘Ka’, ‘Ba’, ‘Da’, and ‘Ga’ have very high 

location accuracies for T = 30ms, because of their fairly regular pattern. In contrast, ‘Ta’ 

appears to have lower location accuracy. However, this is mostly due to its relatively longer 

duration (larger than our frame length), which leads to the shift location of the predicted 

event label.

V. CONCLUSIONS

We have presented DeepDDK, a deep learning based system for automated analysis of oral-

DDK tasks. DeepDDK allows objective and quantitative analysis of oral-DDK data, 

corresponding to a task used by SLP for assessment and monitoring of abilities. 

Experimental results showed robust syllable detection and localization capabilities across 

different types of DDK. Accurate, objective, quantitative analysis of oral-DDK data is of 

great significance because these tasks can be potentially used in diagnosis and monitoring of 

disorders, particularly the progressive ones such as PD, ALS, and MS.
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Fig. 1: 
Audio waveform samples for different types of oral-DDK tasks.
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Fig. 2: 
CNN-1 and CNN-2 architectures used for DDK syllable detection and localization.
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Fig. 3: 
Sample signals and associated training data. Colored dots mark ground-truth timestamps, 

shaded regions mark positive training samples for CNN-1.
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Fig. 4: 
Intermediate outputs from the different stages of DeepDDK for a sample “Pa” file. Top 

panel: original audio signal (blue) with ground-truth timestamps (red). Second panel: output 

of CNN-1. Third panel: output of CNN-2 where local maxima indicate syllable timestamp.
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Fig. 5: 
Cumulative distribution of event count error for pre-linguistic segmentation [14], Smekal et 

al. [15] [16], MFCC with Linear SVM and our DeepDDK software. Horizontal axis 

indicates count error (difference between the number of predicted events vs. ground truth 

events). Vertical axis shows the ratio of the test files. Absolute event count differences of 1, 

2, 3, 4, 5 in the graph correspond to percent count errors of 1.35%, 2.70%, 4.05%, 5.40%, 

6.75%, respectively (average number of events per file is 74).
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TABLE I:

Layer details for CNN-1 and CNN-2 used for DDK syllable detection and localization.

CNN-1: Layer (type) Size CNN-2: Layer (type) Size

input_l (InputLayer) (5292, 1) input_2 (InputLayer) (15, 5292, 1)

convl (ConvlD) (5292, 64) convl (Conv2D) (15, 5292, 32)

conv2 (ConvlD) (5292, 64) conv2 (Conv2D) (15, 5292, 32)

conv3 (ConvlD) (5292, 64) conv3 (Conv2D) (15, 5292, 32)

max_pooling1d_ 1 (1323, 64) max_pooling2d_ 1 (7, 661, 32)

batch_norm_l (1323, 64) batch_norm_5 (7, 661, 32)

conv4 (ConvlD) (1323, 128) conv4 (Conv2D) (7, 661, 64)

conv5 (ConvlD) (1323, 128) conv5 (Conv2D) (7, 661, 64)

conv6 (ConvlD) (1323, 128) conv6 (Conv2D) (7, 661, 64)

max_poolingld_2 (330, 128) max_pooling2d_2 (3, 82, 64)

batch_norm_2 (330, 128) batch_norm_6 (3, 82, 64)

conv7 (ConvlD) (330, 256) conv7 (Conv2D) (3, 82, 128)

conv8 (ConvlD) (330, 256) conv8 (Conv2D) (3, 82, 128)

flatten_l (FC) (84480) flatten_2 (FC) (31488)

batch_norm_3 (84480) batch_norm_7 (31488)

dropout_l (84480) dropout_3 (31488)

dense_l (FC) (1000) dense_3 (FC) (1000)

dropout_2 (1000) dropout_4 (1000)

dense_2 (FC) (2) dense_4 (FC) (15)

batch_norm_4 (2) batch_norm_8 (15)

output_classiflcation (2) output_regression (15)
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TABLE II:

DeepDDK’s location accuracy of different types of syllables.

Type Event Duration Recall Precision

30ms 60ms 30ms 60ms

‘Pa’ 120ms 0.97 0.98 0.97 0.98

‘Ta’ 170ms 0.81 0.95 0.81 0.95

‘Ka’ 140ms 0.91 0.97 0.92 0.98

‘Ba’ 90ms 0.97 0.98 0.97 0.99

‘Da’ 130ms 0.89 0.97 0.81 0.98

‘Ga’ 110ms 0.94 0.96 0.95 0.98

‘La’ 100ms 0.79 0.90 0.79 0.90

‘Ma’ 90ms 0.88 0.95 0.89 0.97

‘Ha’ 140ms 0.85 0.93 0.87 0.95

Average 120ms 0.89 0.95 0.90 0.97
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