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Abstract

The optimal dose for treating patients with a molecularly targeted agent may differ according to 

the patient’s individual characteristics, such as biomarker status. In this article, we propose a 

Bayesian phase I/II dose-finding design to find the optimal dose that is personalized for each 

patient according to his/her biomarker status. To overcome the curse of dimensionality caused by 

the relatively large number of biomarkers and their interactions with the dose, we employ 

canonical partial least squares (CPLS) to extract a small number of components from the covariate 

matrix containing the dose, biomarkers, and dose-by-biomarker interactions. Using these 

components as the covariates, we model the ordinal toxicity and efficacy using the latent-variable 

approach. Our model accounts for important features of molecularly targeted agents. We quantify 

the desirability of the dose using a utility function and propose a two-stage dose-finding algorithm 

to find the personalized optimal dose according to each patient’s individual biomarker profile. 

Simulation studies show that our proposed design has good operating characteristics, with a high 

probability of identifying the personalized optimal dose.
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1 Introduction

Precision or personalized medicine provides emerging approaches for disease treatment and 

prevention that take into account each person’s individual variability in genes, environment, 

and lifestyle. Precision medicine is revolutionizing the treatment of cancer and other 

diseases. Optimizing the treatment benefit under this paradigm requires the dose-finding 

method to account for the patient’s individual characteristics when searching for the optimal 

dose that is “personalized” for each patient.

To account for individual patient characteristics, the most natural approach is to include the 

patient’s individual characteristics as well as the interactions between those characteristics 

and the dose as covariates or the stratification variable in the dose-finding model. Piantadosi 

and Liu (1996) developed dose-finding methods that incorporate the patient’s 
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pharmacokinetic data to improve the performance of the trial designs. Babb and Rogatko 

(2001) described a phase I clinical trial that utilizes patient covariate information. O’Quigley 

and Paoletti (2003), Yuan and Chappell (2004), and Ivanova and Wang (2006) proposed 

dose-finding methods for patient subgroups that are prespecified by certain prognostic 

factors. Thall, Nguyen and Estey (2008) proposed a patient-specific phase I/II dose-finding 

method based on bivariate (efficacy and toxicity) outcomes that account for patient 

characteristics and their interactions with the dose. A common limitation of these methods is 

that they can accommodate only a very small number (e.g., 1 or 2) of patient characteristics 

into the dose-finding process in order to avoid the curse of dimensionality when working 

with the small sample sizes that are typical of early-phase trials. For example, the method of 

Thall, Nguyen and Estey (2008) considered only two prognostic factors and their 

interactions with the dose. In practice, however, the number of patient characteristics that 

may affect the dose-response relationship can be easily more than two, and moreover these 

characteristics (e.g., some biomarkers) may be highly correlated. The direct inclusion of a 

large number of potentially highly correlated patient characteristics as covariates in 

regression models leads to extremely unreliable estimates or identification problems.

Our motivating example is a phase I/II trial for the purpose of finding the optimal doses of a 

novel molecularly targeted agent in patients with locally advanced or metastatic solid tumors 

that may harbor molecular alterations in five genes: the NTRK1 gene, NTRK2 gene, 

NTRK3 gene, ROS1 gene, and ALK gene. The types of molecular alterations include gene 

rearrangements, single-nucleotide polymorphisms, insertions, deletions, splice variants and 

gene amplifications. Molecular alterations in these target genes have been detected in 

various cancers, including non-small cell lung cancer, colorectal cancer, thyroid cancer, 

pancreatic cancer and neuroblastoma, and are expected to be predictive markers that may 

influence the treatment effect of the agent. In the study, the status of each of the five target 

genes is coded as positive (i.e., has alterations) or negative (i.e., no alterations), and is 

evaluated for each patient using next-generation sequencing. Patients receive the treatment 

agent orally, once daily in the morning for 28 consecutive days in repeated 4-week cycles. 

Toxicity is graded according to the National Cancer Institute Common Terminology Criteria 

for Adverse Events, Version 4.03, and coded as a three-level ordinal variable: grade 1 or 2, 

grade 3, or grade ≥4 adverse events. Efficacy is evaluated using the Response Evaluation 

Criteria In Solid Tumors, and coded as a three-level ordinal variable: progressive disease 

(PD), stable disease (SD), or partial or complete remission (PR/CR). Five doses (100, 300, 

500, 700, 900mg/m2/day) are evaluated. The primary objective of the trial is to find the 

optimal dose that is safe and efficacious for each patient according to the patient’s specific 

pattern of molecular alterations of the five genes. For this trial, the straightforward approach 

that directly includes gene alterations and their interactions with the dose as covariates in the 

dose-toxicity and dose-efficacy models would not work because it results in an excessive 

number of covariates in the model (the dose, 5 gene alteration indicators, and 5 dose-gene 

alteration interactions). In addition, these covariates may be highly correlated.

We propose a Bayesian phase I/II personalized dose-finding method that can accommodate a 

more realistic number of patient characteristics or biomarkers. For brevity of description, we 

use “patient characteristic” and “biomarker” exchangeably hereafter. To circumvent the 

curse of dimensionality and potential high correlations among biomarkers, we employ the 
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canonical partial least squares (CPLS) method to extract a small number of components 

from the covariate matrix consisting of dose, biomarker profile, and dose-by-biomarker 

interactions. These CPLS components capture most of the covariate information that is 

predictive of the response (Garthwaite, 1994). Conditional on the CPLS components, we 

take a latent-variable approach to model the ordinal toxicity and efficacy outcomes. We 

quantify the desirability of the doses using a utility function elicited from physicians that 

accounts for the risk-benefit tradeoff. A two-stage dose-finding algorithm is proposed to 

guide dose assignment and selection.

The remainder of this article is organized as follows. In Section 2, we present the joint 

probability model for the ordinal toxicity and efficacy outcomes. Section 3 describes a two-

stage dose-finding algorithm. Section 4 examines the operating characteristics of the 

proposed design through simulation studies, and Section 5 provides concluding remarks.

2 Method

2.1 Canonical partial least squares

Partial least squares (PLS) is a dimension-reduction technique for modeling the relationship 

between response variable(s) and explanatory variables (Stone and Brook, 1990; Frank and 

Fridman, 1993; Garthwaite, 1994). It can be used for either univariate regression with one 

response variable or multivariate regression with multiple response variables. The basic idea 

is to construct a few PLS components, which are linear combinations of the explanatory 

variables, to capture most of the information contained in the explanatory variables for 

predicting the response variable(s). These PLS components can be used to replace the 

original high-dimensional explanatory variables in a subsequent regression analysis. Unlike 

the wellknown principal component analysis that extracts principal components solely based 

on the explanatory variables, PLS determines components using both the response 

variable(s) and the explanatory variables. Therefore, PLS is more relevant for regression and 

provides better prediction. PLS was originally developed for continuous response variables 

(Garthwaite, 1994). To handle categorical response variables, Indahl, Liland and Nas (2008) 

proposed the CPLS method, which integrates the PLS methodology with canonical 

correlation analysis. These authors show that CPLS is able to extract more information from 

the first few components than the ordinary PLS approach. This property is particularly 

attractive for early-phase clinical trials because of the small sample sizes. We favor the use 

of a parsimonious model with fewer CPLS components.

Suppose the response variable has J (≥ 2) categories and the sample size is n. Let X be the n 
× p covariate matrix, with each covariate centered at its mean, Y be the n × 1 categorical 

response vector, and AY be the n × J dummy coded group membership matrix for the 

response variable Y, with AY [i, j] = 1 if Yi = j, and 0 otherwise. The CPLS algorithm is a 

sequential procedure that iteratively extracts components of X, each a linear combination of 

the original covariates, in such a way that the first component contains the most information 

for predicting Y, the second component contains less information than the first, and so on.

To begin, the CPLS algorithm first transforms the X matrix to R = XQ, where Q = X′AY . A 

CPLS component for predicting AY is found by maximizing the canonical correlation 
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between R and AY . More specifically, the CPLS method finds vectors a, b ∈ ℝJ to 

maximize the correlation between Ra and AY b:

cor(Ra, AY b) = a′R′AY b
a′R′Ra b′AY ′AY b (1)

This optimization problem is the canonical correlation analysis with respect to R and AY, so 

in this sense CPLS combines PLS and canonical correlation analysis. Maximization of (1) is 

equivalent to maximization of the function

f(r, t) = r′(R′R)− 1
2R′AY (AY′ AY )− 1

2t (2)

over unit vectors r and t (Indahl, Liland, and Nas, 2009). The solution of r and t is the 

dominant left and right singular vectors (with unit length) corresponding to the largest 

singular value in the singular value decomposition of the matrix (R′R)−
1
2R′AY (AY′ AY )−

1
2

The values of a and b that maximize the objective function (1) are given by a = (R′R)−
1
2r

and b = (AY′ AY )−
1
2t, and the resulting CPLS component is c1 = X w, a linear combination of 

the original covariates, where w = Qa /||Qa|| is the vector of the loading weights. This is the 

first CPLS component. Subsequent CPLS components (e.g., the second, third,…) are 

extracted in a similar way, in sequence, by replacing X and AY with their deflated matrices. 

For example, the second CPLS component c2 is obtained by maximizing the objective 

function (1), with X and AY replaced by their deflated matrices X = X − (c1′c1)−1c1c1′X and 

AY = AY − (c1′ c1)−1c1c1′AY . The deflation ensures that subsequent components contain 

information that is not explained by earlier components. The CPLS components can be 

extracted using the SIMPLS algorithm (de Jong, 1993) or the NIPALS algorithm (Burnham, 

Viveros, and MacGregor, 1996). When the response variable Y has only two categories, the 

CPLS reduces to the traditional PLS.

2.2 Probability models

Consider a phase I/II clinical trial with R prespecified doses (d1, · · ·, dR) of a molecularly 

targeted agent. Let YT and YE be the toxicity outcome and the efficacy outcome, 

respectively. We define YT = 1, 2, · · ·, J corresponding to increasing levels of severity of 

toxicity, and YE = 1, 2, · · ·, K corresponding to increasingly desirable efficacy. Unlike the 

method of Thall, Nguyen and Estey (2008), which dichotomizes YT and YE into binary 

variables, here we choose to model YT and YE as ordinal variables for several reasons. First, 

the ordinal variables reflect the actual scale used for measuring toxicity and efficacy in 

clinical studies. For example, in our motivating solid tumor trial, toxicity is scored as grades 

1 to 5 and coded as a three-level ordinal variable (i.e., grades 1–2, grade 3, and grade ≥ 4), 

and efficacy is scored as PD, SD, or PR/CR. These refined scales contain more information 

than the dichotomized toxicity and efficacy outcomes for decision making (Yuan, Chappell, 

and Bailey, 2007; Houede et al., 2010). Second, and more importantly, although using binary 

toxicity and efficacy outcomes is generally appropriate for conventional cytotoxic agents, it 

is often problematic for the novel molecularly targeted agents on which we focus here. For 
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example, the binary efficacy outcome typically defines CR/PR as a response, and PD/SD as 

a nonresponse. That is sensible for conventional cytotoxic agents that work by shrinking the 

tumor. However, many novel targeted agents are cytostatic agents, which function by 

stabilizing the tumor rather than shrinking it. For these agents, SD is often regarded as a 

favorable outcome, although not as desirable as CR/PR, and thus should be distinguished 

from PD.

Let n denote the number of patients enrolled in the trial at an interim decision time, 

X = (X1, · · · , Xp)′ denote the vector of p binary biomarkers, each taking a value of 

“positive” or “negative”, and Z denote the dose with Z ∈ (d1, · · · , dR). Define an n ×(1 + 

2p) covariate matrix V = (Z, X1, · · · , Xp, ZX1, · · · , ZXp), where ZX1, · · · , ZXp represent 

the interactions between dose Z and biomarkers X1 to Xp. In our motivating trial, there are 5 

genes (i.e., p = 5) and the dimension of the covariate matrix V is n × 11. Some covariates 

may be highly correlated. Since the sample size is typically small in a phase I/II clinical 

trial, directly regressing (YT, YE) on X suffers from the curse of dimensionality and the 

collinearity issue, resulting in highly unstable estimates. To overcome these issues, in our 

approach, we first use the CPLS to reduce the dimension of the covariate matrix, and then 

regress (YT, YE) on the reduced covariate matrix. Specifically, we extract the first q1 CPLS 

components W T (Z, X) = (W T , 1(Z, X), ⋅ ⋅ ⋅ , W T , q1(Z, X)) from V for predicting YT, and the 

first q2 CPLS components W E(Z, X) = (W E, 1(Z, X), ⋅ ⋅ ⋅ , W E, q2(Z, X)) for predicting YE, 

where q1, q2 < 1 + 2p. Each of these components is a linear combination of biomarkers X, 

dose Z and their interactions. We discuss how to choose q1 and q2 later. As biomarkers that 

are predictive of toxicity may differ from those that are predictive of efficacy, we extract the 

CPLS components independently for toxicity and efficacy. As a result, the jth component of 

WT (Z, X) is not necessarily the same as that of WE (Z, X). In practice, some biomarkers 

could affect the treatment efficacy but are less likely to affect the toxicity. The CPLS method 

will automatically detect such differences and assign different weights to different 

biomarkers for predicting efficacy and toxicity. When there is knowledge that some 

biomarkers are not expected to impact the toxicity or efficacy profile, we may use different 

sets of covariates to construct W T (Z, X) and WE (Z, X). For notational brevity, we suppress 

arguments Z and X in WT (Z, X) and WE (Z, X) when this does not cause confusion.

We take the latent variable approach to model the relationship between Yk and W k, where k 
= T or E. Let subscript i index patients. We assume that there are two latent normal variables 

Y T , i*  and Y E, i*  for patient i, which follow linear models

YT , i* W T, i, βT , θi, τT , i
2 ∼ N(θi + W T, iβT , τT , i

2 )

YE, i* W E, i, βE, θi, τE, i
2 ∼ N(θi + W E, iβE, τE, i

2 ),

where βT and βE are vectors of the regression coefficients, and θi ∼ N (0, σ2) is a patient-

specific random effect that is used to account for the correlation between Y T , i*  and Y E, i* . By 
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integrating out θi, it is easy to see that the above random-effect model specification 

essentially assumes that marginally Y T , i*  and Y E, i*  follow a bivariate normal distribution

YT , i* , YE, i* W T, i, W E, i, βT , βE, τT , i
2 , τE, i

2 , σ2 ∼ N2
W T, iβT
W E, iβE

,
τT , i
2 + σ2 σ2

σ2 τE, i
2 + σ2

.

Although equivalent, presenting the model using the random effect facilitates the 

implementation of the Gibbs sampler as Y T , i*  and Y E, i*  are independent once conditional on 

random effect θi.

We assume that the observed toxicity and efficacy outcomes YT,i and YE,i for the ith patient 

are related to Y T , i*  and Y E, i*  of the form

YT , i = j if γT , j − 1 < YT, i* ≤ γT , j

YE, i = k if γE, k − 1 < YE, i* ≤ γE, k,

where −∞ ≡ γT , 0 < γT , 1 < · · · < γT , J ≡ ∞ and −∞ ≡ γE, 0 < γE, 1 < · · · < γE, K ≡ ∞ are 

unknown cutoffs. Clearly, the above models are not identifiable. Using the toxicity model as 

an example, the scale parameter τT,i of the latent variable Y T , i*  is fully confounded with βT 

and the cutoffs γT,j in the sense that we obtain the same likelihood when multiplying βT, τT,i 

and γT,j by a constant. Similar confounding occurs in the efficacy model. To identify the 

toxicity model, we fix the scale of the latent variable Y T , i*  by setting Y T , i
2 = 1 (Albert and 

Chib, 1993). This results in the familiar cumulative probit model for toxicity:

Φ−1 Pr(Y T , i ≤ j W T , i, θi, γT , j, βT) = γT , j − θi − W T , iβT (3)

for j = 1, · · ·, J − 1. Although we could directly model YT using the above model, taking the 

latent variable approach greatly simplifies the posterior sampling using the Gibbs sampler 

(Albert and Chib, 1993).

It is tempting to take the same approach to define a cumulative probit model for YE by 

setting τE, i
2 = 1. However, the cumulative probit model such as (3) implies a stochastic 

ordering of the effects of the covariates on the outcome; that is, for any two doses dr and dr′, 

either Pr(Y T , i ≤ j W T (Z = dr, X)) ≤ Pr(Y T , i ≤ j W T (Z = dr′, X)) or 

Pr(Y T , i ≤ j W T (Z = dr, X)) ≥ Pr(Y T , i ≤ j W T (Z = dr′, X)) for all j = 1, …, J − 1. Such a 

monotonic assumption is typically reasonable for toxicity, but often problematic for efficacy 

because the efficacy behavior of molecularly targeted agents is more complex and the dose-

efficacy relationship may not strictly monotonically increase. The dose-efficacy curve may 

plateau or sometimes be lower at higher doses (Postel-Vinay et al., 2009). To accommodate 
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this feature of molecularly targeted agents, we set τE, i = exp(τZi), resulting in the following 

dispersed cumulative probit model (McCullagh, 1980; Cox, 1995; and Agresti, 2002),

Φ−1 Pr(Y E, i ≤ k W E, i, θi, γE, k, βE) = γE, k − θi − W E, iβE
exp(τZi)

, k = 1, ⋅ ⋅ ⋅ , K
− 1 .

(4)

By introducing the dispersion parameter, τ, Y E*will have different dispersions (or variances) 

across doses Z, and thus the model does not impose the stochastic ordering of the dose effect 

on efficacy (Agresti, 2002). When τ = 0, the model reduces to the standard cumulative probit 

model.

Based on the above formulation, the likelihood function for patient i is

p(yT , i, yE, i) = Pr(YT , i = yT , i, YE, i = yE, i) = Pr(γT ,yT . i − 1 < YT, i* ≤ γT , yT , i, γE, yE, i − 1 < YE, i*
≤ γE, yE, i)

= γT , yT , i − 1

γT , yT , i
γE, yE, i − 1

γE, yE, i ϕ2(YT , i* , YE, i* μY , Y )dYT* dYE*

where ϕ2( ⋅ |μ, ∑) is the density of a bivariate normal distribution with mean vector µ and 

covariance matrix Σ,

μY =
W T, iβT
W E, iβE

, and ΣY =
τT , i
2 + σ2 σ2

σ2 τE, i
2 + σ2

.

Letting Θ = (γT , 1, …, γT , J, βT , γE, 1, …, γE, K, βE, τ, σ2) denote the parameters, and 

Dn = (Y T , i, Y E, i, Zi, W i), i = 1, …, n  denote the data from the n patients when an interim 

decision is to be made, the likelihood based on n patients is

ℒ(Dn Θ) ∝
i = 1

n
p(yT , i, yE, i) .

Letting f (Θ) be the joint prior distribution for Θ, the joint posterior distribution of Θ is

f(Θ Dn) ∝ f(Θ)ℒ(Dn Θ) .

We sample the posterior using the Gibbs sampler. The details are provided in the 

Supplementary Materials.

Next, we discuss how to choose the number of PLS components (i.e., q1 and q2) included in 

the toxicity and efficacy models. The choice of q1 and q2 requires balancing two, often 

conflicting, modeling considerations. On one hand, to avoid information loss and achieve 

estimation accuracy, it is desirable to include in the models all the PLS components that 

contain non-negligible information for predicting the outcomes; on the other hand, the small 
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sample size and sequential accrual of patients in phase I/II trials prohibit us from including 

too many PLS components in the toxicity and efficacy models. A practical approach is to use 

the scree plot as a guidance to choose q1 and q2. The scree plot is widely used in principal 

component analysis and factor analysis to visually assess which components or factors 

explain most of the variability in the data and determine the number of important 

components or factors. In the principal component analysis, the scree plot displays the 

eigenvalues versus the number of components; whereas in our case, the scree plot displays 

the root mean squared error of prediction (RMSEP) for the response variable (YT or YE) 

versus the number of CPLS components. Given a specific number of CPLS components, the 

RMSEP can be obtained using a leave-one-out cross-validation or a k-fold cross-validation. 

The ideal pattern in a scree plot is a steep curve, followed by a bend and then a flat or 

horizontal line. We retain those CPLS components in the steep curve before the first point 

that starts the flat line trend. When the scree plot suggests a large number of CPLS 

components, we recommend restricting q1, q2 ≤ 4 because of the small sample size of phase 

I/II trials. In numerical studies described later, 2 CPLS components generally work well 

under a variety of scenarios. As an example, Figure 1 shows the scree plots for scenario 1, 

which indicates that 2 CPLS components are appropriate. Nguyen and Rocke (2002) showed 

that 3 to 5 PLS components are often adequate, even in applications with thousands of 

genes.

2.3 Prior specification

Care should be taken when specifying the prior distribution f (Θ). Unlike typical inference 

problems with moderate or large sample sizes, for which conventional noninformative or flat 

priors are routinely used to make posterior estimation, noninformative priors are often not 

suitable for early-phase trial designs. This is because the sample size of an early-phase trial 

is typically small and only a few observations may be available at the beginning of the trial. 

In this case, using the standard flat priors often results in highly unreliable estimates and 

causes inappropriate dose escalation and de-escalation. On the other hand, because of the 

small sample size, we should avoid using priors that are substantially informative and thus 

would not allow the accumulating data to dominate the priors as the trial proceeds. For the 

purpose of early-phase trial designs, a desirable prior should be sufficiently regularized (or 

informative) so that the design and model estimates are reasonably stable throughout the 

trial, while also being vague enough so that the accumulating data can rapidly dominate the 

prior as the trial proceeds.

Our approach to specify priors follows a principle similar to that of Gelman et al. (2008), 

which states that the prior should be regularized to reflect that a typical change in a covariate 

is unlikely to lead to a dramatic change in the probability of the response variable. Under the 

probit model, a change of 2.5 on the probit scale moves a probability of YT or YE located in 

one category from 0.1 to 0.89. It is typically reasonable to assume that the effect of a 

covariate or biomarker is unlikely to be more dramatic than that. This is particularly true for 

dose-finding trials where the target toxicity and efficacy rates are rarely outside that range. 

Based on this consideration, to specify the priors of βT and βE, we first scale each covariate 

in WT and WE to have mean 0 and standard deviation 0.5, and then assign the independent 

normal prior distribution N (0, 1.252) to each element of βT and βE. By doing so, a change in 
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a covariate from one standard deviation below the mean to one standard deviation above the 

mean will result in a change mostly within the range of (0, 2.5) (i.e., a change of 2 standard 

deviations for the prior) on the probit scale. For the intercepts γT,j and γE,k, we use the same 

normal priors under the constraint that γT , 1 < … < γT , J and γE, 1 < … < γE, K. The prior 

distributions for σ2 and τ are chosen to be InvGamma(a, b) and Uniform(−c, c) distributions, 

respectively. The hyper-parameters are set to be a = 0.1 and b = 0.1 so that a priori the 

probability that the correlation between toxicity and efficacy is between 0.045 and 1 is 99%, 

and c = 4 to make the prior distribution of τ weakly informative so that the posterior 

distribution is dominated by the data.

2.4 Personalized optimal dose

Taking the setting of our motivating trial, both toxicity and efficacy outcomes are 

categorized as ordinal variables with 3 categories, with YT = 1, 2, 3 representing grade 1 or 

2, grade 3, and grade ≥ 4 adverse events, respectively, and YE = 1, 2, 3 representing PD, SD, 

and PR/CR, respectively. To define the personalized optimal dose for each patient, we first 

define the range of acceptable doses to safeguard against using doses that are overly toxic or 

futile. Let πT (3) ≡ Pr(YT = 3|Z, X), πE(3) ≡ Pr(YE = 3|Z, X), and πE(2, 3) ≡ Pr(YE = 2 or 3|

Z, X). At an interim time with observed data Dn, for a patient with biomarker vector X, we 

define dose Z as having acceptable toxicity if

Pr(πT(3) ≥ ϕT W (Z, X), Dn) ≤ δT , (5)

and acceptable efficacy if

Pr(πE(3) ≤ ϕE, 3 W (Z, X), Dn) ≤ δE, 3 (6)

or

Pr(πE(2, 3) ≤ ϕE, 2 W (Z, X), Dn) ≤ δE, 2, (7)

where ϕT is the upper bound on the probabilities of toxicity, ϕE,3 and ϕE,2 are the lower 

bounds on the probabilities of efficacy, and δE,3, δE,2 and δT are non-negative cutoffs. The 

values of ϕT, ϕE,3 and ϕE,2 should be elicited from physicians, and δE,3, and δE,2 and δT 

should be calibrated to obtain good design operating characteristics. The definition of 

acceptable efficacy (6) and (7) accounts for the practical consideration that for a molecularly 

targeted agent, a dose is considered promising if it can achieve a certain rate of CR/PR or a 

certain rate of SD (if the rate of CR/PR is low). For targeted agents, SD is often regarded as 

a favorable outcome as many targeted agents prolong survival without much tumor 

shrinkage.

Given a dose that has acceptable toxicity and efficacy, we measure its desirability using a 

utility function that accounts for the risk-benefit tradeoff that underlies medical decisions in 

practice. The utility is elicited from physicians as follows: we fix the desirability of the most 

desirable outcome pair (i.e., yT = 1, yE = 3) as ζ(1, 3) = 100 and the desirability of the least 

desirable outcome pair (i.e., yT = 3, yE = 1) as ζ(3, 1)=0, and then ask physicians to use 

these two pairs as references to score the desirability of the other elementary outcome pairs 
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{ζ(yT, yE), yT = 1, 2, 3, yE = 1, 2, 3} using the scale of (0, 100). For the solid tumor trial, we 

obtain the following utility table.

yE=1 yE=2 yE=3

yT=1 10 50 100

yT=2 5 20 60

yT=3 0 10 20

Then, for patients with biomarker profile X, the personalized optimal dose is defined as the 

dose that maximizes the true mean utility

Utrue(Z, X) =
yT = 1

3

yE = 1

3
ζ(yT , yE)Pr(yT , yE Z, X, Θ),

while also having both acceptable toxicity and efficacy defined by (5)–(7). Note that Utrue(Z, 

X) depends on biomarker profile X, and thus the target doses may be different for patients 

who have different biomarker profiles. In addition, since the true mean utility Utrue(Z, X) 

depends on unknown parameters Θ, we need to estimate it based on the observed data. 

During the trial, given the interim data Dn collected from n patients, we evaluate the 

desirability of dose Z for a patient with biomarker profile X based on the posterior mean 

utility,

Un(W T(Z, X), W E(Z, X)) =
yT = 1

3

yE = 1

3
ζ(yT , yE)EΘ[Pr yT , yE W T(Z, X), W E(Z, X), Θ Dn] .

3 Personalized Dose-finding Algorithm

In the beginning of an early-phase clinical trial, decision making is difficult because of the 

small amount of available data. This is especially true in personalized dose finding where we 

need to account for patient heterogeneity in the biomarkers. To alleviate this issue, we take 

the approach of a two-stage dose-finding scheme. In stage I, conventional dose escalation 

will be conducted with a maximum sample size of N1 patients, based only on the toxicity 

outcome without considering the patients’ biomarker profiles. The objective is to evaluate 

the safety of the doses and collect some preliminary toxicity and efficacy data to facilitate 

the model fitting in stage II. To be consistent with the conventional approach, at this stage, 

we dichotomize toxicity into dose-limiting toxicity or not, and set ϕT as the target rate. We 

employ the Bayesian optimal interval design (BOIN; Liu and Yuan, 2015) to conduct dose 

escalation because of its ease of implementation and good operating characteristics. Under 

the BOIN design, the dose escalation and de-escalation rules can be prespecified, similar to 

the approach of the 3+3 design, but yields good operating characteristics comparable to 

those of more complicated model-based methods, such as the continuous reassessment 

method (CRM; O’Quigley, Pepe, and Fisher, 1990). We note that any other dose-finding 

design can also be used for dose escalation in this stage.
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After stage I is completed, we move to stage II and perform personalized dose finding based 

on the proposed models, with a maximum sample size of N2 patients. Since the optimal dose 

depends on the patient’s individual biomarker profile, in stage II, we treat patients one by 

one, rather than as a cohort, and continuously update the dose-toxicity and dose-efficacy 

curves to determine the personalized optimal dose for each patient. Specifically, assuming 

that n − 1 patients have been enrolled in the trial, we assign a dose to the nth patient who has 

biomarker profile Xn as follows.

1. Based on the observed data Dn − 1, we extract the CPLS components, fit the 

model and determine the acceptable dose set A(Xn) for the nth patient, i.e., the 

set of doses that have acceptable toxicity and acceptable efficacy defined by (5) 

to (7). Note that as A(Xn) depends on the patient’s individual biomarker profile, 

it varies from patient to patient.

2. If A(Xn) is an empty set, it means that no dose is acceptable for that patient; thus, 

the patient is treated off protocol. If a certain number, say 10, contiguous patients 

are treated off protocol, then we terminate the trial and conclude that no dose is 

acceptable.

3. If A(Xn) is not empty, we use adaptive randomization to choose a dose in A(Xn). 
We randomize the patient to dose j with probability λ proportional to its 

posterior expected utility, i.e.,

λ =
Un − 1(W T(Z = dj, X), W E(Z = dj, X))

dj ∈ A(Xn)Un − 1(W T(Z = dj, X), W E(Z = dj, X))
.

Compared to the common “greedy” approach of always assigning the patient to 

the dose with the highest estimate of Un − 1(W T (Z = dj, X), W E(Z = dj, X)), the 

use of adaptive randomization here affords the dose-finding algorithm more 

freedom to move around and thus avoids trapping it at local optimal doses.

4. We repeat steps 1–3 until we reach the maximum sample size of N2. We do not 

allow for dose skipping when a dose escalation occurs.

After stage II is completed, we determine the personalized optimal dose, for each possible 

biomarker profile X, as the dose in A(X) with the largest posterior mean utility 

UN(W T (Z, X), W E(Z, X)), where N = N1 + N2.

4 Simulation

4.1 Simulation setting

We conducted simulation studies to assess the operating characteristics of the proposed 

design. Taking the setting of our motivating trial, we considered 5 dose levels, (Z1,…, Z5) = 

(0.1, 0.3, 0.5, 0.7, 0.9), and 5 biomarkers, (X1,…, X5). Each of the biomarkers was scored as 

positive (“+”) or negative (“−”). We assumed a high correlation of 0.9 between X1 and X2 to 

accommodate the situation in which some biomarkers are highly correlated. Other 
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biomarkers (i.e., X3, X4 and X5) were assumed to be independent of each other and X1 and 

X2. The probabilities of the 5 biomarkers being positive (“+”) were 0.5, 0.55, 0.5, 0.7, and 

0.3, which encompass moderate, high and low prevalence rates. The toxicity upper bound ϕT 

= 0.3, and the efficacy lower bounds ϕE,2 = 0.4 and ϕE,3 = 0.25. The maximum sample size 

was 60, with stage I sample size N1 = 21 and stage II sample size N2 = 39. The Bayesian 

optimal interval design was used to conduct the stage I dose escalation with a cohort size of 

3 using the R package “BOIN”. In stage II, we used the R package “pls” (Mevik, 2013) to 

extract the first two CPLS components to fit the regression models for toxicity and efficacy.

We constructed 8 scenarios to evaluate the performance of the proposed design. For the first 

7 scenarios, data were generated from the “full” model with 5 biomarkers and their 

interactions with the dose. Specifically, for the ith patient treated at dose Zi, his/her toxicity 

and efficacy outcomes were generated from the following models:

Pr(YT , i ≤ j Zi, Xi, θi) = Φ θi + γT , j + βT , 1Zi + βT , 2X1 + … + βT, 6X5 + βT , 7X1Zi + … + βT, 11X5Zi

Pr(YE, i ≤ j |Zi, Xi, θi) =

Φ
θiγE, j + βE, 1Zi + βE, 2X1 + … + βE, 6X5 + βE, 7X1Zi + … + βE, 11X5Zi

exp(τZi)

where j = 1, 2 and θi ∼ N(0, σ2). The true model parameters for the seven scenarios are 

provided in the Supplementary Materials. Figures 2 and 3 provide graphical presentations of 

the main effects and interaction effects of the 5 biomarkers on efficacy and toxicity, 

respectively, for scenarios 1–7. As shown by Figures 2 and 3, the seven scenarios were 

chosen to cover different cases of biomarker effects. For example, in scenario 1, biomarkers 

1 and 5 have main effects on toxicity, and biomarkers 1, 2, 4, and 5 interact with the dose to 

affect toxicity; biomarkers 1 and 3 have main effects on efficacy, and biomarkers 1 and 4 

interact with the dose to affect efficacy. In scenario 2, none of the 5 biomarkers has a main 

effect on toxicity, only 1 biomarker (i.e., biomarker 3) interacts with the dose to affect the 

toxicity probability, and all 5 biomarkers are involved in the efficacy probability. Scenario 7 

shows an interesting and common case with targeted agents: no treatment effect is observed 

except in the presence of some combination of biomarkers. The drug is effective only for the 

patients for whom the first 3 biomarkers are positive, regardless of the status of biomarkers 4 

and 5. In other words, the treatment is effective only for four biomarker patterns: (+ + + + 

+), (+ + + − −), (+ + + − +), and (+ + + + −).

Scenario 8 is considered a special case in that as long as one of the first three biomarkers is 

positive, they cause the same effect on efficacy. Such a situation may occur when the three 

biomarkers represent molecular alterations in the same pathway, and any alteration in a 

pathway is sufficient to cause the same effect on efficacy. More precisely, the efficacy 

outcomes are generated from the following model:
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Pr(YE, i ≤ j |Zi, Xiθi) =

Φ
θi + γE, j + βE, 1Zi + βE, 2I(X1 + X2 + X3 > 1) + βE, 3X4 + βE, 4X5X4Zi + βE, 6X5Zi

exp(τZi)

where I(C) is an indicator function and equal to 1 if C is true.

The eight chosen scenarios cover different shapes and magnitudes of utility, efficacy and 

toxicity probabilities. Because the efficacy and toxicity probabilities depend on the 

biomarkers, the shape of the dose-utility relationship varies across the biomarker patterns. 

Given 5 binary biomarkers, there were 25 = 32 possible biomarker patterns. Figure 4 shows 

the shapes of the dose-utility curves under the 8 scenarios for 16 selected biomarker 

patterns. We can see that the dose-utility curves demonstrate various shapes: monotonically 

increasing, monotonically decreasing, increasing then decreasing, linear, and curved.

We compared our design to the “direct” approach, which directly includes dose, biomarkers, 

and the interactions between dose and biomarkers in the regression model. As it is not 

feasible to include all five biomarkers and their interactions with the dose (a total of 11 

covariates) in the model, we included the dose, two biomarkers, X1 and X3, and their 

interactions with the dose in the model. To demonstrate the importance of accounting for the 

biomarker information in dose finding, we also compared our proposed design to a dose-

only design that includes only the dose as the covariate in the toxicity and efficacy models. 

Under each scenario, we simulated 1000 trials.

4.2 Simulation results

Reporting the simulation results is not straightforward for personalized dose finding because 

under each scenario, there are 32 different biomarker patterns, and each pattern is associated 

with a unique set of dose-toxicity and dose-efficacy curves and optimal dose. Therefore, we 

report the results in two ways. Table 1 shows the mean and standard deviation of the 

percentage of correct selection (PCS) of the target doses across all 32 possible biomarker 

patterns under each of the 8 scenarios. This provides an overall average performance of the 

designs under each scenario. Here, the target doses are defined as the doses for which the 

utility values are at least 90% of that of the optimal dose. In the case in which there is no 

acceptable dose, due to either high toxicity or low efficacy at all dose levels, the PCS is 

defined as the percentage of inconclusive trials where no dose is selected as the optimal 

dose. In Table 2, we “zoom in” to report the selection percentage for each dose, given two 

representative biomarker patterns, in each scenario. This provides us with detailed 

information of how the designs perform for specific biomarker profiles. To cover more 

practical situations, we chose different representative biomarker patterns in different 

scenarios to obtain different dose-toxicity/efficacy/utility relationships, different numbers of 

target doses, and different locations of target doses. For example, in scenarios 1 and 2, the 

two biomarker patterns were selected to have different numbers and locations of target 

doses, and different shapes of the utility curves (monotonically increasing or decreasing with 

the dose); whereas in scenario 3, the dose-utility relationships are non-monotonic and the 

target doses are in the middle of the dose range for the second biomarker pattern. In Table 2, 

under each representative biomarker pattern in each scenario, the first three rows show the 
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true marginal probabilities of YT = 3 and YE = 2 or 3, which determine the acceptability of 

the dose. The fourth row shows the utility of each dose, which determines the target doses.

Overall, as shown in Table 1, the proposed design outperformed the direct approach, with 

higher PCS and comparable or smaller standard deviations of PCS. The PCS of the proposed 

design was 10.8% to 34% higher than that of the direct approach for scenarios 1, 4, 5, 6, and 

8, and slightly higher under scenario 7. The direct approach had higher PCS than the 

proposed design in scenarios 2 and 3 because in these two scenarios, the direct approach is 

correctly or approximately correctly specified. As shown in Figures 2 and 3, in scenario 3, 

only biomarkers X1 and X3 affect toxicity and efficacy, and in scenario 2, toxicity and 

efficacy are predominately determined by biomarkers X1 and X3. The dose-only design had 

substantially worse performance than the designs that account for the biomarker 

information. The PCS of the dose-only design was often lower than 50%, while that of the 

proposed design was often above 70%.

Similar results were observed for given biomarker profiles (see Table 2). Specifically, in 

scenario 1, for both representative biomarker patterns, utility decreases with the dose. The 

target doses are dose levels 1 and 2 for the first pattern, and dose level 1 for the second 

pattern. The target dose selection percentages were 20% and 35% higher under our proposed 

design than under the direct approach for the two patterns. The dose-only design yielded the 

worst performance. The PCS of the dose-only design was 46.5% and 72.5% lower than those 

of the proposed design. In scenario 2, the utility increases with the dose for the first 

representative pattern and decreases with the dose for the second representative pattern. The 

target dose is dose level 5 for the first pattern, and dose levels 1 and 2 for the second pattern. 

The direct approach yielded 10% higher PCS than the proposed design for the two 

representative patterns. This is because in this case, the direct approach correctly included 

all the biomarkers (i.e., X1 and X3) that affect toxicity and efficacy. For the same reason, the 

direct approach performed better in scenario 3. However, we bear in mind that scenarios 2 

and 3 were intentionally constructed for the purpose of comparison. In practice, we would 

have little information to (correctly) pre-select the two biomarkers. If the selected 

biomarkers are not predictive or some other predictive biomarkers are not selected, the 

performance of the direct approach could be considerably worse. For example, in scenario 4, 

for biomarker pattern (+ + − + +), our proposed design yielded a 56% higher percentage of 

target dose selection than the direct approach; and in scenario 5, the PCS of the proposed 

design was 50% and 25% higher than that of the direct approach for the two representative 

patterns. In scenario 6, although the two designs had comparable performance for the two 

representative biomarker patterns, averaging across all possible biomarker patterns, the PCS 

of our design was 20.8% higher than that of the direct approach (see Table 1). In Scenario 7, 

the drug was effective only for patients for whom the first three biomarkers were positive. 

For biomarker pattern (+ + + + +), the target dose is dose level 1. The PCS of the proposed 

design was 70.1%, slightly lower than that of the direct method. For pattern (+ − − + −), the 

drug was not effective because biomarkers 2 and 3 were negative. In this case, no dose 

selection is the correct selection. The proposed design correctly concluded that the drug was 

not effective 94.4% of the time without selecting any dose. In contrast, the direct approach 

incorrectly selected futile doses 48.1% of the time. In scenario 8, the target dose for 

biomarker pattern (+ + − − −) was dose level 5. The PCS of the proposed design was 10% 
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higher than that of the direct approach (83% versus 73.3%). For biomarker pattern (+ + − + 

−), all 5 dose levels had negligible efficacy, so no dose was acceptable. In this case, the PCS 

is defined as the percentage of trials in which no dose is selected. The PCS of the proposed 

design was 90.6%, i.e., the design correctly concluded that the drug is not effective for 

biomarker pattern (+ + − + −) 90.6% of the time. In contrast, because of using partial 

biomarker information (i.e., biomarkers 1 and 3), the PCS for the direct approach was only 

19.8%. In other words, more than 80% of the time, the direct approach failed to recognize 

that the drug is not effective for patients with biomarker pattern (+ + − + −) and selected a 

futile dose as the optimal dose. This clearly demonstrates the importance of accounting for 

all biomarkers, and the advantage of the proposed method.

To further learn the behavior of the proposed design, we examined the accuracy of the 

posterior estimates of toxicity and efficacy probabilities. Figures S4 and S5 in the 

Supplementary Materials show the distributions of the empirical bias for the posterior 

estimates of toxicity and efficacy probabilities at the end of the trial under the 8 scenarios. 

We can see that the proposed method yielded reasonably accurate estimates and the 

empirical bias was generally close to 0 and mostly within the range of (−0.1, 0.1). We also 

examined the robustness of the estimated CPLS components, that is, did we obtain similar 

CPLS components across 1000 simulated trials? Figure S6 in the Supplementary Materials 

shows that the CPLS components extracted at the end of the trial were generally robust or 

similar across 1000 simulations.

4.3 Sensitivity analyses

We carried out a sensitivity analysis to examine the robustness of our proposed design to the 

number of CPLS components. Table 3 shows the average and standard deviation of the PCS 

of the target doses across 32 possible biomarker patterns with 2, 3, 4, and 5 CPLS 

components for the first three scenarios. We can see that the operating characteristics of the 

proposed design are generally robust to the number of CPLS components used in the dose-

toxicity and dose-efficacy models.

We evaluated the sensitivity of the proposed design to the specification of the utility 

function. We considered the following 2 alternative utility functions:

Utility 1 Utility 2

yE=1 yE=2 yE=3 yE=1 yE=2 yE=3

yT=1 0 50 100 0 65 100

yT=2 0 20 60 0 35 75

yT=3 0 10 20 0 25 35

The first new utility gives a desirability score of 0 to (yT, yE) as long as yE = 1 (i.e., PD) 

regardless of the value of yT. That is, if patients experience disease progression, toxicity 

does not affect the desirability of the drug. The second utility assigns higher desirability 

scores to (yT, yE) when yE = 2 or 3 (i.e., SD or PR/CR). As shown in Table 4, the results 
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under the two alternative utilities are generally similar to those reported in Table 1, 

suggesting that the proposed design is not sensitive to the elicited utility.

We also examined whether the proposed design is sensitive to the choice of the stage I dose 

escalation method by replacing the BOIN with the CRM. The results (see Table 4) are very 

similar to those reported in Table 1, suggesting that our design is robust to the choice of the 

stage I dose escalation method.

Lastly, we examined the impact of the number of biomarkers on the performance of the 

proposed method, compared to the direct approach. When there were 2 biomarkers, the 

direct approach performed slightly better because that method was correctly specified and no 

data reduction was involved (see Table S6 in the Supplementary Materials). However, when 

there were 3 biomarkers, the direct approach was problematic and suffered from numerical 

and convergence problems. In this case, the direct approach had a total of 20 parameters to 

estimate while the number of available observations was only 21 when the decision rules 

were first applied after the first stage of the trial. The proposed design (with dimension 

reduction) had 10 parameters and performed well with a reasonably high PCS. Therefore, 

we recommend the direct approach when the number of biomarkers is less than 3, and the 

proposed method when the number of biomarkers is 3 or more.

5 Discussion

We have proposed a Bayesian personalized dose-finding design for molecularly targeted 

agents with ordinal efficacy and toxicity outcomes. Our design uses the CPLS method to 

reduce the potentially large number of biomarkers and biomarker-dose interactions to a few 

CPLS components that capture most of the information from these variables for predicting 

toxicity and efficacy. By treating these CPLS components as covariates, we use a latent-

variable approach to model toxicity and efficacy. We propose a two-stage dose-finding 

algorithm to assign patients to desirable doses based on their covariate vectors and select the 

personalized optimal doses for future patients. Simulation results show that our proposed 

design has good operating characteristics.

At the end of a trial that uses our design, we use the final data collected in the trial to 

recommend the optimal dose for each patient subgroup that has a specific set of biomarkers. 

Our method, however, does not have to stop there, and can be used to further update and 

refine the decision rule when the data for new patients outside of the trial become available. 

In principle, such a learn-as-we-go approach can be continued as long as we desire.

In our toxicity and efficacy models, random effects are used to capture the correlation 

between YT and YE. This approach assumes that YT and YE are positively correlated, which 

is generally reasonable since the tumor (responsible for efficacy) arises from the same 

normal tissue responsible for toxicity. The strength of the correlation between YT and YE 

has implications in the trial. When the correlation is very high, a higher level of efficacy 

often comes with a higher level of toxicity. As it is typically true that toxicity monotonically 

increases with the dose, this means that higher doses lead to both higher efficacy and higher 

toxicity. Therefore, if the utility function assigns a large reward to efficacy and a small 
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penalty to toxicity, the optimal dose will be the maximum tolerated dose; if the utility 

function imposes a large penalty on toxicity, then the optimal dose may be a low or 

intermediate dose; and if the utility function rewards efficacy and penalizes toxicity in a 

comparable way, then all doses may have similar desirability and thus there may be no clear 

optimal dose.

Although the focus of our method is on dose selection, at the end of the trial, clinicians often 

want to know whether the optimal dose really varies between biomarker-defined subgroups 

of patients, and whether biomarker X is important. The first question can be answered by 

examining and comparing the posterior distributions of utility across the different subgroups. 

For example, given any two biomarker subgroups, we can obtain the posterior probability 

that they have the same optimal dose based on the posterior samples of the toxicity and 

efficacy models (3) and (4). The second question can be answered by examining the 

posterior distributions of the regression parameters βT and βE in the toxicity and efficacy 

models, combined with the loading weights of the CPLS components. Recall that 

biomarkers in profile X enter the efficacy and toxicity models in the form of a linear 

combination, with different loading weights (i.e., CPLS components). For a specific 

biomarker, the product of its loading weight and βT (or βE ) provides a natural measure of 

that biomarker’s effect on the clinical outcomes, which can be interpreted in the usual way 

as in the standard proportional cumulative probit model (Agresti, 2002). In this paper, 

efficacy is modeled as a three-level ordinal outcome. Although simple to use, it ignores 

some aspects of the data. For example, the ordinal efficacy outcome does not capture how 

long patients stay as SD. One possible remedy is to use a more informative endpoint like 

progression-free survival and model efficacy (and toxicity) as a time-to-event outcome 

(Yuan and Yin, 2009).

As in most existing phase I/II trial designs, the proposed design assumes that the outcomes 

are quickly ascertainable such that the decision rules can be applied to determine the dose 

assignment for the next new patient. In the motivating trial, the response is evaluated in the 

first cycle of 4 weeks. If the accrual rate is faster than 1 patient per month, it is likely that 

efficacy may not be observed soon enough to apply decision rules to choose treatments for 

new patients. One practical solution to this logistic difficulty is to take a group sequential 

approach, under which we update the model estimates and decision rules after every Γ 
patients. Between groups, we suspend accrual and wait for the outcomes of the previous 

group of patients to be scored, if needed, before enrolling the next group of patients. A more 

efficient approach that eliminates the requirement of accrual suspension is to apply the 

methodology proposed by Yuan and Yin (2011) and Jin et al. (2004), which accommodates 

the delayed efficacy outcome using Bayesian data augmentation or the expectation-

maximization algorithm. Our design utilizes the CPLS to reduce the dimension of 

biomarkers. Other dimension reduction techniques can also be used. For example, we may 

use a model selection approach to select a few biomarkers based on the ongoing trial to 

overcome the dimensionality problem.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Scree plots of the root mean squared error of prediction (RMSEP) versus the number of 

CPLS components for efficacy and toxicity.
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Figure 2: 
Main effects and interaction effects on efficacy probabilities for the eight scenarios. The 

radius of a circle is proportional to the absolute value of the coefficient. Red and black 

circles respectively represent positive and negative coefficients.
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Figure 3: 
Main effects and interaction effects on toxicity probabilities for the eight scenarios. The 

radius of a circle is proportional to the absolute value of the coefficient. Red and black 

circles respectively represent positive and negative coefficients.
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Figure 4: 
Utility of the five doses for 16 biomarker patterns under the eight scenarios. Each graph 

shows the utility for one biomarker pattern. The symbols “+” and “−” above each graph 

indicate the status for the 5 biomarkers. The eight curves within each sub-group represent 

the utilities for the eight scenarios.
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Table 1:

The average and standard deviation (SD) of the percentage of correct selection (PCS) of target doses across 32 

possible biomarker patterns under the proposed design, the direct approach, and the dose-only design.

Method PCS

Scenario

1 2 3 4 5 6 7 8

Proposed Mean 0.697 0.710 0.708 0.775 0.729 0.697 0.683 0.820

SD 0.18 0.21 0.14 0.30 0.24 0.11 0.27 0.17

Direct approach Mean 0.589 0.829 0.815 0.637 0.601 0.489 0.650 0.480

SD 0.16 0.14 0.06 0.42 0.23 0.32 0.30 0.27

Dose-only Mean 0.461 0.510 0.501 0.500 0.455 0.195 0.285 0.257

SD 0.26 0.23 0.16 0.22 0.30 0.02 0.0003 0.08
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Table 2:

Selection percentage for each dose and the percentage of correct selection (PCS) for two representative 

biomarker patterns under each scenario. The numbers in boldface are target doses.

Dose level
Percentage of correct selection

1 2 3 4 5

Scenario 1

X = (+ + + + +)

P(YT = 3) 0.100 0.229 0.419 0.631 0.809

P(YE = 2) 0.197 0.117 0.052 0.017 0.004

P(YE = 3) 0.773 0.875 0.946 0.982 0.996

True utility 54.39 49.50 42.49 34.48 27.57

Sel % Proposed 0.720 0.139 0.069 0.031 0.037 0.859

     Direct approach 0.524 0.144 0.124 0.076 0.132 0.668

     Dose-only 0.198 0.196 0.196 0.228 0.182 0.394

X = (− − − − +)

P(YT = 3) 0.051 0.071 0.096 0.126 0.164

P(YE = 2) 0.407 0.393 0.331 0.236 0.142

P(YE = 3) 0.183 0.099 0.043 0.015 0.004

True utility 25.75 18.72 13.20 9.38 6.93

Sel % Proposed 0.923 0.000 0.001 0.001 0.062 0.923

     Direct approach 0.572 0.008 0.008 0.013 0.399 0.572

     Dose-only 0.198 0.196 0.196 0.228 0.182 0.198

Scenario 2

X = (+ + + + +)

P(YT = 3) 0.003 0.005 0.009 0.015 0.023

P(YE = 2) 0.069 0.173 0.210 0.177 0.128

P(YE = 3) 0.002 0.032 0.131 0.257 0.357

True utility 11.78 17.48 26.16 34.11 38.98

Sel % Proposed 0.046 0.010 0.035 0.143 0.762 0.762

    Direct approach 0.024 0.003 0.020 0.058  0.893 0.893

    Dose-only 0.176 0.182 0.208 0.258 0.176 0.176

X = (− − − − +)

P(YT = 3) 0.005 0.019 0.059 0.149 0.301

P(YE = 2) 0.467 0.333 0.238 0.170 0.120

P(YE = 3) 0.421 0.533 0.585 0.600 0.596

True utility 60.63 59.49 53.11 44.22 34.96

Sel % Proposed 0.421 0.139 0.125 0.106 0.208 0.560

     Direct approach 0.424 0.224 0.222 0.089 0.041 0.648

     Dose-only 0.176 0.182 0.208 0.258 0.176 0.358

Scenario 3

X = (+ + + + −)
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Dose level
Percentage of correct selection

1 2 3 4 5

P(YT = 3) 0.000 0.000 0.001 0.009 0.056

P(YE = 2) 0.148 0.243 0.239 0.184 0.129

P(YE = 3) 0.005 0.056 0.168 0.286 0.373

True utility 16.38 24.57 33.56 38.57 37.11

Sel % Proposed 0.083 0.032 0.164 0.332 0.387 0.719

     Direct approach 0.078 0.005 0.091 0.453 0.371 0.824

     Dose-only 0.224 0.226 0.160 0.196 0.194 0.390

X = (+ + − + +)

P(YT = 3) 0.000 0.002 0.014 0.075 0.250

P(YE = 2) 0.517 0.401 0.259 0.170 0.116

P(YE = 3) 0.115 0.359 0.529 0.604 0.627

True utility 40.67 55.91 59.59 52.29 39.77

Sel % Proposed 0.303 0.319 0.275 0.087 0.016 0.594

     Direct approach 0.204 0.378 0.370 0.046 0.002 0.748

     Dose-only 0.224 0.226 0.160 0.196 0.194 0.386

Scenario 4

X = (+ + + + −)

P(YT = 3) 0.027 0.031 0.035 0.040 0.045

P(YE = 2) 0.416 0.507 0.391 0.187 0.056

P(YE = 3) 0.148 0.296 0.554  0.803  0.943

True utility 27.31 40.12 55.81 68.18 74.18

Sel % Proposed 0.001 0.003 0.009 0.107 0.880 0.987

     Direct approach 0.000 0.002 0.012 0.122 0.864 0.986

     Dose-only 0.118 0.186 0.216 0.242 0.238 0.480

X = (+ + − + +)

P(YT = 3) 0.040 0.091 0.177 0.300 0.458

P(YE = 2) 0.444 0.295 0.078 0.009 0.000

P(YE = 3) 0.350 0.672 0.920 0.991  1.000

True utility 40.89 53.29 57.07 51.68 43.60

Sel % Proposed 0.025 0.100 0.378 0.308 0.189 0.786

     Direct approach 0.001 0.000 0.037 0.184 0.778 0.221

     Dose-only 0.118 0.186 0.216 0.242 0.238 0.644

Scenario 5

X = (− − − − −)

P(YT = 3) 0.025 0.017 0.011 0.007 0.004

P(YE = 2) 0.407 0.393 0.331 0.236 0.142

P(YE = 3) 0.183 0.099 0.043 0.015 0.004

True utility  28.86 23.83 19.10 15.20 12.37

Sel % Proposed 0.824 0.003 0.000 0.000 0.159 0.824

     Direct approach 0.324 0.004 0.008 0.009 0.655 0.324
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Dose level
Percentage of correct selection

1 2 3 4 5

     Dose-only 0.200 0.210 0.208 0.166 0.216 0.200

X = (− − − + −)

P(YT = 3) 0.026 0.018 0.012 0.008 0.006

P(YE = 2) 0.427 0.464 0.485 0.485 0.465

P(YE = 3) 0.319 0.341 0.374 0.417 0.471

True utility 39.00 43.36 48.36 53.77 59.36

Sel % Proposed 0.067 0.009 0.003 0.002 0.919 0.921

     Direct approach 0.324 0.004 0.008 0.009 0.655 0.664

     Dose-only 0.200 0.210 0.208 0.166 0.216 0.382

Scenario 6

X = (− − − − −)

P(YT = 3) 0.022 0.025 0.028 0.032 0.036

P(YE = 2) 0.394 0.484 0.534 0.535 0.492

P(YE = 3) 0.122 0.143 0.203 0.293 0.402

True utility 25.73 29.01 34.31 40.43 46.73

Sel % Proposed 0.156 0.002 0.003 0.003 0.836 0.836

     Direct approach 0.152 0.003 0.006 0.015 0.824 0.824

     Dose-only 0.176 0.184 0.218 0.209 0.213 0.213

X = (− − − + −)

P(YT = 3) 0.035 0.040 0.045 0.050 0.057

P(YE = 2) 0.394 0.484 0.534 0.535 0.492

P(YE = 3) 0.122 0.143 0.203 0.293 0.402

True utility 23.74 26.64 31.52 37.28  43.26

Sel % Proposed 0.212 0.001 0.003 0.003 0.781 0.781

    Direct approach 0.152 0.003 0.006 0.015 0.824 0.824

    Dose-only 0.176 0.184 0.218 0.209 0.213 0.213

X = (+ + + + +)

P(YT = 3) 0.000 0.000 0.001 0.009 0.054

P(YE = 2) 0.419 0.295 0.178 0.116 0.081

P(YE = 3) 0.399 0.229 0.187 0.195 0.226

True utility  62.59 42.16 32.89 28.78 25.36

Sel % Proposed 0.701 0.020 0.034 0.028 0.154 0.701

     Direct approach 0.748 0.040 0.058
6

0.0438 0.0913 0.748

     Dose-only 0.286 0.104 0.058 0.091 0.176 0.286

X = (+ − − + −)

P(YT = 3) 0.000 0.002 0.014 0.073 0.247

P(YE = 2) 0.000 0.000 0.000 0.001 0.008

P(YE = 3) 0.000 0.000 0.000 0.000 0.010

True utility 9.93 9.60 8.64 6.92 5.34
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Dose level
Percentage of correct selection

1 2 3 4 5

Sel % Proposed 0.010 0.000 0.000 0.008 0.038 0.944

     Direct approach 0.283 0.020 0.023 0.043 0.114 0.519

     Dose-only 0.286 0.104 0.058 0.091 0.176 0.285

Scenario 8

X = (+ + − − −)

P(YT = 3) 0.081 0.056 0.037 0.024 0.016

P(YE = 2) 0.287 0.333 0.368 0.386 0.385

P(YE = 3) 0.094 0.140 0.199 0.271 0.355

True utility 22.09 28.64 36.23 44.55 53.16

Sel % Proposed 0.066 0.008 0.008 0.002 0.830 0.830

     Direct approach 0.065 0.000 0.000 0.005 0.733 0.733

     Dose-only 0.153 0.063 0.075 0.175 0.353 0.353

 X = (+ + − + −)

P(YT = 3) 0.081 0.056 0.037 0.024 0.016

P(YE = 2) 0.002 0.004 0.009 0.016 0.027

P(YE = 3) 0.000 0.000 0.000 0.001 0.002

True utility 7.88 8.44 9.00 9.61 10.38

Sel % Proposed 0.012 0.004 0.000 0.002 0.076 0.906

     Direct approach 0.065 0.000 0.000 0.005 0.733 0.198

     Dose-only 0.153 0.063 0.075 0.175 0.353 0.181
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Table 3:

Sensitivity analysis: the average and SD of the PCS of the target dose across 32 possible biomarker patterns 

with 2 to 5 CPLS components for the first three scenarios.

2 components 3 components 4 components 5 components

Scenario Scenario Scenario Scenario

1 2 3 1 2 3 1 2 3 1 2 3

Mean 0.70 0.71 0.71 0.74 0.75 0.75 0.74 0.75 0.72 0.74 0.74 0.72

SD 0.18 0.21 0.14 0.14 0.18 0.13 0.12 0.18 0.15 0.12 0.19 0.17
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Table 4:

The average and standard deviation (SD) of the percentage of correct selection (PCS) of target doses of the 

proposed design under two alternative utility functions, or using the CRM in stage I.

PCS
Scenario

1 2 3 4 5 6 7 8

Under utility 1

Mean 0.661 0.704 0.722 0.772 0.714 0.652 0.680 0.823

SD 0.20 0.24 0.16 0.30 0.23 0.19 0.27 0.17

Under utility 2

Mean 0.630 0.686 0.755 0.841 0.719 0.642 0.670 0.815

SD 0.23 0.25 0.18 0.26 0.26 0.19 0.28 0.17

Using CRM in stage I

Mean 0.717 0.711 0.696 0.772 0.719 0.721 0.685 0.824

SD 0.17 0.23 0.16 0.31 0.24 0.11 0.26 0.17
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