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Abstract

A typical challenge in air pollution epidemiology is to perform detailed exposure assessment for 

individuals for which health data are available. To address this problem, in the last few years, 

substantial research efforts have been placed in developing statistical methods or machine learning 

techniques to generate estimates of air pollution at fine spatial and temporal scales (daily, usually) 

with complete coverage. However, it is not clear how much the predicted exposures yielded by the 

various methods differ, and which method generates more reliable estimates. In this paper, we aim 

to address this gap by evaluating a variety of exposure modeling approaches, comparing their 

predictive performance. Using PM2.5 in year 2011 over the continental U.S. as a case study, we 

generate national maps of ambient PM2.5 concentration using: (i) ordinary least squares and 

inverse distance weighting; (ii) kriging; (iii) statistical downscaling models, that is, spatial 
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statistical models that use the information contained in air quality model outputs; (iv) land use 

regression, that is, linear regression modeling approaches that leverage the information in 

Geographical Information System (GIS) covariates; and (v) machine learning methods, such as 

neural networks, random forests and support vector regression. We examine the various methods’ 

predictive performance via cross-validation using Root Mean Squared Error, Mean Absolute 

Deviation, Pearson correlation, and Mean Spatial Pearson Correlation. Additionally, we evaluated 

whether factors such as, season, urbanicty, and levels of PM2.5 concentration (low, medium or 

high) affected the performance of the different methods. Overall, statistical methods that explicitly 

modeled the spatial correlation, e.g. universal kriging and the downscaler model, outperform all 

the other exposure assessment approaches regardless of season, urbanicity and PM2.5 

concentration level. We posit that the better predictive performance of spatial statistical models 

over machine learning methods is due to the fact that they explicitly account for spatial 

dependence, thus borrowing information from neighboring observations. In light of our findings, 

we suggest that future exposure assessment methods for regional PM2.5 incorporate information 

from neighboring sites when deriving predictions at unsampled locations or attempt to account for 

spatial dependence.

1. INTRODUCTION

Accurate exposure assessment plays an essential role in the success of any environmental 

health study. Past air pollution epidemiological studies regularly utilize ambient air quality 

measurements from large monitoring networks to estimate population and individual 

exposures. However, measurements from these networks are spatially sparse, temporally 

incomplete, and preferentially located in areas with dense population and high pollution 

levels. There is increasing interest in developing methods to retrospectively estimate air 

pollution levels at fine spatial scales and with complete spatial-temporal coverage to 

minimize exposure measurement error (Alexeeff et al., 2015), support more spatially-

resolved health effect analyses (Kloog et al., 2012; Hao et al., 2016), and perform impact 

assessments in low- and middle-income settings (Shaddick et al., 2018). Advances in 

Geographical Information Systems (GIS), remote sensing, and numerical model simulations 

have further contributed to a proliferation of modeling approaches to estimate air pollution 

over the past decade.

This paper aims to address an important gap in the current literature: the fact, that when 

models to estimate ambient air pollution exposure are being developed, they are typically 

only compared to simpler models within the same modeling paradigms. Examples include 

comparisons between regression models with different predictors, especially in land use 

regression models (Tang et al., 2013; Wang et al, 2016); between geostatistical models with 

different spatial dependence structures (Reich et al., 2011); or between different machine 

learning algorithms (Singh et al., 2013; Reid et al., 2015). There has been very limited cross-

paradigm comparisons (Adam-Poupart et al., 2014; Yu et al., 2018), likely due to the 

analytic effort and expertise required to carry out the different approaches. In particular, 

there is a lack of comparison between machine learning and advanced geostatistical 

approaches. As exposure modeling becomes increasingly complex and computationally 

demanding, there is a pressing need to better understand the advantages and limitations 
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associated with different modeling approaches. However, synthesis of results from existing 

studies is challenging due to the use of different data sources and inconsistent criteria for 

evaluating model performance.

Our objective is to critically evaluate different exposure modeling approaches via a case 

study of estimating regional daily ambient fine particulate matter of aerodynamic diameter 

less than 2.5μg/m3 (PM2.5) across the contiguous United States. We consider major classes 

of approaches that can provide complete spatial and temporal coverage using monitoring 

measurements, meteorology, land use variables, and numerical model simulations. These 

approaches include ordinary least squares, universal kriging (Cressie, 1993), statistical 

downscaling (Berrocal et al, 2010), and machine learning methods, including random forest 

(Hu et al., 2017), support vector machine (Liu et al., 2017), and neural networks (Di et al., 

2016). Air quality estimates from these approaches have already been used in health effect 

and health impact analyses (Chang et al., 2011; Strickland et al., 2016; Di et al., 2017). Our 

evaluation focuses specifically on a model’s spatiotemporal predictive ability.

A related issue that has hindered cross-comparison is the limited availability of data and 

analytic code from exposure modeling studies. This is in contrast to efforts in other fields, 

such as genetics, genomics and neuroimaging, where established publicly available and 

well-documented datasets are available for methods development and comparison (Mailman 

et al., 2007; Leinonen et al., 2010; Van Essen et al., 2013). Sophisticated exposure estimates 

often require considerable efforts in data processing and parameter tuning to maximize 

performance. A notable example is the air pollution modeling framework for 2-week 

averages from the MESA Air study (Keller et al., 2015) where an R package has been made 

available (Lindstrom et al., 2012). Hence, another contribution of this study is the 

documentation of all data and analytic code. We also only considered methods that can be 

readily implemented using packages from the statistical R software (R Core Team 2018). 

This will ensure better reproducibility, allow for future evaluation of other methods, and 

facilitate adaptation of these methods by other groups.

2. DATA SOURCES

2.1 PM2.5 Monitoring data

For year 2011, daily PM2.5 measurements were obtained from the Air Quality System 

(AQS) database of the US Environmental Protection Agency (EPA). A total of 829 monitors 

are available in the contiguous United States. Monitors typically take measurements every 1, 

3 or 6 days, with only approximately 15% of monitors sampling daily in 2011. Figure A1 in 

the Appendix shows the number of active monitors each day: most days have less than 200 

measurements across the contiguous US.

2.2 Computer model output

Computer models for air quality use information on emission sources to simulate the fate 

and transport of air pollutants by taking into account complex atmospheric chemistry and 

physics. There is increasing use of computer model outputs to estimate air pollution levels at 

locations without monitoring data (Berrocal et al., 2010). We obtained output of hourly 
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PM2.5 concentrations yielded by runs of the Community Multiscale Air Quality model 

(CMAQ; Byun and Schere, 2006) version 4.7 performed by the EPA at 12km spatial 

resolution across the contiguous US for year 2011 using 13 vertical layers that span up to the 

top of the troposphere. We aggregated the layer 1 (about 19m from the ground) hourly 

output to generate CMAQ output of daily average PM2.5 concentration. At this horizontal 

spatial resolution, the study area is covered by a grid of 299 by 459 cells, with about half of 

those cells over the contiguous US. Each PM2.5 monitor was linked to the CMAQ grid cell 

that contains it. Figure 2 compares annual average PM2.5 concentrations obtained from 

CMAQ simulations and AQS measurements, on the log scale. As the figure shows, the 

CMAQ output captures the overall spatial pattern in the annual log PM2.5 concentration as 

measured by the monitors, with some estimation inaccuracies particularly along the West 

Coast. Figure A2 in the Appendix, presents output of daily average PM2.5 concentration as 

estimated by CMAQ and as observed at monitoring sites for two days in 2011. Additionally, 

assessment of the reliability and accuracy of CMAQ as compared to the observed PM2.5 

concentrations are provided in Tables 4 through 7.

2.3 Meteorological and land use data

Daily average meteorological fields were obtained from the North American Land Data 

Assimilation System (NLDAS) and the North American Regional Reanalysis (NARR). 

Meteorological variables include temperature at 2m, 30m, 150–180mb above ground, 

downward longwave and shortwave radiation flux, relative humidity at 2m, boundary layer 

height, visibility, dew-point temperature, potential evaporation, convective available 

potential energy, pressure at 2m, 10m, and 30m, and U- and V-wind speed at 10m. All these 

variables are known to influence the transport and chemistry of fine particle matters, are 

readily available and have been incorporated in previous studies estimating PM2.5 

concentration using machine learning methods and leveraging remote sensing data (Hu et 

al., 2017).

We also obtained the following land use variables: elevation from the US Geological Survey, 

major roadway lengths and percentage of forest cover from the National Land Cover 

database, population density from the U.S. 2010 Census Bureau at the census tract level, 

percentage of impervious surface from Landsat, and PM2.5 primary emission sources from 

the 2011 US EPA National Emissions Inventory Facility Emissions report. Although all the 

above mentioned variables were available at different spatial resolution (point level, in some 

cases, grids, etc.), they were re-gridded to the CMAQ 12km grid. Specifically, for predictors 

with finer spatial resolutions than CMAQ (e.g. elevation), we used the average of cell values 

that intersect with the CMAQ cell. For predictors with coarser spatial resolution than CMAQ 

(e.g. meteorology), the value of the nearest grid cell centroid was used.

3. METHODS

In this section we describe all the methods we used to obtain daily estimates of PM2.5 

concentration across the contiguous US. We start by first describing the variable selection 

procedure we implemented to identify the predictors we leveraged to generate estimates of 
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PM2.5 concentration during year 2011, and then move onto describing each of the exposure 

assessment methods considered for comparison in the manuscript.

The last subsection describes the various metrics used to compare the predictive 

performance of the various exposure assessment methods. A schematic diagram 

summarizing all the methods is available in the Appendix (Figure A3).

3.1. Variable selection

It is well established that meteorological variables and land use characteristic are good 

predictors of PM2.5 concentration (Hoek et al., 2008). To identify which predictors should be 

used in the exposure models considered in our subsequent model comparisons, we first 

performed variable selection via cross validation and best subset regression (Kutner et al., 

2005). Best subset regression is a variable selection method that compares all the regression 

models containing a given number of predictors and determines the best fitting model, e.g. 

the “best set of predictors”, based on some validation criteria. In our case, we used the 

criteria cross-validation root mean square error.

Hence, we randomly split the monitors into 5 folds, performed best subset regression using 

data from the other 4 folds and predicted PM2.5 concentration at the hold-out fold. For each 

hold-out set, we computed the root mean square error (RMSE), comparing the predicted 

values with the held-out PM2.5 observations. We averaged the RMSEs across the five folds 

and selected the model which yielded the best predictive performance. This identified a 

model with 11 predictors: including an additional predictor only improved prediction by less 

than 0.1%. After having determined the number of predictors to include in the model, we 

identified the set of 11 predictors again via best subset regression. In this second step, best 

subset regression was performed on the full data using all meteorological variables and land 

use covariates.

We implemented subset regressions as a two-step procedure by first identifying the number 

of needed predictors and then determining the selected covariates, simply because we did 

not use all the data and different training datasets could identify a different number and set 

of predictors. Even though using a cross-validation strategy forced us to adopt a two-stage 

procedure for variable selection, this approach reduces the chance of overfitting.

The 11 selected predictors are shown in Table 1. The set consisted mostly of meteorological 

variables, likely due to our interest in estimating daily PM2.5 concentrations.

3.2 Exposure assessment: Statistical methods

Let Yt(s) be the monitor measurement of PM2.5 at spatial location s and day t. Each 

observation is associated with land-use covariates and meteorological variables at s, Xt(s), 
and the CMAQ output at the grid cell that contains s, Zt(s). We assume monitoring data are 

available at n sites s1,…, sn and for days t=1,…,T. The distance (in km) between location si 

and sj is denoted dij. The objective of all methods is to make a prediction Y t s0  of PM2.5 

concentration at a location s0 that does not have a monitor, with prediction uncertainty 

quantified through V ar Y t s0 = vt s0
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3.2.1 Ordinary least squares—Predictions of PM2.5 concentrations using Ordinary 

Least Squares are obtained by fitting a linear regression model separately every day for daily 

with log PM2.5 concentration at the training sites as outcome variable and different sets of 

predictors :

• Only the corresponding daily log CMAQ output at the grid cells that contain the 

training sites;

• The covariates selected by best subset regressions for the same day and at the 

grid cells that contain the training sites;

• Both the log CMAQ output and the selected covariates.

Predictions are backtransformed onto the original scale, and the prediction variance is the 

usual prediction variance under linear regression.

3.2.2 Inverse distance weighting—Inverse distance weighting (IDW) does not use the 

covariates and simply uses a weighted average of nearby observations as the prediction. The 

intuition behind IDW is that the weights for observations near the prediction location should 

be higher than the weights for observations far from the prediction location. The weight 

assigned to the observation at location si for prediction at location s0 decays as the distance 

d0i between s0 and si increases,

W oi = 1
d0i

ϕ
(1)

where the rate of decay is controlled by ϕ > 0, which we select using cross validation.

The IDW prediction is

Y t s0 = ∑i = 1
n W 0iY t si  where  W 0i = woi

∑i = 1
n W 0j

(2)

The weights W0i are standardized to sum to one so that predictions are unbiased. Because no 

statistical model is assumed, there is no natural variance estimate, vt(s).

3.3 Exposure assessment: Geostatistical methods

In geostatistics, the problem of generating predictions of a continuous spatial process at 

unsampled locations is typically handled via Kriging. As with IDW, in Kriging the 

prediction Y t s0  is a linear combination of the observations Yt(s1),…, Yt(sn) with weights λ 

= (λ1,⋯,λn), that is, Y t s0 = ∑i = 1
n λiY t si . The weight vector λ is in turn determined by 

finding the set of λ’s that yield the Best Linear Unbiased Predictor (BLUP), i.e.

λ = arg minλE Yt s0 − ∑i = 1
n λiY t si

2
  such that  E ∑i = 1

n λiY t si = Yt s0
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The expression for the weights depends on the assumptions made on Yt(s), such as whether 

the process is second-order stationary (i.e., the covariance depends only on the separation 

between points) and whether its mean varies spatially and depends on covariates. For 

computational tractability, we assume a stationary covariance function (Cressie, 1993). In 

addition, given that we are generating predictions of PM2.5 concentration across the entire 

United States it is safe to assume that the mean concentration varies spatially as function of 

covariates. Thus, we will generate our predictions using Universal Kriging (Cressie, 1993) 

that includes covariates in the mean function.

3.3.1 Universal Kriging—In Universal Kriging we assume that, for each day t, Yt(s) is 

a Gaussian process with a predetermined covariance function and a mean E[Yt(s)] = μt(s), 

linear function of spatially-varying covariates. In our implementation-we assume that the 

spatial covariance does not change in time and the correlation between PM2.5 concentration 

at two sites decays exponentially with distance. Note that in Universal Kriging, the spatial 

covariance function represents the spatial dependence in the process, e.g. in PM2.5 

concentration, after having accounted for the effect of the covariates. With covariates 

varying in space and time, it is very likely that all the temporal variability in PM2.5 

concentration is captured by CMAQ and/or the meteorological and land-use covariates, thus 

making it very plausible that the residual spatial dependence does not vary in time. We 

compare different scenarios for μt(s):

1. μt(s) depends only on the CMAQ output Zt(s), i.e.

μt(s) = γ0, t + γ1, tZt(s) (3)

1. μt(s) depends only on meteorological and land-use covariates Xt(s), i.e.

μt(s) = Xt(s)βt (4)

1. μt(s) depends on both the CMAQ output Zt(s) and the meteorological and land-

use covariates Xt(s), i.e.

μt(s) = Xt(s)βt + γ1, tZt(s) (5)

To implement the universal Kriging models, we use a two-stage procedure and use the gstat 

and geoR (Ribeiro Jr and Diggle, 2018), packages in R (R Core Team, 2018). Specifically, 

we first estimate the spatial covariance parameters via weighted least squares (WLS) using 

the gstat package, fitting an exponential semi-variogram to the empirical semi-variogram of 

the time-averaged residuals of the linear regressions implied by (3), (4), and (5), 

respectively.

Using the spatial covariance parameters estimated via WLS as initial values, we used the 

geoR package (Ribeiro Jr and Diggle, 2018) and maximum likelihood to iteratively estimate 

the regression parameters βt, γ0,t and γ1,t and the covariance parameters. Using such 

estimates, we then generate predictions of Yt(s0) via Universal Kriging separately for each 
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day. Because the data are assumed to be Gaussian, Kriging predictions are accompanied by 

predictions variance estimates vt(s).

3.4 Exposure assessment: Downscaler

The downscaler model generates predictions of air pollution concentration at any location s 
by exploiting the relationship between the observed concentration measured at a monitor and 

the estimated air pollution concentration generated by an air quality model, CMAQ. The 

simplest downscaler model (Berrocal et al., 2010) relates the observed log concentration at 

location s on day t, Yt(s), to the CMAQ output, Zt(s), at the grid cell that contains location s 
via a linear regression model with spatially and temporally-varying coefficients. We adopt 

the following version of the downscaler model

Y t(s) = β0, t(s) + β1, tZt(s) + ϵt(s) ϵt(s) N 0, τ2 (6)

where β0,t(s) is a spatially and temporally-varying intercept term, while γ1,t, indicates a 

slope term, constant in space but varying in time.

As on a given day t, we postulate that sites located nearby have a similar intercept term, to 

account for spatial dependence, we model β0,t(s) as a stationary spatial processes with an 

exponential correlation function, i.e.:

Cov β0, t si , β0, t sj = σ0
2exp − dij

ϕ0
(7)

In (7), σ0
2 and ϕ0 represent, respectively, the spatial variability in β0,t(s) and the rate at which 

the spatial correlation vanishes.

The downscaler model in (6) is fit within a Bayesian framework (Gelman et al., 2013); thus, 

its specification is completed once prior distributions for all the model parameters are 

provided. Specifically, we assume that, for each day t, the spatially varying intercept β0,t(s), 

admits a constant mean β0,t, which is interpreted as the overall additive calibration of the 

CMAQ output. In contrast, β1,t represents the overall multiplicative calibration term for 

CMAQ. The two global calibration parameters (β0,t, β1,t)′ are assumed to be independent in 

time and follow a bivariate normal distribution with mean (0, 1)′ and with a diagonal, 

covariance matrix with large prior variances. The two variance parameters, τ2, and σ0
2

representing, respectively, the non-spatial and spatial variability in PM2.5 concentration, are 

provided with vague Inverse Gamma priors, while a Uniform prior on the interval (0.0001 
km, 0.1 km) is placed on the decay parameters ϕ0.

Inference on model parameters is carried out through the posterior distribution, which is 

approximated using an MCMC algorithm (Gelman et al., 2013) we ran for 10,000 iterations, 

with the first 5,000 discarded for burn-in. For the case study discussed in the paper, we make 

a slight modification to the downscaler model, allowing the spatial dependence parameters 

σ0
2, ϕ0  and the non-spatial variance τ2 to vary with time. With this modification we can 

implement the downscaler model using the spBayes (Finley et al., 2015) package in R.
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Predictions of air pollution concentrations on day t at an unsampled location s0 and 

uncertainty estimates for the predictions are obtained using the posterior predictive 

distribution of Yt(s0) given the observed data. Specifically: we take as predicted 

concentration, the median of the posterior predictive distribution, while we characterize 

uncertainty in the prediction via the 95% equal-tailed predictive interval. Finally, we use the 

sample variance vt(s) of the predicted values to quantify the variance in the predictions.

3.5 Exposure assessment: Machine learning methods

The spatial regression models in Sections 3.3 and 3.4 represent the data-generating process 

of PM2.5 concentration with a small number of interpretable parameters. In contrast, 

machine learning algorithms have countless uninterpretable parameters and are thus 

essentially black-box prediction machines. However, these algorithms are flexible, general 

and have often outstanding predictive performance. Below we briefly describe the machine 

learning algorithms used in our comparison; for a detailed description see James et al. 

(2013).

For application of machine learning methods we do not explicitly model spatial correlation, 

although spatial coordinates and spatial covariates are used as predictors in these regression 

models. Since we do not model spatial correlation we denote the observed PM2.5 

concentration and covariates relative to observation i=1,…,n (n is the combined sample size 

over space and time) as Yi and Xi, respectively. The p=15 covariates in Xi are: longitude, 

latitude, day of year, the covariates in Table 1 and CMAQ model output.

3.5.1 Random forests—A random forest (Breiman, 2001) is an ensemble of regression 

trees (Morgan and Sonquist, 1963). A regression tree is grown via recursive partitioning of 

the covariate space called ``leaves”, and then fitting separate linear models within each leaf. 

For each partition, m input variables are selected at random as candidates for splitting. 

Randomizing over the covariates decreases the correlation between trees and improves the 

prediction accuracy of the ensemble. The intuition is that interactions are likely present 

when considering the entire covariate space, but when considering small subregions of the 

covariate space linear models likely fit well within each subregion.

To construct a random forest for PM2.5 concentration, many regression trees are grown with 

the prediction being a weighted average of the predictions over the trees.

Unlike most machine learning methods, it is possible to quantify the uncertainty in the 

prediction vt(s) using the sample variance of the trees predictions. Random forest is a 

desirable data mining method because it is easily understood and it is computationally 

efficient for very large samples. The number of trees used for prediction is selected by out-

of-bag error (Hastie et al., 2001), a cross validation technique where the observations that 

are not selected in a tree are then used to estimate the error. For our case study, we 

implemented random forest using the R package randomForest (Liaw and Wiener, 2002). 

We used the default values m = p/3 at each split. Based on out-of-bag error 500 trees are 

used as the final predictive model.

Berrocal et al. Page 9

Atmos Environ (1994). Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.5.2 Support vector regression (SVR)—Support vector machines (Cortes and 

Vapnik, 1995) are most well known as a classification tool, but they can also be used for 

regression. In SVR a hyperplane is optimized to be within a certain threshold of the selected 

data, called the support vectors, and the hyperplane is used for regression prediction. The 

predicted PM2.5 concentration for an observation with covariates X0 is

Y 0 = ∑
i = 1

n
K Xi, X0 αi − αi*

where αi and αi* are the support vectors and K Xi, Xj = exp − Xi − Xj
2/γ  is the radial basis 

kernel function. The support vectors αi and αi* are estimated as the solution to the convex 

optimization

1
2 ∑i = 1

n ∑j = 1
n αi − αi*

T αj − αj* K Xi, Xj + ϵ∑i = 1
n αi + αi*

+ ∑i = 1
n Y i αi − αi*

(8)

so that for all i, 0 < αi < C, 0 < αi* < C and ∑i = 1
n αi − αi* = 0. The constant C is the box 

constraint that defines the trade off between penalty for observations further than ϵ away 

from the hyperplane and smoothness in the prediction hyperplane.

The calculation of the optimum solution to (8) is computationally expensive in large datasets 

and there is no straightforward method to estimate prediction variances. We implement 

support vector regression using the R package e1071 (Dimitriadou et al., 2006) and the 

function svm.

3.5.3 Neural networks—Neural networks have successfully been used to predict air 

pollution levels (Di et al., 2016). They are attractive because they can handle massive data 

and can model nonlinearity and interactions. We use a multilayer perceptron network 

(Rumelhart et al., 1986) that consists of an input layer, several hidden layers and an output 

layer. For an observation with covariates X0=(X01, …, X0p) the

 Output layer:  Y 0 = b1
3 + ∑j = 1

L2 W j1
3 Z0j

2 (9)

Hidden layer:  Z0l
2 = f bl

2 + ∑j = 1
L1 W jl

2 Z0j
1   for l ∈ 1, ⋯, L2

Input layer:  Z0l
1 = f bl

1 + ∑j = 1
p W jl

1 X0j   for l ∈ 1, ⋯, L1
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where L1 and L2 are the number of neurons in each layer, f is the activation function, and bl
k

and wjl
k  are the bias and weights estimated to minimize mean squared error in the training 

data.

Fitting a neural network requires tuning the number of hidden layers, the numbers of 

neurons in each layer, and the activation function. Increasing the size of the network 

provides more flexibility but also may lead to overfitting. Therefore, we also tune the 

number of epochs, drop-out rate, learning rate, and minibatch size (Goodfellow et al., 2016). 

The model is fit using keras (Chollet et al., 2015) in R. We tried relu and sigmoid activation 

functions and networks with 1 to 3 hidden layers, with 500 to 2000 neurons in the the first 

layer, and a reduced number of neurons in each of the next layers. Further tuning with the 

following possible combinations were considered: number of epochs ranging from 50 to 

200, drop-out rate ranging from 0.1 to 0.5, learning rate ranging from 0.0005 to 0.01, and 

minibatch size ranging from 128 to 1024. Based on five-fold cross-validation, the final 

selected model has 2 hidden layers with 2000 and 100 neurons for the first and second layer, 

respectively, relu activation function f(x) = max{0, x}, 200 epochs, 0.4 drop-out rate, 0.003 

learning rate and 1024 minibatch size.

3.6 Predictive performance assessment

We compare the predictive performance across methods described in Section 3.2 through 3.5 

via five-fold cross validation by randomly sampling, without replacement, 20% of the sites 

to be in the test set in each of the five folds. Within each fold, we train each of the models on 

the data from the remaining 80% of the sites and we generate predictions at the test sites.

We evaluate the accuracy of the predictions yielded by the various methods in different 

ways: we assess them in a spatio-temporal sense by computing daily Root Mean Squared 

Errors (RMSEs) and daily Pearson correlations between the predicted and the observed 

PM2.5 concentrations, and we report their summary statistics over time. Note that the mean 

daily Pearson correlation averaged over time is also referred to as Mean Spatial Pearson 

Correlation, following Chen et al. (2018).

We also assess the exposure assessment methods overall, averaging different predictive 

performance statistics over space and time. Specifically, we average across days and sites: 

Root Mean Squared Error (RMSE); Mean Absolute Deviation (MAD), that is, the absolute 

difference between the predicted PM2.5 concentration and the observed PM2.5 concentration; 

Pearson’s correlation between predicted and observed PM2.5 concentrations; and coverage 

of the 95% prediction intervals. The latter is obtained by counting how many of the values in 

the test set fall in their corresponding prediction interval. A coverage equal or close to the 

nominal level (e.g. 95% for a 95% prediction interval) is best. As baseline comparison, we 

derive the same predictive performance measures also for the raw CMAQ output.

4. RESULTS

Figures 2 and 3 present spatio-temporal predictive assessment for four exposure assessment 

methods, representative of statistical methods (Inverse Distance Weighting), geostatistical 
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methods (Universal Kriging), downscaling (Downscaler) and machine learning (Random 

Forests). In particular, Figure 2 shows daily RMSEs while Figure 3 presents daily Pearson 

correlations between predicted and observed PM2.5 concentrations, both stratified by season. 

As both figures show, for any exposure assessment method, the accuracy of the predictions 

varies over time with Spring and Summer being characterized by smaller RMSEs and higher 

correlation. Additionally while the quality of the predictions is almost constant across 

Summer and most of Spring, it worsens during Fall and it improves as Winter comes to an 

end. Finally, while the daily predictive performances of Universal Kriging and the 

Downscaler are very similar, predictions yielded by Random Forest have typically larger 

daily RMSEs and lower correlation with the observed PM2.5 levels over any day of 2011.

Summary statistics of the daily RMSEs and Pearson correlation coefficients for all exposure 

assessment methods, including CMAQ are presented in Tables 2 and 3, respectively. 

Confirming what already observed in Figures 2 and 3, when summarized across the entire 

year 2011, Universal Kriging with only CMAQ as predictor has the lowest mean daily 

RMSE over time and the highest mean daily Pearson correlation, also called Spatial Pearson 

Correlation Coefficient. Universal Kriging with only CMAQ as predictor is closely followed 

by the Downscaler model and Universal Kriging with CMAQ and other meteorological and 

land-use predictors. Inverse Distance Weighting performs similarly to the Downscaler model 

in terms of daily correlation, but has a slightly worse performance in terms of daily RMSE. 

Somewhat worse is the performance of the machine learning methods, particularly Support 

Vector Machine and Neural Network, whose MSPC and mean daily RMSE are, respectively 

about 11% lower and 25% higher than those of Univeral Kriging.

Table 4 presents various predictive performance statistics, averaged over space and time, 

using all sites, while Tables 5, 6 and 7 focus on stratified analyses and present Pearson 

correlation between the predicted PM2.5 concentration and the observed concentration for 

specific subsets of sites (Tables 5 and 6) or subsets of days and sites (Table 7). It is clear that 

in each case, using the raw CMAQ output as an estimate of PM2.5 concentration is not very 

useful.

In Table 4, predictions obtained via a linear regression model fit separately to PM2.5 

concentration each day serves as a baseline for comparison, and it yields an RMSE of 4.22 

μg/m3 and a correlation of 0.74 when both CMAQ and the selected covariates listed in Table 

1 are included in the model. Machine learning methods yield predictions that are 

substantially improved over those obtained via least squares, by accounting for potential 

non-linear and interaction effects of the covariates. Of the machine learning algorithms, 

Support Vector Regression has the smallest RMSE (3.83 μg/m3) and the highest correlation 

(0.79). All of the statistical methods that explicitly model the spatial correlation in the data 

have smaller RMSE and higher correlation than the machine learning methods. Inverse 

distance weighting which generates prediction by simply taking a local average of the 

available monitoring data has an RMSE of 3.22 μg/m3. The best method in terms of RMSE 

is Universal Kriging (UK) when only CMAQ is used as a covariate. The spatial downscaler 

model yields a comparable RMSE (3.10 μg/m3 vs 3.08 μg/m3) and same correlation (0.87).
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Table 5 examines whether the quality of the predictions is improved based on the number of 

nearby monitoring sites with data available on the day of the prediction. The table presents 

predictive performance results stratified by the number of monitoring stations within a 50 

miles radius of the prediction location with same-day PM2.5 measurements. As with overall 

predictions, the geostatistical methods have the highest correlation between predicted PM2.5 

concentrations and observed PM2.5 levels for all numbers of active training sites. The 

Appendix includes analogous tables stratified by distance to nearest monitoring location, 

longitude, and season, while this section presents results stratified by urbanization (Table 6) 

and PM2.5 concentration magnitude (Table 7).

The ranking of the prediction methods remains similar across all of these strata, with 

Universal Kriging with CMAQ as only covariate yielding the best results. In addition, for all 

the spatial statistical methods generate predictions with accurate uncertainty quantification: 

the 95% prediction intervals constructed using spatial statistical methods have coverage at or 

near the nominal 95% level.

Spatial predictions of log PM2.5 over the entire contiguous United States can be seen in 

Figures 4 and 5 for January 1, 2011 and August 1, 2011, respectively. As the figures 

indicate, PM2.5 concentration tends to be higher in the winter (January 1) than in the 

summer (August 1), with areas in the North East and the North West, especially along the 

coasts, having higher PM2.5 levels. In contrast, on August 1, it is the interior region in the 

Eastern United States that experienced higher levels of PM2.5 compared to the rest of the 

country.

The predictive surfaces of PM2.5 concentration yielded by Universal Kriging and the 

downscaler model present similar spatial gradients on both days. In both cases, the surfaces 

are generally smooth, but present fine spatial variation particularly in areas where more 

monitoring data is available. Although geographical space is utilized as another independent 

variable in Random Forest (through the use of latitude and longitude as covariates), the 

spatial maps of PM2.5 concentration yielded by Random Forest are typically smooth and 

tend to display similar patterns to those observed in the predictive surfaces generated by the 

spatial statistical methods (UK and the downscaler). However, Random Forest’s predictive 

surfaces generally have less variability than the predictive surfaces obtained using spatial 

statistics methods, and tend to generate predictive distributions that do not have long tails as 

the predicted PM2.5 values. As a result, predictions tend to shrink closer to the mean. 

Finally, while the IDW method seems to yield a spatial surface that is closer to that obtained 

using the other methods on August 1, the predictive surface is overly smooth and does not 

show fine-scale spatial variability. In particular, since IDW generates predictions using only 

the information available from nearby monitors on each day, on days where few 

observations are available the predictions tend to be the same across large subregions. This 

leads to maps with a blocky appearance, and sudden, unrealistic, sharp changes in regions 

where more monitoring data is available. As such, predictive PM2.5 maps generated via IDW 

are not recommended as maps capturing the spatial distribution of PM2.5 concentration in 

the contiguous United States.
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5. DISCUSSION

In this paper, we present a review of commonly used statistical and machine learning 

methods for air pollution exposure assessment with the goal of improving our understanding 

of the fundamental differences among these methods. The contribution of this paper is to 

provide a rigorous comparison of these exposure modeling methods and make analytic code 

available to the broader scientific community to implement these techniques through a 

GitHub repository (https://github.com/yawenguan/DataFusion). In our case study on PM2.5 

concentration in the contiguous United States, we have found that the downscaler model and 

Universal Kriging yield better predictive performance than machine learning algorithms, 

potentially due to the fact that these methods explicitly account for the spatial dependence in 

PM2.5 concentration. This may hold true for other environmental exposure (e.g. ozone, or 

other pollutants of primary origin) where spatial dependence is not negligible. We believe 

that this is an important finding given the ever increasing utilization of predicted ambient 

exposures in air pollution epidemiological as well as environmental justice studies, and the 

widespread application of Artificial Intelligence (AI) in all realm of science.

Machine learning algorithms are attractive methods for analyzing large data sets due to their 

computational speed and easy implementation for massive data, partly driven by the recent 

availability of highly optimized computing software. In this review paper, we have chosen 

Random Forest, Support Vector Regression and Neural Network for comparison, because 

these methods have already been used for exposure modeling (Hu et al., 2017; Liu et al., 

2017; Reid et al., 2015) and software within R is readily available.

In our case study, we have found that the machine learning methods yield worse predictive 

performance than the statistical methods that account for spatial dependence. An explanation 

for this finding can be due to the number of variables used in our case study, which is 

smaller than the number of variables typically used in applications of these methods. 

Another reason for the underperformance of machine learning techniques might be due to 

the fact that these methods do not account explicitly for spatial dependence, which we have 

shown to be important for exposure modeling. The better performance by spatial statistical 

models in the first case is likely due to the borrowing of strength from neighboring 

observations. This also indicates that to improve the predictive performance of machine 

learning methods, algorithms that leverage values from neighboring sites for prediction, such 

as it is done in convolution neural net, might be useful for this application.

We note also that in this paper we have focused on estimation of regional PM2.5 

concentration, as our interest was in generating maps of PM2.5 concentration across the 

contiguous United States. As such, we have not included among the predictors indicators of 

traffic or measure of traffic volumes, which have been found to be important predictors of air 

pollution in urban environments in previous studies. As spatial statistical studies of traffic-

related pollutants and PM2.5 concentration in near-road urban environments have shown that 

in such settings, the spatial dependence in air pollutants level decays rather quickly and it is 

mostly explained by wind speed and wind direction (e.g. being downwind vs upwind; Gilani 

et al, 2016, 2019), it is plausible that in that context, a comparison of spatial statistical 
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models and machine learning methods will yield opposite results from what we have 

obtained here.
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7.: APPENDIX

This Appendix presents maps with spatial predictions of log PM2.5 concentrations in μg/m3 

over the entire contiguous United States on January 1, 2011 and August 1, 2011, 

respectively, as well maps of the observed and CMAQ output for the same day. In addition, 

it presents a comparison of the various methods for PM2.5 concentration estimation, similar 

to those discussed in Section 4.

Specifically, Table A1 provides a simplified view on characteristics of the various methods 

compared in this case study with respect to computational speed, prediction accuracy, 

implementation difficulty and whether prediction uncertainty can be obtained for the various 

statistical and machine learning methods. We note that the computational speed varies across 

machines and it depends heavily on the software and code optimization. Hence, the 

computational speed here only serves as a rough guideline of the computational complexity 

and the comparisons are made based on the authors’ experience.

Additional tables compare the quality of the predictions by the various methods with 

stratification by distance to nearest monitoring location (Table A2), longitude (Table A3), 

and season (Table A4).

Table A1.
Assessment of computational speed, difficulty, and 
accuracy of exposure assessment methods.

The table reports whether for our data analysis the methods were executed in less than a few 

hours on a standard PC (“Fast”), whether they ranked near the best cross-validation error 

(“Accurate”), whether they were fit with standard software without many tuning parameters 

(“Easy”) and whether predictions were paired with measures of uncertainty (“Uncertainty”).

Method Fast Accurate Easy Uncertainty

OLS ✓ ✕ ✓ ✓

IDW ✓ ✓ ✓ ✕

Universal Kriging ✓ ✓ ✓ ✓
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Method Fast Accurate Easy Uncertainty

Downscaler ✕ ✓ ✕ ✓

Random forests ✓ ✓ ✓ ✓

Support vector regression ✓ ✕ ✓ ✕

Neural networks ✓ ✕ ✕ ✕

Table A2.
Overall performance of exposure assessment methods 
stratified by distance to closest other ACTIVE 
monitoring station on each day.

Correlation coefficient between PM2.5 concentration predictions and observed PM2.5 

concentration in μg/m3 stratified by distance to closest other ACTIVE monitoring station on 

each day. The methods consdered are: raw CMAQ output, ordinary least squares (“OLS”), 

inverse distance weighting (“IDW”), universal Kriging(“UK”), downscaler, random forests 

(“RF”), support vector regression (“SVR”) and Neural networks (“NN”). Methods use either 

CMAQ and/or other geographic covariates (“Covs”). The last line in the table reports the 

mean and standard deviation, in parenthesis, of PM2.5 concentration observed at monitoring 

sites within each substratum.

Method Closest Station < 50 Miles Closest Station ≥50 Miles

CMAQ 0.53 0.50

OLS (CMAQ) 0.66 0.58

OLS (Covs) 0.75 0.65

OLS (CMAQ+Covs) 0.69 0.57

IDW 0.88 0.72

UK (CMAQ) 0.89 0.77

UK (Covs) 0.88 0.76

UK (CMAQ+Covs) 0.88 0.71

Downscaler (CMAQ) 0.89 0.76

RF (CMAQ + Covs) 0.75 0.64

SVM (CMAQ + Covs) 0.81 0.68

NN (CMAQ + Covs) 0.80 0.70

PM2.5 10.07 (6.12) 9.36 (6.56)
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Table A3.
Cross-validation results by East/West location in the US 
identified by the vertical line longitude=−100.

Correlation coefficient between PM2.5 concentration predictions and observed PM2.5 

concentration in μg/m3 stratified by East/West location. The methods considered are: raw 

CMAQ output, ordinary least squares (“OLS”), inverse distance weighting (“IDW”), 

universal Kriging(“UK”), downscaler, random forests (“RF”), support vector regression 

(“SVR”) and Neural networks (“NN”). Methods use either CMAQ and/or other geographic 

covariates (“Covs”). The last line in the table provides the mean and standard deviation (in 

parenthesis) for PM2.5 concentration observed at monitoring sites within each category.

Method West East

CMAQ 0.41 0.53

OLS (CMAQ) 0.40 0.65

OLS (Covs) 0.61 0.74

OLS (CMAQ+Covs) 0.56 0.67

IDW 0.79 0.85

UK (CMAQ) 0.79 0.87

UK (Covs) 0.78 0.86

UK (CMAQ+Covs) 0.78 0.85

Downscaler (CMAQ) 0.79 0.87

RF (CMAQ + Covs) 0.64 0.73

SVM (CMAQ + Covs) 0.71 0.79

NN (CMAQ + Covs) 0.71 0.78

PM2.5 8.87 (7.69) 9.97 (6.19)

Table A4.
Cross-validation results by season.

Correlation coefficient between PM2.5 concentration predictions and observed PM2.5 

concentration in μg/m3 stratified by season. The methods considered are: raw CMAQ output, 

ordinary least squares (“OLS”), inverse distance weighting (“IDW”), universal 

Kriging(“UK”), downscaler, random forests (“RF”), support vector regression (“SVR”) and 

Neural networks (“NN”). Methods use either CMAQ and/or other geographic covariates 

(“Covs”). The last line in the table provides the mean and standard deviation, in parenthesis, 

for monitored PM2.5 concentration during each season.

Method Winter Spring Summer Fall

CMAQ 0.57 0.60 0.57 0.48

OLS (CMAQ) 0.71 0.69 0.61 0.56

OLS (Covs) 0.80 0.75 0.70 0.69

OLS (CMAQ+Covs) 0.75 0.67 0.63 0.63

IDW 0.89 0.89 0.81 0.83

UK (CMAQ) 0.90 0.90 0.83 0.84
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Method Winter Spring Summer Fall

UK (Covs) 0.90 0.89 0.82 0.84

UK (CMAQ+Covs) 0.90 0.89 0.79 0.83

Downscaler (CMAQ) 0.90 0.90 0.82 0.84

RF (CMAQ + Covs) 0.80 0.73 0.69 0.70

SVM (CMAQ + Covs) 0.83 0.81 0.77 0;.75

NN (CMAQ + Covs) 0.84 0.81 0.71 0.76

PM2.5 10.59 (7.05) 9.47 (5.81) 10.82 (5.93) 9.01 (5.74)

Figure A1. Number of active monitors per day over year 2011.
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Figure A2. 
Average daily log PM2.5 concentration 2011 in log μg/m3 as estimated by CMAQ output 

versus AQS monitor data on January 1 and August 1, 2011, respectively.
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Figure A3. 
Schematic representation of the data and methods applied and considered in the study.
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Highlights

• We evaluate exposure assessment methods for ambient PM2.5 over the US in 

2011.

• Evaluation across-paradigm and code for methods presented in the paper 

provided.

• Air quality model output (CMAQ), meteorological and land-use covariates are 

used.

• Assessment of spatio-temporal estimation ability, overall and for different 

strata.

• Statistical methods that account for spatial dependence outperform any other 

method.
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Figure 1. 
Annual mean log PM2.5 concentration for year 2011 in log μg/m3 as estimated by CMAQ 

output versus AQS monitor data.
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Figure 2. Daily cross-validation RMSE over year 2011 stratified by season.
Daily root mean squared error (“RMSE”) for PM2.5 concentration predictions in μg/m3 

stratified by season. Results are displayed for four representative methods: Inverse Distance 

Weighting (“IDW”), Universal Kriging with CMAQ as only predictor (“UK”), the 

Downscaler model (“Down”) and Random Forest (“RF”). In each panel, the lines are loess 

smoothers.
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Figure 3. Daily cross-validation Pearson correlation over year 2011 stratified by season.
Daily Pearson correlation coefficient between predicted and observed PM2.5 concentration 

in μg/m3 stratified by season. Results are displayed for four representative methods: Inverse 

Distance Weighting (“IDW”), Universal Kriging with CMAQ as only predictor (“UK”), the 

Downscaler model (“Down”) and Random Forest (“RF”). In each panel, the lines are loess 

smoothers.
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Figure 4. 
Predicted log PM2.5 concentration for January 1, 2011 using Inverse Distance Weighting 

(“IDW”), Universal Kriging with CMAQ as only predictor, the Downscaler model and 

Random Forest. Points displayed in the map represent active monitors.

Berrocal et al. Page 28

Atmos Environ (1994). Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Predicted log PM2.5 concentration for August 1, 2011 using Inverse Distance Weighting 

(“IDW”), Universal Kriging with CMAQ as only predictor, the Downscaler model and 

Random Forest. Points displayed in the map represent active monitors.
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Table 1.
Set of eleven predictors selected via best subset regression.

In parentheses it is indicated the original database from which each predictor was obtained: North American 

Land Data Assimilation System (NLDAS) and North American Regional Reanalysis (NARR).

Percentage of Impervious Surface (Landsat) Potential Evaporation (NLDAS)

Downward Longwave Radiation Flux (NLDAS) Convective Available Potential Energy (NLDAS)

Relative Humidity (NLDAS) V-Wind at 10m (NLDAS)

Pressure (NLDAS) Dew-point Temperature (NARR)

Visibility (NARR) Boundary Layer Height (NARR)

Temperature 150–180mb above ground (NARR)
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Table 2.
Daily cross-validation results: summary statistics for RMSE.

Mean, standard deviation, and other quantile summaries of daily root mean squared error (“RMSE”) for PM2.5 

concentration predictions in μg/m3. The methods considered are ordinary least squares (“OLS”), inverse 

distance weighting (“IDW”), universal Kriging(“UK”), downscaler, random forests (“RF”), support vector 

regression (“SVR”) and Neural networks (“NN”). Methods use either CMAQ and/or other geographic 

covariates (“Covs”).

Summary Statistic Mean SD Min Q1 Median Q3 Max

OLS (CMAQ) 4.71 1.68 2.00 3.53 4.32 5.28 12.15

OLS (Covs) 4.57 1.53 1.80 3.48 4.28 5.39 10.15

OLS (CMAQ+Covs) 4.15 1.42 1.64 3.18 3.85 4.76 9.34

IDW 3.25 1.14 1.58 2.42 2.94 3.89 7.87

UK (CMAQ) 3.09 1.12 1.38 2.27 2.81 3.69 7.85

UK (Covs) 3.27 1.44 1.45 2.39 2.99 3.79 18.52

UK (CMAQ+Covs) 3.19 1.17 1.39 2.36 2.87 3.78 7.81

Downscaler(CMAQ) 3.15 1.19 1.39 2.31 2.88 3.73 8.63

RF (CMAQ + Covs) 4.21 1.46 1.95 3.23 3.86 4.80 10.76

SVM (CMAQ + Covs) 3.87 1.53 1.60 2.82 3.53 4.46 10.31

NN (CMAQ + covs) 3.89 1.37 1.65 3.00 3.55 4.46 10.96
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Table 3.
Daily cross-validation results: summary statistics for Pearson correlation.

Mean (or Mean Spatial Pearson Correlation – MSPC), standard deviation, and other quantile summaries of 

daily Pearson correlations between PM2.5 concentration predictions in μg/m3 and observed values. The 

methods considered are ordinary least squares (“OLS”), inverse distance weighting (“IDW”), universal 

Kriging(“UK”), downscaler, random forests (“RF”), support vector regression (“SVR”) and Neural networks 

(“NN”). Methods use either CMAQ and/or other geographic covariates (“Covs”).

Summary Statistic Mean or MSPC SD Min Q1 Median Q3 Max

OLS (CMAQ) 0.51 0.16 −0.16 0.42 0.53 0.62 0.82

OLS (Covs) 0.55 0.15 −0.07 0.45 0.56 0.66 0.92

OLS (CMAQ+Covs) 0.64 0.12 0.13 0.57 0.65 0.73 0.92

IDW 0.79 0.11 0.31 0.72 0.81 0.87 0.95

UK (CMAQ) 0.81 0.09 0.47 0.75 0.83 0.88 0.96

UK (Covs) 0.79 0.11 0.13 0.74 0.81 0.87 0.96

UK (CMAQ+Covs) 0.80 0.10 0.43 0.74 0.81 0.87 0.96

Downscaler(CMAQ) 0.80 0.11 0.25 0.73 0.82 0.88 0.96

RF (CMAQ + Covs) 0.65 0.12 0.19 0.58 0.66 0.73 0.90

SVM (CMAQ + Covs) 0.72 0.10 0.31 0.67 0.74 0.80 0.91

NN (CMAQ + covs) 0.71 0.11 0.29 0.66 0.73 0.80 0.94
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Table 4.
Overall performance of exposure assessment methods.

Assessment of the various statistical and machine learning methods over space and time by averaging: Root 

Mean Squared Error (“RMSE”), Mean Absolute Deviation (“MAD”), correlation between predicted and 

observed values (“Corr”), and empirical coverage of the predictive 95% intervals. Both RMSE and MAD are 

in units of μg/m3. The methods considered are: raw CMAQ output, ordinary least squares (“OLS”), inverse 

distance weighting (“IDW”), universal Kriging(“UK”), downscaler, random forests (“RF”), support vector 

regression (“SVR”) and Neural networks (“NN”). Methods use either CMAQ and/or other geographic 

covariates (“Covs”).

Method RMSE MAD Corr Coverage

CMAQ 7.19 4.68 0.51 --

OLS (CMAQ) 4.80 3.09 0.65 0.62

OLS (Covs) 4.63 2.97 0.67 0.79

OLS (CMAQ + Covs) 4.22 2.63 0.74 0.83

IDW 3.22 1.82 0.85 --

UK (CMAQ) 3.08 1.70 0.87 0.95

UK (Covs) 3.25 1.79 0.85 0.93

UK (CMAQ + Covs) 3.15 1.76 0.86 0.93

Downscaler (CMAQ) 3.10 1.70 0.87 0.94

RF (CMAQ + Covs) 4.23 2.74 0.73 0.96

SVR (CMAQ + Covs) 3.83 2.22 0.79 --

NN (CMAQ + Covs) 3.90 2.49 0.78 --
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Table 5.
Overall performance of exposure assessment methods by number of nearby stations.

Correlation coefficient between PM2.5 concentration predictions and observed PM2.5 concentration in μg/m3 

stratified by the number of active monitoring sites within 50 miles of the prediction site for each day. The 

methods considered are: raw CMAQ output, ordinary least squares (“OLS”), inverse distance weighting 

(“IDW”), universal Kriging(“UK”), downscaler, random forests (“RF”), support vector regression (“SVR”) 

and Neural networks (“NN”). Methods use either CMAQ and/or other geographic covariates (“Covs”).

Active nearby stations <5 5–9 10–19 ≥ 20

CMAQ 0.50 0.56 0.59 0.59

OLS (CMAQ) 0.60 0.69 0.73 0.77

OLS (Covs) 0.70 0.80 0.81 0.85

OLS (CMAQ+Covs) 0.64 0.74 0.75 0.79

IDW 0.82 0.91 0.92 0.90

UK (CMAQ) 0.84 0.92 0.92 0.92

UK (Covs) 0.83 0.91 0.92 0.92

UK (CMAQ+Covs) 0.81 0.91 0.91 0.91

Downscaler(CMAQ) 0.83 0.92 0.93 0.92

RF (CMAQ + Covs) 0.69 0.78 0.81 0.84

SVM (CMAQ + Covs) 0.74 0.86 0.87 0.87

NN (CMAQ + covs) 0.74 0.83 0.85 0.86
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Table 6.
Overall performance of exposure assessment methods by urbanization.

Correlation coefficient between PM2.5 concentration predictions and observed PM2.5 concentration in μg/m3 

stratified by urbanization. The methods considered are: raw CMAQ output, ordinary least squares (“OLS”), 

inverse distance weighting (“IDW”), universal Kriging(“UK”), downscaler, random forests (“RF”), support 

vector regression (“SVR”) and Neural networks (“NN”). Methods use either CMAQ and/or other geographic 

covariates (“Covs”). The last line reports the mean and standard deviation, in parenthesis, for the observed 

PM2.5 concentration at urban versus nonurban monitoring sites.

Method Urban Non-Urban

CMAQ 0.54 0.50

OLS (CMAQ) 0.66 0.60

OLS (Covs) 0.75 0.69

OLS (CMAQ+Covs) 0.68 0.63

IDW 0.87 0.77

UK (CMAQ) 0.88 0.80

UK (Covs) 0.87 0.80

UK (CMAQ+Covs) 0.86 0.79

Downscaler (CMAQ) 0.88 0.80

RF (CMAQ + Covs) 0.74 0.67

SVM (CMAQ + Covs) 0.80 0.74

NN (CMAQ + Covs) 0.79 0.73

PM2.5 10.16 (6.21) 9.03 (6.01)
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Table 7.
Overall performance of exposure assessment methods by level of observed PM 
concentration.

Correlation coefficient between PM2.5 concentration predictions and observed PM2.5 concentration in μg/m3 

stratified by PM2.5 concentration level. Groupings are based on: whether PM2.5 is less than 6 μg/m3, 6–12 μg/

m3 and greater than or equal to 12 μg/m3 (12 μg/m3 is the EPA standard). The methods considered are: raw 

CMAQ output, ordinary least squares (“OLS”), inverse distance weighting (“IDW”), universal Kriging(“UK”), 

downscaler, random forests (“RF”), support vector regression (“SVR”) and Neural networks (“NN”). Methods 

use either CMAQ and/or other geographic covariates (“Covs”). The last line reports the mean and standard 

deviation, in parenthesis, for the observed PM2.5 concentration within each category (low, medium or high).

Method Low Med High

CMAQ 0.37 0.26 0.21

OLS (CMAQ) 0.33 0.33 0.31

OLS (Covs) 0.40 0.43 0.42

OLS (CMAQ+Covs) 0.32 0.36 0.36

IDW 0.41 0.56 0.66

UK (CMAQ) 0.50 0.62 0.65

UK (Covs) 0.49 0.61 0.64

UK (CMAQ+Covs) 0.45 0.55 0.64

Downscaler (CMAQ) 0.49 0.62 0.65

RF (CMAQ + Covs) 0.37 0.42 0.42

SVM (CMAQ + Covs) 0.37 0.55 0.46

NN (CMAQ + Covs) 0.37 0.44 0.54

PM2.5 4.14 (1.21) 8.66 (1.71) 17.48 (5.81)
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