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Abstract

Substance use disorder (SUD) is a major public health crisis worldwide, and effective treatment 

options are limited. During the past 2 decades, researchers have investigated the impact of a 

variety of pharmacological approaches to treat SUD, one of which is the use of medical cannabis 

or cannabinoids. Significant progress was made with the discovery of rimonabant, a selective CB1 

receptor (CB1R) antagonist (also an inverse agonist), as a promising therapeutic for SUDs and 

obesity. However, serious adverse effects such as depression and suicidality led to the withdrawal 

of rimonabant (and almost all other CB1R antagonists/inverse agonists) from clinical trials 

worldwide in 2008. Since then, much research interest has shifted to other cannabinoid-based 

strategies, such as peripheral CB1R antagonists/inverse agonists, neutral CB1R antagonists, 

allosteric CB1R modulators, CB2R agonists, fatty acid amide hydrolase (FAAH) inhibitors, 

monoacylglycerol lipase (MAGL) inhibitors, fatty acid binding protein (FABP) inhibitors, or 

nonaddictive phytocannabinoids with CB1R or CB2R-binding profiles, as new therapeutics for 

SUDs. In this article, we first review recent progress in research regarding the endocannabinoid 

systems, cannabis reward versus aversion, and the underlying receptor mechanisms. We then 

review recent progress in cannabinoid-based medication development for the treatment of SUDs. 

As evidence continues to accumulate, neutral CB1R antagonists (such as AM4113), CB2R 

agonists (JWH133, Xie2–64), and nonselective phytocannabinoids (cannabidiol, β-caryophyllene, 

Δ9-tetrahydrocannabivarin) have shown great therapeutic potential for SUDs, as shown in 

experimental animals. Several cannabinoid-based medications (e.g., dronabinol, nabilone, 

PF-04457845) that entered clinical trials have shown promising results in reducing withdrawal 

symptoms in cannabis and opioid users.

1 Introduction

Substance use disorder (SUD) remains a serious problem worldwide and has an enormous 

economic burden in the USA and many other countries because of costs related to crimes, 

loss of productivity, and healthcare. Sadly, the greatest cost of SUDs is paid in human lives 

caused by either drug overdose or by SUD-related diseases. In recent years, there has been a 

dramatic increase in opioid overdose incidents, bringing the number of fatal incidents to 

nearly 48,000 in 2017 in the USA [1, 2]. Although the US FDA has approved several 
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medications (methadone and buprenorphine for the treatment of opioid use disorders [3]; 

disulfiram, naltrexone, and acamprosate for alcohol use disorders; nicotine-replacement 

therapy, bupropion, and varenicline for cigarette smoking cessation [4]), the rate of relapse is 

extremely high. Less than 3% of individuals with SUDs remain abstinent for > 1 year after 

pharmacotherapy is terminated [3, 4]. No medication for the treatment of psychostimulant 

use disorders has been approved by the FDA. The lack of effective treatments for the 

prevention of relapse has encouraged scientific communities to focus on developing more 

effective pharmacotherapies to combat SUDs. Significant progress has been made in various 

receptor mechanism-based and clinic-based medication development strategies [5–8]. In this 

article, we focus on recent progress in cannabinoid or cannabinoid receptor-based 

medication development for the treatment of SUDs. The information was gathered using 

PubMed, Web of Science, and Biological Abstract search engines and the following key 

terms: addiction (or substance use disorder) and endocannabinoid system, CB1, CB2, 

allosteric modulators, fatty acid amide hydrolase (FAAH) inhibitor, monoacylglycerol lipase 

(MAGL) inhibitor, fatty acid-binding protein (FABP), and phytocannabinoids.

2 Mesolimbic Dopamine System

To understand the mechanisms through which cannabis produces rewarding, aversive, or 

anti-addictive effects, we briefly review the mesolimbic dopamine (DA) system, a neural 

substrate critically involved in drug reward and addiction [9, 10]. Although our 

understanding of the etiology of drug abuse and addiction remains limited, a well-accepted 

view is that the rewarding effects of drugs of abuse are mediated primarily by the activation 

of the DA system that originates in the ventral tegmental area (VTA) of the midbrain and 

projects to the prefrontal cortex (PFC), nucleus accumbens (NAc), and amygdala, the brain 

regions critically involved in addiction [11]. Addictive drugs may directly or indirectly 

activate this system by stimulating or blocking distinct molecular or cellular mechanisms 

[9]. For example, the psychostimulant cocaine may activate this system mainly by blocking 

DA transporters (DATs), whereas nicotine activates VTA DA neurons directly by stimulating 

nicotinic cholinergic receptors or indirectly by stimulating glutamate release in the VTA and 

NAc [3]. On the other hand, opioids may activate the VTA DA neurons mainly by 

stimulation of opioid receptors located on VTA γ-aminobutyric acid (GABA)ergic 

interneurons and/or GABAergic afferents from other brain regions, which causes a decrease 

in GABA release and consequently DA neuron disinhibition [3, 5]. Therefore, the VTA–

NAc DA pathway has been thought to play a central role in drug reward and addiction [9], 

making it a crucial target in medication development for the treatment of SUDs. Significance 

progress has been made in DA-, glutamate-, and GABA-based medication development for 

the treatment of SUDs [6, 7, 9]. In addition, increasing attention has been given to cannabis 

or cannabinoids that alter the brain DA reward system [12–14]. Therefore, we first review 

how cannabis and cannabinoids modulate the mesolimbic DA system to produce reward or 

aversion; we then survey potential cannabinoid receptor-based medications that ameliorate 

effects produced by different drugs of abuse.
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3 Endocannabinoid System

The endocannabinoid (eCB) system consists of endogenous cannabinoids, such as 

anandamide (AEA) and 2-arachidonoylglycerol (2-AG), G-protein-coupled cannabinoid 

receptors (CB1Rs, CB2Rs), enzymes for eCB synthesis and degradation, intracellular 

signaling molecules, and their putative transport systems (Fig. 1) [15]. In 1992, the first 

eCB, AEA, was discovered [16]. AEA is biosynthesized from membrane N-arachidonoyl 

phosphatidylethan-olamine (NAPE) via multiple pathways by enzymes such as 

phospholipase A2, phospholipase C, and NAPE-phospholipase D (NAPE-PLD). It is 

degraded primarily by the enzyme FAAH, which converts AEA into ethanolamine and 

arachidonic acid (AA). AEA is an endogenous CB1R agonist (inhibitory constant [Ki] = 

87.7 nM for rat CB1R; Ki = 239.2 nM for human CB1R) and a weak CB2R agonist (Ki = 

267.8 nM for rat CB2; Ki = 439.5 nM for human CB2) [17]. The effects of AEA are thought 

to be mediated mainly by stimulation of CB1Rs and CB2Rs in the brain and periphery. 

Endogenous AEA is present at very low levels and has a very short half-life because of the 

action of FAAH. As such, inhibition of FAAH leads to elevated AEA levels; therefore, 

FAAH inhibitors are being pursued for therapeutic use [18].

In 1995, 2-AG, the second eCB, was discovered [19]. It is an endogenous agonist of the 

CB1Rs (Ki = 1180 nM for rat CB1R; Ki = 3423 nM for human CB1R) and CB2Rs (Ki = 

1900 nM for rat CB2R; Ki = 1193 nM for human CB2R) [17]. Unlike AEA, 2-AG is present 

at relatively high levels in the central nervous system (CNS). 2-AG is synthesized from AA-

containing diacylglycerol (DAG) by the action of DAG lipase and metabolized by the 

enzyme MAGL that converts 2-AG to free AA and glycerol. Inactivation of MAGL by 

JZL184 or others results in immense elevations of brain 2-AG levels that lead to cannabinoid 

behavioral effects in mice [20]. Therefore, both FAAH and MAGL constitute two additional 

major targets (in addition to CB1Rs and CB2Rs) in medication development for the 

treatment of neuropsychiatric disorders, including SUDs (Fig. 1). eCB transporters for AEA 

include the heat shock proteins (Hsp70s) and FABPs [21, 22]. FABP inhibitors attenuate the 

breakdown of AEA by the FAAH. The blockade of AEA transport may, at least partly, be the 

mechanism through which FABP inhibitors exert their pharmacological effects. Unlike AEA 

transporters, which are more extensively studied, only a few studies have explored the 

presence and function of the transporters of 2-AG [23].

3.1 Neuronal CB1 Receptor (CB1R) Signaling

Endocannabinoids regulate physiological functions in the brain mainly through activation of 

CB1Rs because of their high density of expression in the brain. Since CB1Rs are abundant 

at neuronal terminals [24], most functional studies have focused on how eCBs modulate 

synaptic signal transmission and plasticity via a retrograde eCB-CB1R mechanism (Fig. 2) 

[25–27]. Specifically, presynaptic neuronal depolarization increases glutamate release at 

excitatory synapses by activation of voltage-gated Ca2+ channels (VGCCs), which 

subsequently activates postsynaptic AMPA (α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors and depolarizes post-

synaptic neurons. Meanwhile, glutamate may also activate postsynaptic group I 

metabotropic glutamate receptors (mGluR1, mGluR5), participate in synaptic signal 
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transmission, and cause an increase in 2-AG synthesis in postsynaptic neurons. In addition, 

postsynaptic neuronal depolarization may also elevate intracellular Ca2+ via VGCCs and 

elicit 2-AG production, most likely via phospholipase C. After being released from 

postsynaptic neurons, 2-AG retrogradely travels across the synapse to activate presynaptic 

CB1Rs. Presynaptic CB1Rs are Gi/o protein-coupled receptors. Their activation leads to 

inhibition of VGCCs and activation of inwardly rectifying K+ channels via the stimulated 

cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signal pathway and, 

therefore, inhibits neurotransmitter release by, for example, inhibiting glutamate release at 

excitatory synapses (Fig. 2) or GABA release at inhibitory synapses [28]. This neuronal 

CB1-mediated neuronal inhibition leads to several types of short-term or long-term synaptic 

plasticity, such as depolarization-induced suppression of excitation (DSE) at excitatory 

synapses, depolarization-induced suppression of inhibition (DSI) at inhibitory synapses, or 

long-term depression [26, 27, 29], which are associated with eCB involvement in various 

brain functions [25, 26, 29].

3.2 Glial CB1R Signaling

In addition to neurons, CB1Rs are also detected in ~ 40% of astrocytes [30, 31]. Astrocytes 

were traditionally thought to metabolically support neurons and to maintain a stable 

homeostatic environment for neuronal functions. However, recent studies have indicated that 

astrocytes can control synaptic plasticity and memory functions [32]. Navarrete and Araque 

[33] first reported in 2008 that hippocampal astrocytes express functional CB1Rs that 

increase intracellular Ca2+ levels in astrocytes following electrical stimulation of adjacent 

neurons. This effect is mediated by a Gαq protein-phospholipase C signal pathway, rather 

than the Gαi/o protein-cAMP signal pathway observed in neurons. This increase in astrocyte 

Ca2+ levels causes release of gliotransmitters such as glutamate and D-serine (an NMDA 

receptor co-activator) [34, 35], causing hetero-synaptic potentiation at excitatory or 

inhibitory synapses [33, 36] (Fig. 2). This glial CB1R-mediated neuronal excitation is 

opposite to neuronal CB1R-mediated homosynaptic inhibition. Thus, the functional effect of 

eCB release or cannabinoids may depend on the balance between these opposing actions 

(Fig. 2).

It is well-documented that systemic administration of high doses of Δ9-tetrahydrocannabinol 

(Δ9-THC) or WIN55, 212–2 may impair learning and memory [37]. Strikingly, deletion of 

CB1Rs from astrocytes (in GFAP-CB1-KO mice) abolished cannabinoid-induced memory 

impairment, whereas deletion of CB1Rs from specific neurons (i.e., cortical glutamatergic or 

forebrain GABAergic neurons lacking the CB1R gene) failed to alter it [31, 36]. These 

findings suggest that glial CB1Rs may play a dominant role in cannabinoid-induced 

cognitive impairment (Fig. 2). Clearly, more studies are required to confirm these findings 

and to explore whether glial CB1Rs play a similar role in other effects of cannabinoids such 

as analgesia, hypothermia, catalepsy, hypolocomotion, and cannabis reward or aversion.
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4 Cannabis Reward and the Receptor Mechanisms

4.1 Cannabis Reward

Cannabis is commonly used worldwide, as many people find its effects pleasurable. 

However, reports regarding the rewarding properties of cannabis are conflicting, and the 

underlying mechanisms are poorly understood. Accumulative evidence indicates that eCBs 

may modulate the mesolimbic DA system directly or indirectly via stimulation of CB1Rs 

and CB2Rs (Fig. 3). CB1Rs are expressed at high density in the cortex, striatum, 

hippocampus, thalamus, hypothalamus, substantia nigra pars reticulata, and cerebellum (Fig. 

4) [24, 38]. These unique distributions account for their functional involvement in cognition, 

memory, emotions, appetite, and reward. High expressions of CB1Rs have been found on 

glutamatergic and GABAergic neurons in the VTA and striatum [29, 39, 40], two critical 

brain regions involved in drug reward and relapse. As stated, CB1Rs participate in 

retrograde signaling at glutamatergic or GABAergic synapses to control neurotransmitter 

release [29]. Since CB1Rs are highly expressed in the brain, whereas CB2Rs are expressed 

predominantly in peripheral tissues in healthy subjects, it is widely accepted that the 

rewarding effects of cannabinoids are mediated by the stimulation of brain CB1Rs [41, 42]. 

Several lines of evidence support this hypothesis. For example, stimulation of CB1Rs can 

excite DA neurons and increase DA release in the NAc [43–46]. Cannabinoid receptor 

agonists such as Δ9-THC, CP55, 940, WIN55, 212–2, and HU 210 can modulate the DA 

reward system [47] (possibly through stimulation of CB1Rs), producing conditioned place 

preference (CPP) [48], enhanced brain-stimulation reward (BSR) [49, 50], self-

administration [51–53], and reinstatement of extinguished drug-seeking behavior [54].

4.2 GABA-CB1 hypothesis

Electrophysiological studies demonstrate that VTA DA neurons receive both inhibitory 

GABAergic and excitatory glutamatergic inputs. CB1Rs are expressed in GABAergic 

neurons in the VTA and NAc [40]. Stimulation of CB1Rs on VTA GABAergic neurons 

caused VTA DA neuron activation via GABAergic disinhibition [55–58]. These findings 

suggest that cannabis reward could be mediated by the activation of CB1Rs on VTA 

GABAergic neurons (Fig. 3). However, there is no direct in vivo behavioral evidence 

supporting this GABA-CB1R hypothesis of cannabis reward. In addition, morphological 

evidence indicates that CB1Rs are mainly expressed in the substantia nigra pars reticulata 

(SNr), cerebellum, hippocampus, and striatum but at much lower density in the VTA (Fig. 4) 

[24]. Thus, it is more likely that GABAergic afferents projecting to the VTA DA neurons 

from those high CB1R-expressed regions rather than from VTA GABAergic interneurons 

may play a more important role in modulating DA neuron activity and cannabis reward. 

Clearly, more studies are needed to test this GABAergic disinhibition hypothesis of 

cannabinoid reward.

5 Cannabis Aversion and the Receptor Mechanisms

5.1 Cannabis Aversion

Not all cannabis users enjoy the effects of cannabis, with some experiencing euphoria, 

pleasure, and relaxation [12, 59, 60] but others experiencing dysphoria, anxiety, and 
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depression [61, 62]. Even in the same person, cannabis may produce positive effects at one 

time but negative effects at another [63, 64]. Similar paradoxical effects of Δ9-THC have 

been found in non-human primates. For example, Δ9-THC was reported to be self-

administered by squirrel monkeys [65, 66] but not by rhesus monkeys [67, 68]. Unlike many 

other drugs of abuse, such as opioids, stimulants, nicotine, or alcohol, Δ9-THC or other 

cannabinoid agonists cannot be reliably self-administered by rats or mice. Δ9-THC might 

produce rewarding effects, as indicated by enhanced electrical BSR [69–71], but more recent 

studies have indicated that Δ9-THC or other cannabinoid agonists might also be aversive and 

inhibit BSR [72–75]. Conflicting findings have also been reported in studies using CPP, in 

which Δ9-THC or other cannabinoids are either not rewarding or produce overt aversive 

effects [76, 77]. Similar conflicting findings are also reported in studies using in vivo 

microdialysis, indicating that Δ9-THC failed to alter the extracellular DA level in the NAc 

[78]. The neurobiological mechanisms underlying such paradoxical effects are poorly 

understood. One possible explanation is that distinct cellular distributions of CB1 or CB2 

receptors in the brain may underlie the different effects of cannabinoids, as discussed below 

(Sects. 5.2 and 5.3).

5.2 Glutamate–CB1 Hypothesis

Clearly, the above GABAergic disinhibition hypothesis cannot explain how cannabis 

produces aversive effects. We recently reported that CB1Rs are expressed not only in VTA 

GABAergic neurons but also in VTA glutamatergic neurons (Fig. 3) [40]. Optogenetic 

activation of VTA glutamatergic neurons has been shown to produce potent DA-dependent 

rewarding effects, as assessed by CPP and intracranial self-stimulation (ICSS) [40, 79]. 

Strikingly, systemic administration of Δ9-THC dose dependently inhibited such 

glutamatemediated optical ICSS only in wild-type (WT) mice and not in conditional CB1R-

knockout (CB1-KO) mice, in which CB1Rs are deleted selectively from subcortical VgluT2-

expressing glutamatergic neurons [40]. These findings suggest that stimulation of CB1Rs on 

glutamatergic neurons may produce aversive effects by decreasing glutamatergic inputs to 

VTA DA neurons. It also suggests that stimulation of brain CB1Rs is not always rewarding 

but could be reward attenuation or aversive. Therefore, we proposed that the hedonic effects 

of cannabis might depend on a final net effect of at least two opposing actions of 

cannabinoids on both VTA GABAergic neurons and VTA glutamatergic neurons or their 

afferent terminals (Fig. 3). If more CB1Rs are expressed in VTA GABAergic neurons or 

GABAergic afferents, cannabis will be rewarding since GABAergic disinhibition of VTA 

DA neurons is dominant. In contrast, if more CB1Rs are expressed in VTA glutamatergic 

neurons or glutamatergic afferents, cannabis will be aversive since CB1R stimulation-

induced reduction of glutamatergic inputs to VTA DA neurons is dominant. Congruently, if 

CB1R levels are equivalent on both neuronal types, cannabis should have no effect on the 

brain reward function (Fig. 3). This hypothesis appears to explain why Δ9-THC or 

cannabinoids are rewarding in some human subjects or nonhuman primates (squirrel 

monkeys), in which more CB1Rs might be expressed in VTA GABAergic neurons or 

GABAergic afferent terminals, but are ineffective or aversive in other species such as rats 

and mice in which more CB1Rs might be expressed in VTA glutamatergic neurons or 

glutamatergic afferent terminals (Fig. 3).
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5.3 Dopamine–CB2 Hypothesis

In addition to the abovementioned glutamate–CB1R hypothesis, activation of CB2Rs in 

VTA DA neurons may also contribute to the aversive effects of cannabis (Fig. 3). A break-

through finding in the past decade was the discovery of functional CB2Rs in the brain, 

particularly in the mesolimbic DA system [80, 81]. Since CB2Rs are Gi-coupled, 

stimulation of CB2Rs inhibits VTA DA neuron activity and NAc DA release [82–85]. 

Stimulation of CB2Rs by JWH133 inhibits cocaine self-administration, cocaine-induced 

CPP, and hyperactivity [82, 86, 87], whereas overexpression of CB2Rs in the brain inhibits 

cocaine self-administration and cocaine-enhanced locomotion in mice [88]. We recently 

reported that Δ9-THC and WIN55, 212–2 produce biphasic effects—rewarding at lower 

doses and aversive at higher doses—as assessed in the electrical BSR paradigm [50]. 

Pretreatment with a CB1R antagonist (AM251) attenuated the low-dose-enhanced BSR, 

whereas a CB2R antagonist (AM630) attenuated the high-dose-inhibited BSR. Congruent 

with these findings are reports that selective CB1R and CB2R agonists produced significant 

BSR enhancement and inhibition, respectively [50]. Taken together, these new findings 

suggest that both glutamate–CB1R and DA-CB2R mechanisms may underlie the aversive 

effects of cannabis or cannabinoids (Fig. 3). Thus, the subjective effects of cannabis may 

depend on the balance of multiple distinct cell type-specific receptor mechanisms. Cannabis 

may be either rewarding, ineffective, or aversive in different subjects or species according to 

differences in brain CB1R and CB2R expression in different types of neurons.

Such different pharmacological effects (reward vs. aversion) of cannabis and the distinct 

CB1R/CB2R mechanisms of the action produced by different cannabinoids may underlie the 

bases of cannabinoid receptor-based medication development strategies for the treatment of 

SUDs, as discussed below (Sects. 6–14). Next, we review multiple cannabinoid receptor-

based strategies and emphasize the efficacy of compounds that selectively target CB1Rs, 

CB2Rs, FAAH, MAGL, and FABP. Lastly, we review recent progress in studying the 

potential utility of nonaddictive phytocannabinoids such as Δ9-THC, CBD, BCP, and Δ9-

tetrahydrocannabivarin (Δ9-THCV) in the treatment of SUDs.

6 CB1R Antagonists/Inverse Agonists as Potential Treatments for 

Substance Use Disorders (SUDs)

6.1 Rationale

Over the past 3 decades, CB1Rs have been a primary target in medication discovery and 

medicinal chemistry research as they are highly expressed in the brain. As already stated, 

Δ9-THC is the major psychoactive component of cannabis, and CB1Rs are the major targets 

responsible for the physiological and psychological effects of cannabinoids. Further-more, 

the cannabinoid receptor agonist WIN55, 212–2 has been found to increase motivation to 

self-administer nicotine and facilitate cue-induced reinstatement in rats [89], whereas Δ9-

THC increased heroin self-administration in rats [90]. WIN55, 212–2 and CP55, 940 have 

also been shown to facilitate alcohol self-administration, alcohol CPP, and binge-like alcohol 

intake in animals [91, 92]. In addition, cocaine, heroin, and alcohol have been shown to 

increase 2-AG release in the VTA and NAc [93, 94]. Thus, it was hypothesized that CB1R 
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antagonism may be useful for the treatment of other SUDs [95–98], similar to the use of 

naloxone for opioid use disorder [3].

6.2 Rimonabant

In 1994, Sanofi Pharmaceutical Inc. (France) developed rimonabant (SR141716A), the first 

CB1R antagonist [99]. In the absence of cannabinoid agonists, rimonabant itself acts as a 

CB1R inverse agonist, producing the opposite effect to CB1R agonists such as Δ9-THC on 

intracellular signaling [100]. Compelling evidence indicates that rimonabant not only blocks 

the action of Δ9-THC, both in vitro and in vivo, but also has significant anti-addiction 

efficacy against a broad range of addictive substances [95, 101–103] as well as anti-obesity 

potential [104]. On these grounds, rimonabant was approved by the European Commission 

in 2006 for the treatment of obesity and became available for prescribed use in the UK. By 

2008, rimonabant was available in 56 countries. Although intended to control over-eating 

and obesity, rimonabant was soon recognized as able to prolong abstinence from smoking 

compared with placebo in phase III clinical trials [103, 105]. It was also effective at reducing 

self-administration of many other drugs of abuse (for a comprehensive review, see Sloan et 

al. [106]). Unfortunately, rimonabant also produced significant anxiety, depression, and 

suicidality [107, 108]. In October 2008, the European Medicines Agency recommended 

suspension of clinical use of rimonabant after concluding that its risks outweighed its 

benefits, and its approval was withdrawn by the European Commission in January 2009. 

Consequently, clinical trials with such CB1R antagonists with inverse agonist profiles were 

terminated worldwide [108, 109]. Therefore, rimonabant-related studies are not covered in 

detail in this article.

7 Peripheral CB1R Antagonists as Potential Treatments for SUDs

7.1 Rationale

To circumvent the above mentioned adverse effects of rimonabant, peripherally restricted 

CB1R antagonists or inverse agonists were proposed for controlling binge eating (feeding), 

obesity, or metabolic diseases because they cannot penetrate the blood–brain barrier [110]. 

To date, several peripheral CB1R antagonists or inverse agonists have been developed, 

including JD5037 and AM6545. Like rimonabant, both of these agents significantly inhibit 

food intake and decrease body weight [110–114], but, unlike rimonabant, neither agent 

affects behavioral responses mediated by CB1Rs in the brain, such as catalepsy, 

hypomotility, and hypothermia [115].

7.2 JD5037

The peripheral CB1R inverse agonist, JD5037, also dose dependently reduces alcohol 

drinking in mice via CB1Rs in ghrelin-producing stomach cells [116]. It is believed that 

JD5037-induced blockade of gastric vagal afferents abrogated the ability of JD5037 to 

reduce ethanol drinking. This is a very interesting finding, suggesting that peripheral CB1R 

blockade may have therapeutic potential in the treatment of alcoholism. Whether these 

compounds are also effective at attenuating the abuse of drugs such as nicotine, heroin, or 

cocaine remains unknown, and more studies are required to test this hypothesis.
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8 Neutral CB1R Antagonists as Potential Treatments for SUDs

8.1 Rationale

The neural mechanisms underlying the adverse effects of rimonabant remain unknown. 

Presumably, these effects result from CB1R inverse agonism [95]. This premise appears to 

be supported by recent findings that rimonabant alone produces anhedonic-like effects, as 

assessed by electrical BSR [117, 118], in vivo brain microdialysis [119], elevated plus maze, 

and forced swim test [120]. Therefore, it has been proposed that neutral CB1R antagonists 

without inverse agonist profiles should retain the therapeutic anti-addictive effects without 

the unwanted side effects. Accordingly, several neutral CB1R antagonists have been 

developed, including AM4113, LH-21, and PIMSR. Preclinical studies with those 

compounds have shown promising results in combating obesity, metabolic diseases, and 

alcoholic steatosis [121, 122] (Table 1).

8.2 AM4113

AM4113 is a novel CB1R neutral antagonist developed by Salamone et al. [123] in 2007. It 

is a pyrazole-3-carboxamide analog of SR141716A [124]. Unlike the inverse agonists (e.g., 

rimonabant and AM251), AM4113 does not alter forskolin-stimulated cAMP formation in 

vitro [125], suggesting a lack of an inverse agonist profile. In experimental animals, 

AM4113 inhibited food intake to a similar degree as AM251 but, unlike AM251, did not 

potentiate vomiting in the ferret or promote nausea [124, 125]. It also did not produce 

malaise or anxiety-like effects [126]. In a BSR paradigm, rimonabant decreased BSR but 

AM4114 did not, suggesting that AM4113 did not produce aversive or rewarding effects 

[118]. All these data suggest that AM4113 has an improved safety profile over CB1R 

inverse agonists.

Recent studies indicated that AM4113 reduced alcohol consumption and preference in mice 

[127] but not in alcohol-preferring rats [96]. Similarly, AM4113 caused significant 

reductions in nicotine self-administration under fixed ratio 5 (FR5) and progressive-ratio 

(PR) schedules of reinforcement [120], suggesting reductions in nicotine reward and 

motivation to seek the drug. AM4113 also dose dependently reduced reinstatement of 

nicotine seeking induced by drug priming, stress, and drug cues, suggesting substantial 

therapeutic value in relapse prevention [120]. In line with these reports, we recently found 

that AM4113 also dose dependently inhibited heroin self-administration but was less 

effective at reducing cocaine or methamphetamine self-administration in rats [118]. In 

squirrel monkeys, AM4113 dose dependently attenuated self-administration of nicotine or 

Δ9-THC but not cocaine [128]. During the reinstatement test, upon presentation of the drug 

cue, squirrel monkeys reinstated their extinguished response for nicotine, Δ9-THC, or 

cocaine, whereas AM4113 pretreatment significantly reduced drug seeking. In addition, 

AM4113 was reported to reduce discriminative effects of CB1R agonists [129]. During a 

substitution test, when the drug of abuse (e.g., nicotine, Δ9-THC, or cocaine) was replaced 

with saline and drug priming was introduced, animals reinstated drug seeking but showed a 

significant reduction in responding under AM4113 treatment [128]. AM4113 also reduced 

conditioned place aversion (CPA) induced by naloxone-precipitated morphine withdrawal 

but failed to interfere with the reinstatement of the CPA [130]. Although not all findings are 

Galaj and Xi Page 9

CNS Drugs. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fully consistent, most of the results are promising, suggesting that this CB1R-neutral 

antagonist has therapeutic value in the treatment of SUDs, particularly cigarette smoking 

cessation (Table 1).

8.3 LH-21

LH-21 is a triazole-derived compound with anorectic properties that was initially identified 

as a neutral CB1R antagonist [131] and later considered a weak CB1R inverse agonist [132]. 

In vitro and in vivo assays have shown that LH-21 has low brain-penetration ability [133, 

134]. For example, intraperitoneal systemic administration of LH-21 did not antagonize the 

motor inhibition induced by central administration of CP55940 in Wistar rats [133]. Acute 

administration of LH-21 reduced feeding behavior in food-deprived rats, whereas subchronic 

administration reduced food intake and body weight gain in genetically obese Zucker rats 

(i.e., leptin receptor mutant rats) [133]. It also reduced feeding and body weight gain in 

Wistar rats fed a high-fat diet [135]. In addition, just like rimonabant, LH-21 dose 

dependently inhibited alcohol self-administration and alcohol intake but to a lesser degree 

[133]. These data suggest that the effects of LH-21 on feeding and alcohol-taking behavior 

could be mediated, mainly by acting on peripheral CB1Rs. However, this compound has yet 

to be determined as a potential treatment for other SUDs.

8.4 PIMSR

PIMSR (or PIMSR1) is another neutral CB1R antagonist [122]. In experimental animals, 

both rimonabant and PIMSR significantly inhibited cocaine-enhanced BSR in rats [136]. 

However, rimonabant itself produced dose-dependent dysphoric effects in the BSR model, 

whereas PIMSR did not, suggesting that PIMSR may antagonize the acute rewarding effects 

of drugs of abuse but does not itself produce aversive effects [125]. These findings suggest 

that this neutral CB1R antagonist deserves further study as potential pharmacotherapy for 

SUDs.

9 Negative Allosteric Modulators of CB1Rs as Potential Treatments for 

SUDs

9.1 Rationale

A new emerging approach in medication discovery research is to target allosteric sites of 

CB1Rs. Allosteric modulators are ligands that bind to the allosteric binding site of a receptor 

and can remotely modify the conformation of the primary orthosteric binding site. 

Consequently, conformational changes affect the affinity of orthosteric ligands and 

respective signaling. Positive allosteric modulators (PAMs) can increase the binding of the 

orthosteric agonists. Conversely, negative allosteric modulators (NAMs) can decrease 

orthosteric agonist binding. One beneficial characteristic of allosteric modulators over 

traditional orthosteric ligands is that they do not block, but only modulate, eCB binding to 

the orthosteric binding site. Therefore, allosteric modulators have no significant effect on 

basal eCB function and, therefore, possibly have fewer unwanted side effects. In addition, 

highly selective CB1R allosteric modulators may also circumvent adverse side effects that 
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often derive from the activation of multiple signaling pathways by nonselective orthosteric 

ligands.

9.2 Org27569

Org27569 is a positive allosteric modulator of CB1R [137]. Studies in vitro suggest that it 

binds to an allosteric regulatory site on the CB1R, causing a conformational change that 

increases the binding affinity of CB1R agonists such as CP 55,940. However, once bound, 

Org27569 decreases their efficacy at stimulating second messenger signaling and so behaves 

as a functional antagonist of CB1R [137]. Jing et al. [138] reported that rats treated with 

Org27569 showed a reduction in cue-induced or drug-induced reinstatement of cocaine and 

methamphetamine seeking. Similar results were observed in rats treated with rimonabant, 

indicating that both ligands produce similar effects [138]. However, unlike rimonabant, 

Org27569 did not produce CB1R-related adverse effects [139]. Org27569 was also reported 

to decrease food intake and body weight in rodents [139, 140], suggesting its therapeutic 

potential for weight loss and obesity. Surprisingly, Org27569 also affected food consumption 

in CB1R-KO mice, raising a possibility that its pharmacological effects might be mediated 

by other non-CB1Rs [139]. There are also conflicting reports regarding its effect on CB1R-

dependent tetrad effects. Ding et al. reported that Org27469 can attenuate hypothermia 

induced by CP55, 940 [140], whereas others found that Org27569 was ineffective at 

reducing analgesia, hypothermia, and catalepsy induced by Δ9-THC, AEA, or CP55, 940 

[139]. Org27469 did not substitute for either AEA or Δ9-THC, nor did it modify the 

discriminative stimulus effects of these ligands in the drug discrimination paradigm [139].

9.3 Pepcan-12

Pepcan-12 (also known as RVD-Hpα and RVD-hemopressin) was recently localized in 

discrete cells of the CNS and adrenal glands [141] and identified as an NAMs of CB1Rs 

based on its ability to cause a loss in agonist binding, negatively modulate agonist-induced 

accumulation of cAMP, and abolish agonist-induced guanosine 5′-O-[γ-thio]triphosphate 

(GTPγS) binding [142]. There is also a report that pepcan-12 acts as a positive CB2R 

allosteric modulator (CB2R agonist) (Ki value ~ 50 nM) and potentiates (five- to tenfold) the 

effects of CB2R agonists in both [35S]GTPγS binding and intracellular cAMP assays [143]. 

Given the unique characteristics of pepcan-12 as an allosteric modulator of CB1Rs and 

CB2Rs, several groups evaluated its therapeutic potential. Pepcan-12 has been shown to 

reduce food consumption in rats, increase locomotor activity [144, 145], and induce 

anxiolytic and antidepressive effects, as assessed in locomotor activity/open field, light–dark 

exploration, and forced swim tests [146]. To date, no study has evaluated its therapeutic 

potential for the treatment of SUDs.

In summary, in the last 2 decades, significant progress has been made in CB1R-based 

medication development for the treatment of obesity and SUDs. Although the initial studies 

showed promising results with rimonabant, a selective CB1R antagonist or inverse agonist, 

serious adverse side effects associated with this compound led the cannabinoid research 

community to shift their interest to peripheral CB1R antagonists, neutral CB1R antagonists, 

or NAMs of CB1Rs. Peripheral CB1R antagonists such as JD5037 and LH-21 have shown 

promise as therapeutics for obesity and alcohol abuse as they can inhibit food intake and 
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alcohol consumption. Neutral CB1 antagonists such as AM4113 can reduce nicotine, 

alcohol, and heroin self-administration and impede relapse without producing negative side 

effects, making AM4113 a great therapeutic candidate for the treatment of SUDs.

10 CB2R Agonists as Potential Treatments for SUDs

10.1 Rationale

An important finding in cannabinoid research in the last decade is the identification of 

functional CB2Rs in the brain, particularly in the mesolimbic DA system (Fig. 2) [80, 81]. 

Therefore, interest is growing in CB2Rs as potential therapeutic targets for the treatment of 

SUDs and other disorders. CB2Rs were previously regarded as peripheral cannabinoid 

receptors [147]. However, recent advances in genetics and molecular techniques have 

allowed us to detect low levels of CB2R expression in the brain [80, 81]. CB2Rs have been 

found on neurons of multiple brain regions, including the cerebellum, hippocampus, globus 

pallidus, and midbrain [148, 149]. We and others have identified the presence of CB2Rs on 

cell bodies of DA neurons in the VTA [83, 84] as well as on the terminals of these neurons 

in the NAc [85, 88]. Although our understanding of the physiological relevance of brain 

CB2Rs remains incomplete, evidence suggests they play an important role in reward and 

addiction. For example, genetic deletion of CB2Rs has been reported to reduce nicotine 

reward and intake [82, 150–152] but also to increase preference for and vulnerability to 

alcohol consumption [153, 154]. Correspondingly, overexpression of CB2Rs in the brain has 

been associated with reduced cocaine sensitization, cocaine self-administration, and cocaine 

CPP [88]. Similarly, CB2R expression in rats with a history of cocaine self-administration 

decreased in the NAc and medial globus pallidus but increased in the PFC, VTA, and lateral 

septal nuclei after cocaine priming [155, 156]. These findings suggest that brain CB2Rs are 

important in many addiction-related behaviors through interaction with the DA reward 

circuit. As a result, several research avenues are currently being explored to identify 

efficacious CB2R agonists in the treatment of SUDs (Table 2).

10.2 JWH133

JWH133 is a highly selective CB2R agonist with about 200-fold selectivity for CB2Rs 

versus CB1Rs [157]. Stimulation of CB2Rs by JWH133 has been shown to inhibit VTA DA 

neuron firing and DA release in the NAc [82, 84]. Specifically, JWH133 reduces DA neuron 

firing by prolonging action potential initiation, enhancing after hyperpolarization amplitude, 

and hyperpolarizing membrane potential through CB2R-mediated reduction of intracellular 

cAMP and enhancement of M-type K+ currents [158]. We previously reported that systemic 

and local administration of JWH133 into the VTA or NAc reduced cocaine self-

administration in WT and CB1-KO mice but not in CB2-KO mice [82–84, 87]. Although 

JWH133 was less effective at attenuating cocaine self-administration in rats [87], it blocked 

the acquisition and expression of cocaine-induced CPP and reduced cocaine-elicited 

conditioned hyperactivity in rats and mice [86, 159]. In addition, JWH133 also reduced 

nicotine CPP [159], and GW405833—another highly potent and selective CB2R agonist 

[160]—inhibited cocaine self-administration in mice [82]. These data suggest that this 

CB2R agonist can reduce drug reward (Table 2). In contrast, it was also reported that 
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SR144,528 (a CB2R antagonist/inverse agonist) significantly reduced drug-primed 

reinstatement of cocaine seeking [161].

10.3 O-1966

O-1966 is another highly selective synthetic CB2R agonist with over 200-fold selectivity for 

CB2Rs versus CB1Rs (Ki = 23 vs. 5055 nM, respectively) [162]. Like the attenuating effects 

of JWH133 on cocaine-related behaviors, O-1966 also blocked cocaine-induced CPP [150]. 

In addition, it reduced or delayed the development of opioid tolerance and morphine 

physical dependence [163–165]. Likewise, O-1966 and JHW015 (another CB2R agonists) 

also potentiated the antinociceptive effects of morphine and blocked morphine CPP [163, 

166], suggesting their therapeutic potential in the management of cocaine or opiate abuse. 

However, when given in combination with a subthreshold dose of nicotine, O-1966 produced 

nicotine CPP [150], suggesting a differential role of CB2Rs in cocaine versus nicotine 

reward. This is supported by findings that genetic deletion or pharmacological blockade of 

CB2Rs by AM630 or SR144528 attenuated nicotine-induced CPP [150, 151], nicotine self-

administration [151], and nicotine withdrawal symptoms [151] (but see Ignatowska-

Jankowska et al. [150]) (Table 2).

10.4 AM1241

AM1241 is another selective CB2R agonist with ~ 70-fold selectivity for CB2Rs over 

CB1Rs [167]. Both agonists AM1241 and AM1710 reduced or delayed the development of 

opioid tolerance and morphine physical dependence [163–165]. In contrast, it was also 

reported that AM1241 at lower doses (1–10 mg/kg intraperitoneally), failed to alter nicotine 

self-administration or reinstatement of nicotine seeking [89], suggesting a differential role of 

CB2Rs in nicotine reward, as stated.

10.5 Xie2–64

Xie2–64 is a novel CB2R inverse agonist with high affinity for CB2R (Ki = 0.5 nM) and 

high selectivity for CB2Rs versus CB1s (> 2500-fold) [168]. Given the findings with various 

CB2R agonists already described, we also evaluated the potential utility of this novel CB2R 

inverse agonist for the treatment of cocaine addiction using animal models of drug abuse 

(Table 2). We found that systemic administration of Xie2–64 dose dependently inhibited 

cocaine self-administration and shifted cocaine dose-response curves downward in rats and 

WT mice but not in CB2-KO mice [169]. Xie2–64 also dose dependently attenuated 

cocaine-enhanced BSR maintained by optical stimulation of VTA DA neurons in transgenic 

mice expressing Cre recombinase under the promoter of DAT-cre mice. In vivo 

microdialysis studies in rats revealed that Xie2–64 dose-dependently reduced the 

extracellular DA level in the NAc [169]. Together, these results suggest that Xie2–64 can 

reduce cocaine self-administration and cocaine intake, most likely via a DA-dependent 

mechanism.

In summary, several studies have provided evidence supporting the premise that CB2R 

agonists have therapeutic potential for the treatment of obesity and SUDs. Compounds such 

as JWH 133, Xie2–64, and BCP (see Sect. 14) share the ability to reduce drug self-
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administration and drug seeking in rodents, making them frontier candidates in medication 

development for nicotine, heroin, and cocaine use disorders (Table 2).

11 Fatty Acid Amide Hydrolase Inhibitors as Potential Therapeutics for 

SUDs

11.1 Rationale

Fatty acid amide hydrolase (FAAH) is an enzyme responsible for degradation of AEA, an 

eCB produced on demand in response to elevated intracellular calcium levels or 

depolarization of DA neurons [57, 170]. Enhancement of endogenous AEA levels activates 

CB1Rs and CB2R, producing effects similar to those of systemically administered 

cannabinoid receptor agonists (Fig. 1). Therefore, FAAH inhibitors could be promising 

therapeutics for the treatment of SUDs (Table 3) [171, 172].

11.2 URB597

URB597 is a relatively selective FAAH inhibitor [173] that almost completely suppresses 

FAAH activity, causing significant increases in AEA levels in brain regions involved in 

motivational, emotional, and cognitive functions [174]. It has been reported that acute 

treatment with URB597 did not alter cocaine self-administration [174, 175]. It also failed to 

alter cocaine-induced reinstatement of drug seeking in monkeys [174] but effectively 

reduced cocaine seeking in rats [175, 176]. These findings suggest limited applications for 

this FAAH inhibitor in the treatment of cocaine use disorder.

Similarly, the acute administration of URB597 neither altered heroin self-administration 

[177] nor interfered with CPA induced by morphine withdrawal [130, 178]. However, 

URB597 facilitated the extinction of CPA in rats with a history of morphine exposure [179] 

and attenuated naloxone-precipitated opioid withdrawal symptoms [180, 181], suggesting 

that inactivation of FAAH might help alleviate opiate withdrawal symptoms.

However, chronic administration of URB597 blocked the acquisition of nicotine self-

administration and nicotine-induced CPP [182]. In addition, the acute administration of 

URB597 significantly inhibited reinstatement of nicotine seeking [182–185] and abolished 

anxiogenic responses during withdrawal from nicotine [186]. URB597 did not alter the 

neuronal activity of the VTA DA neurons in response to nicotine or cocaine, while it 

inhibited the neuroal activity of NAc shell GABAergic neurons in response to nicotine or 

cocaine [187, 188], suggesting that a DA-dependent mechanism may be involved in the 

therapeutic effects of URB597 [189]. Together, these findings support the potential utility of 

URB597 in the treatment of nicotine use disorder.

FAAH inhibitors have also been extensively studied in relation to alcohol consumption and 

abuse. In a two-bottle choice paradigm, FAAH-KO mice, especially females, showed higher 

preference for alcohol and increased alcohol consumption than did WT mice [189, 190]. 

FAAH-KO mice can develop alcohol CPP and show alcohol-induced withdrawal symptoms 

[189]. Similar behavioral phenotypes (increased alcohol consumption) were observed in WT 

mice treated with URB597, suggesting that FAAH plays a critical role in regulation of 
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alcohol intake [189]. However, acute administration of URB597 failed to alter voluntary 

home-cage alcohol drinking or self-administration of alcohol in rats under a PR schedule of 

reinforcement [191]. In the reinstatement tests, URB597 also failed to alter reinstatement of 

alcohol seeking induced by cue, foot-shock stress, and yohimbine [191]. In contrast, 

URB597 was reported to reduce alcohol consumption in mice after 1 day or 1 week of 

withdrawal from chronic alcohol drinking [192]. Repeated administration of URB597 also 

prevented the development of tolerance and reduced escalation of alcohol consumption 

[192]. In addition, URB597 abolished anxiogenic responses during withdrawal from alcohol 

[191]. These findings suggest that chronic administration of URB597 may have therapeutic 

potential for the treatment of alcohol use disorder (Table 3).

It is worth noting that FAAH inhibitors themselves have low abuse liability as they do not 

increase extracellular DA levels in the NAc [193], do not produce CPP [194], and are not 

readily self-administered [174, 195]. Several studies have also reported that URB597 does 

not affect the consumption of or response to saccharin or sucrose [179, 189, 190]. When 

administered at high doses that profoundly inhibit brain FAAH activity, URB597 itself does 

not cause catalepsy or hypothermia or increase appetite, effects that are commonly observed 

with cannabinoid administration [196, 197]. Other beneficial characteristics of URB597 are 

its good oral bioavailability and low toxicity profile, even with a chronic regimen of up to 

1500 mg/kg per treatment in rodents [197].

11.3 BIA10–2474

Based on these findings, some FAAH inhibitors entered clinical trials [198–200]. Despite 

encouraging results at the preclinical and clinical levels, a recent clinical trial in France with 

BIA10–2474, another FAAH inhibitor, tempered initial enthusiasm in the research 

community after healthy volunteers developed severe neurological impairments and one 

become brain dead. This tragic outcome led to immediate discontinuation of FAAH inhibitor 

testing [201, 202] and termination of related research projects by major pharmaceutical 

companies for some time [203, 204]. However, after a comprehensive review of safety 

information relevant to BIA10–2474, the FDA found that other FAAH inhibitors did not 

pose similar safety risks [205, 206]. Consequently, clinical trials have now restarted with 

new generations of FAAH inhibitors (e.g., PF-0447845, V158866, ASP3652) that do not 

produce toxicity and are well-tolerated by healthy individuals [198–200, 207, 208]. The 

clinical study assessing the therapeutic potential of PF-0447845 for cannabis use disorder 

found that treatment with PF-04457845 was associated with reduced cannabis withdrawal 

symptoms, self-reported cannabis use, and drug-positive urine samples [209] (Table 6).

12 Monoacylglycerol Lipase Inhibitors as Potential Treatment for SUDs

12.1 Rationale

Monoacylglycerol lipase (MAGL) is an enzyme responsible for the metabolism of 2-AG in 

the brain and is also involved in lipid signaling [210] (Fig. 1). Blockade of MAGL, much 

like that of FAAH, elevates brain 2-AG levels and produces Δ9-THC–like effects such as 

hypolocomotion, hypothermia, and analgesia via activation of brain CB1Rs and CB2Rs [20, 

75, 211, 212]. A growing number of reports indicates that MAGL inhibitors produce 
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antinociceptive, anti-inflammatory, anxiolytic, and antiemetic effects by enhancing eCB 

signaling via the CB1Rs [213, 214]. There is also evidence that MAGL inhibitors may have 

neuroprotective functions through CB2R stimulation [215]. Drugs of abuse such as cocaine 

and heroin stimulate 2-AG release and modulate the MAGL expression in the hippocampus, 

PFC, and cerebellum [216, 217], suggesting that MAGL inhibitors may serve as indirect 

cannabinoid receptor agonists for the treatment of SUDs (Table 4).

12.2 JZL184

JZL184 is an irreversible MAGL inhibitor [20]. Acute administration of JZL184 did not 

affect food or nicotine taking or reduce motivation for nicotine, as assessed on fixed ratio 1 

(FR1, i.e., one lever press leads to one drug infusion) and PR schedules of reinforcement, 

but it increased cue-induced nicotine seeking [13], suggesting that JZL184 or other MAGL 

inhibitors may not be the optimal therapeutic choice for the management of SUDs. However, 

pharmacological inactivation of MAGL by JZL184 or genetic deletion of MAGL has been 

associated with a reduction in somatic or aversive withdrawal symptoms from nicotine and 

morphine [180, 218–220]. JZL184 (and URB597) also dampened methamphetamine-

induced neurotoxicity in the striatum by a CB2R-dependent mechanism [215], suggesting its 

possible utility in the management of drug withdrawal and neurotoxicity (Table 4).

12.3 SA-57

Interestingly, concurrent FAAH–MAGL inhibitors such as SA-57 can reduce heroin self-

administration and heroin seeking in mice [221] and morphine withdrawal CPA in rats 

[220]. SA-57 also produces enhanced morphine analgesia, making it a great therapeutic 

candidate for the treatment of chronic pain and opioid abuse. In an electrical BSR paradigm, 

concurrent inhibition of FAAH and MAGL by SA-57 or coadministration of JZL184 and 

PF-3845 (an FAAH inhibitor) significantly inhibited electrical BSR [75] (Table 4). The 

CB1R inverse agonist rimonabant, but not CB2 antagonist SR144528, blocked the 

attenuating effects of JZL184 or SA-57, suggesting that FAAH and MAGL may function as 

regulators that prevent CB1R overstimulation by eCBs [75].

In summary, FAAH- or MAGL-based strategies are currently being explored as potential 

treatments for SUDs. At the preclinical level, FAAH inhibitors (e.g., URB597) have showed 

promise as potential therapeutics for nicotine and alcohol but not cocaine and opioid use 

disorders. Clinical studies have shown that a new generation of FAAH inhibitors might be 

useful for reducing withdrawal symptoms and cannabis use in cannabis use disorders. There 

is little evidence suggesting that MAGL inhibitors are effective in reducing food or drug-

taking behavior.

13 Fatty Acid Binding Proteins Inhibitors as Potential Treatment for SUDs

13.1 Rationale

In addition to the breakdown of AEA by FAAH, it is also terminated through reuptake into 

neurons [222–224]. FABPs are proteins that transport AEA, 2-AG, and AA derivatives 

between extra- and intracellular membranes and to the FAAH for breakdown (Fig. 1). FABP 

inhibitors can extend the availability of AEA, thus prolonging stimulation of cannabinoid 
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receptors, which ultimately reduces the rewarding and relapse-inducing effects of illicit 

drugs.

13.2 AM404

AM404 is an FABP or AEA transporter inhibitor [225] and reduces alcohol self-

administration and intake [186, 226], but its effect on relapse-like behaviors remains 

ambiguous. AM404 either reduced or failed to alter alcohol seeking [186, 226], suggesting 

that inactivation of AEA transporters can be an effective therapeutic approach to ameliorate 

the acute effects of alcohol but not relapse. In regard to the receptor mechanisms of action 

by which AM404 reduces alcohol consumption, it appears that AM404 action does not 

require the stimulation of CB1, CB2, or transient receptor potential vanilloid 1 (TRPV1) 

receptors, as antagonists to these receptors did not block the effects of AM404 [227].

AM404 has also been evaluated as a potential therapeutic agent for nicotine use disorder. 

AM404 dose dependently reduced cue- or drug-primed reinstatement of nicotine seeking but 

had no effects on nicotine self-administration under FR or PR schedules of reinforcement 

[228]. Paradoxically, AM404 was reported to reduce nicotine-induced DA elevation in the 

NAc [229], suggesting that it has the capacity to reduce the rewarding effects of nicotine. 

When administered during conditioning, AM404 prevented the development of nicotine 

CPP, presumably by reducing the rewarding effects of nicotine. It also reduced nicotine-

induced reinstatement of CPP [229], suggesting that AM404 might have therapeutic value.

Although evidence supporting the efficacy of AM404 for SUDs is accumulating, the 

therapeutic utility of FABP inhibitors for cocaine or opioid use disorders remains to be 

elucidated. In a BSR paradigm, FABP inhibitors such as AM404 or OMDM-2 blocked the 

rewarding effects of BSR and cocaine-enhanced BSR [230, 231]. However, in a self-

administration paradigm, AM404 failed to reduce motivation for heroin [177] or cocaine 

[232] (Table 5).

In regard to its abuse potential, AM404 was readily self-administered by rhesus monkeys 

[232], but it neither produced CPP nor enhanced BSR [228, 231]. Clearly, more research is 

needed to determine the potential abuse liability of AM404.

In summary, preclinical studies have produced mixed results for FABP inhibitors as potential 

candidates for the treatment of SUDs. AM404 was reported to ameliorate the acute effects of 

alcohol but not relapse. However, AM404 shows efficacy for nicotine seeking but not 

nicotine consumption. Therefore, the potential utility of FABP inhibitors in the clinical 

setting would require more research evaluating the therapeutic potential of these compounds.

14 Phytocannabinoids as Potential Treatments for SUDs

14.1 Rationale

Phytocannabinoids refer to chemicals derived from cannabis sativa and non-cannabis plants. 

They can modulate the eCB system, producing therapeutic effects for several medical and 

neuropsychological disorders, including nausea, anorexia, obesity, epilepsy, Alzheimer 

disease, multiple sclerosis, cancer, anxiety, and depression. There are 113 known 
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phytocannabinoids in the cannabis plant. Among the most prevalent and extensively studied 

are Δ9-THC, cannabidiol (CBD), BCP, and Δ9-THCV. They act at multiple pharmacological 

targets, not solely via CB1Rs and CB2Rs. We briefly review recent progress in treatment-

oriented animal research on Δ9-THC, CBD, BCP, and Δ8-THCV (a Δ9-THCV analog) (Table 

6).

14.2 Δ9-Tetrahydrocannabinol

As stated, cannabis is rewarding in some subjects under certain circumstances. Accordingly, 

cannabinoid agonist substitution has been proposed as a potential treatment for cannabis use 

disorder as it may reduce withdrawal symptoms, in a way similar to methadone or 

buprenorphine for opioid use disorder or the nicotine patch for nicotine use disorder [3, 

233]. Δ9-THC is a partial CB1R agonist that has been proposed as an agonist therapy for 

SUDs, similar to methadone and buprenorphine for opioid use disorders and nicotine-

replacement therapy for cigarette smoking cessation [3, 4]. Dronabinol (a stereoisomer of 

Δ9-THC) and nabilone (a synthetic analog of Δ9-THC), which are approved by the FDA for 

the management of anorexia with body weight loss in patients with AIDS and treatment-

resistant nausea and vomiting associated with cancer chemotherapy, have both shown 

promising results in reducing withdrawal symptoms from cannabis [234–240] and opioid 

use in human clinical trials [241–243] (Table 6). However, dronabinol and nabilone may not 

prevent cannabis use or relapse [233]. These findings suggest that Δ9-THC-based agonist 

therapies may be useful in reducing cannabis or opioid withdrawal symptoms but not in 

preventing relapse to drug-seeking behavior [106].

14.3 Cannabidiol

Cannabidiol (CBD) is the second major component in cannabis plants, with a wide range of 

medical applications; it was recently approved by the FDA for the treatment of epilepsy 

[244, 245]. CBD has low affinity for the orthosteric binding sites of CB1Rs or CB2Rs [246–

248]. More recent studies have provided evidence that CBD behaves as a potent NAM at 

CB1Rs or CB2Rs with nM range affinity [247–251]. CBD also has binding affinity to many 

other targets, such as GPR55, TRPV1, 5-HT1A, and opioid receptors.

Preclinical studies have shown that CBD can reduce drug reward, as demonstrated in various 

paradigms of addiction (Table 6). High-dose CBD can reduce self-administration of cocaine 

[252, 253], methamphetamine [254], and ethanol [255] but not heroin [256]. We recently 

reported that CBD reduced self-administration of cocaine maintained by low doses of 

cocaine, and this effect was mediated by multiple receptor mechanisms, including CB2R, 5-

HT1A, and TRPV1 [253]. In addition, CBD attenuated oral sucrose self-administration in 

rats and WT mice but not in CB2-KO mice [257]. CBD also attenuated the rewarding effects 

of cocaine in a BSR paradigm via multiple receptor mechanisms, including CB2Rs [253]. 

An earlier study indicated that CBD had no effect on cocaine-enhanced BSR but attenuated 

morphine-enhanced BSR via stimulation of 5-HT1A receptors [258]. In a CPP paradigm, 

CBD disrupted the development of cocaine CPP [252] and blocked the expression of CPP 

induced by cocaine [252] or morphine [259] but not by amphetamine [260] (Table 7).
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CBD has a promising potential to reduce relapse, as preclinical studies have reported that 

CBD reduced stress- or context cue-induced reinstatement of alcohol and cocaine seeking 

[255, 261]. Cue-induced heroin seeking also reduced after administration of CBD, the 

effects of which lasted up to 2 weeks [256]. In addition, CBD effectively reduced drug-

primed reinstatement of methamphetamine [254], reinstatement of psychostimulants and 

opiate CPP [261–263], and reconsolidation of cocaine CPP mice [262]. CBD also reduced 

naloxone-precipitated withdrawal from morphine [262, 264] (Table 7).

CBD appears to have low reinforcing properties with limited abuse potential as it does not 

induce CPP on its own [260], nor does it affect BSR in rodents [258]. An additional CBD 

effect of therapeutic interest might be protective against acute cocaine toxicity, particularly 

liver damage and seizures [265]. Given its favorable effects on drug reward and seeking, 

CBD appears to be a promising therapeutic for cocaine use disorder.

In clinical studies, CBD was well-tolerated by healthy individuals [266] and had low abuse 

potential, as assessed in poly-drug users [267]. Although CBD did not reduce fentanyl-

induced drug cravings and physiological responses [268], it attenuated cannabis 

consumption in smokers and the euphoric and intoxicating effects of Δ9-THC [269–271]. 

However, a more recent clinical study showed that CBD had no significant effects on the 

reinforcing, subjective, cognitive, or physiological effects of smoked cannabis [272]. These 

observations contrast with the clinical findings that low doses of CBD in combination with 

Δ9-THC enhanced, and high doses of CBD reduced, the intoxicating effects of Δ9-THC 

[273]. In cannabis users, CBD improved impaired performance on the emotional facial 

affect recognition task, including fearful, angry, happy, sad, surprise, and disgust faces. 

When combined with Δ9-THC, it also exhibited low abuse potential in humans [267]. In a 

double-blind randomized clinical inpatient trial with nabiximols that contained Δ9-THC and 

CBD, nabiximols attenuated withdrawal-related irritability, depression, and cannabis 

cravings and improved patient retention in the cognitive behavioral treatment program [274] 

(Table 6). However, no significant change in abstinence from cannabis use was observed in 

patients treated with nabiximols [275].

14.4 β-Caryophyllene

BCP is a volatile phytocannabinoid present in high proportions in cannabis [276] and is also 

found in the essential oils of many spice and food plants, including black pepper, thyme, and 

cloves [277]. BCP was first synthesized in 1964 [278] and later identified as a natural 

selective agonist of CB2Rs (Ki = 155 nM) with favorable CNS penetration [279]. Given that 

BCP is an FDA-approved dietary food additive with good oral bioavailability [280], 

favorable pharmacokinetics [281], and low toxicity [282, 283], it offers great promise as a 

therapeutic compound (Table 7). BCP decreased alcohol consumption and ethanol-induced 

CPP in rodents [284]. In a clinical study, nicotine smokers inhaling vapor from an essential 

oil of black pepper (Piper nigrum), which contains rich BCP, reported reduced nicotine 

cravings [285]. Although this effect was attributed to irritation of the bronchial tree and no 

molecular mechanisms of action were proposed, it is conceivable that stimulation of CB2Rs 

might be responsible for the reduced nicotine cravings. In addition, we recently showed that 

BCP reduced the rewarding effects of electrical optical brain stimulation or nicotine in 
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rodents [286]. BCP, at lower doses, was also effective at attenuating nicotine self-

administration in mice and rats but not in CB2-KO mice. Given that the inhibitory effects of 

BCP on nicotine reward can be blocked by AM630 but not by AM251 (a CB1R antagonist), 

CB2Rs might be the targets through which BCP produces its effects. In addition, high doses 

of intraperitoneal BCP (50, 100 mg/kg) inhibited food self-administration in both WT and 

CB2-KO mice [286], suggesting an effect mediated by other non-CB2R mechanisms. In 

regard to a BCP safety profile, BCP had no effects on spontaneous locomotor activity or 

rotarod performance and has been reported to be safe even at high doses of ≤ 700 mg/kg/day 

for 90 days in rats or 2000 mg/kg/day for 28 days in mice when administered orally [282, 

283], placing it at the frontier of medication development for nicotine use disorder and 

obesity (Table 7).

14.5 Δ9-Tetrahydrocannabivarin

Δ9-THCV is another cannabis-derived phytocannabinoid [287]; it has CB1R antagonist 

action combined with CB2R agonist action [248, 288, 289]. Since Δ9-THCV does not inhibit 

or stimulate [35S]GTPγS binding to mouse or rat brain membranes at concentrations ≤ 10 

μM, it is considered a neutral CB1R antagonist rather than an antagonist/inverse agonist 

[290–293]. However, Δ9-THCV can also act at the 5-HT1A receptor, and by doing so it can 

reduce phencyclidine (PCP)-induced psychosis-like behaviors in rats [294]. In addition, Δ9-

THCV can stimulate and desensitize human TRPV1 and TRPV2 channels [295] and inhibit 

FAAH, MAGL, and AEA uptake [295]. Other targets of Δ9-THCV include TRPV5 and 

TRPV6 channels [296] and GPR55 receptors [297].

It has been reported that Δ9-THCV, just like AM251, can reduce food consumption and body 

weight in obese mice when administered acutely or chronically [298]. It was also found that 

Δ9-THCV produced antiobesity effects by reducing obesity-related glucose intolerance and 

increasing energy expenditure in obese mice [299]. Δ8-THCV is a synthetic, more stable, 

and easier-to-synthesize analog of Δ9-THCV with a similar pharmacological profile of 

combined CB1R antagonist and CB2R agonist action [300]. Using multiple models of drug 

abuse, we screened the therapeutic potential of Δ8-THCV on nicotine-related behaviors and 

found that Δ8-THCV reduced nicotine self-administration and nicotine-induced CPP in rats 

and mice [301]. In addition, Δ8-THCV attenuated context cue-triggered reinstatement of 

nicotine seeking following forced abstinence and nicotine-triggered reinstatement of 

nicotine seeking. After 14 days of continuous subcutaneous nicotine administration via 

osmotic minipumps, removal of the minipumps induced spontaneous nicotine withdrawal, 

during which, the mice spent more time in the closed arms than in the open arms of the 

elevated plus maze, showing anxiety-like behaviors. This anxiety-like behavior was 

significantly ameliorated by Δ8-THCV treatment. In addition, Δ8-THCV robustly 

ameliorated withdrawal signs in nicotine-treated mice, but it did not alter behavior in saline 

treated-mice. Δ8-THCV also reversed nicotine withdrawal-induced hyperalgesia, as 

measured by a hotplate test [301]. Based on these findings (Table 7), we suggest that the 

THCVs might constitute a safe and non-psychoactive class of potential anti-addiction, 

anticraving, and antirelapse pharmacotherapies [301].
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THCVs are not currently scheduled as controlled or addictive substances by the US federal 

government or the United Nations Convention on Psychotropic Substances. They appear to 

be exceptionally safe in human use [302, 303]. Clinical studies have provided supporting 

evidence for this premise and reported that THCV administered orally was well-tolerated 

and did not produce negative psychotropic effects. Interestingly, cannabis users reported 

weaker subjective effects of Δ9-THC and showed less intense Δ9-THC-induced impairment 

of delayed verbal recall with Δ9-THCV treatment, suggesting Δ9-THCV may have 

therapeutic and protective effects [302]. In addition, functional magnetic resonance imaging 

showed that Δ9-THCV increased neural responses for food reward in the midbrain, striatum, 

and anterior cingulate cortex and for food-related aversive stimuli in the amygdala, insula, 

mid orbitofrontal cortex, and striatum, suggesting that it may have therapeutic utility for the 

treatment of obesity and food addiction [304].

In summary, clinical evidence indicates that Δ9-THC or its analog as a substitution therapy is 

effective in reducing cannabis use and withdrawal symptoms. Given that CBD, BCP, and Δ9-

THCV can reduce drug self-administration and relapse without significant adverse effects, 

these three phytocannabinoids show great promise as medical cannabinoids in translation 

studies for SUDs.

15 Conclusions

The complexities of the behavioral and neurobiological factors underlying SUDs create 

enormous challenges in efforts to develop effective pharmacological treatments. In recent 

years, studies have recognized a critical role of the eCB system (particularly CB1Rs and 

CB2Rs) in many aspects of addiction and proposed eCB receptors as new targets in the 

development of therapies for the treatment of SUDs. Although results from early preclinical 

studies with rimonabant (a CB1R antagonist and CB1R inverse agonist) were promising, the 

adverse effects tempered initial enthusiasm and encouraged consideration of other strategies 

to modulate the eCB system. Recent discoveries of functional CB2Rs in the brain and their 

importance in addictive behaviors opened new avenues for therapeutic exploration. As 

evidence continues to accumulate, neutral CB1R antagonists (AM4113), selective CB2 

agonists (such as JWH133, Xie2–64), and phytocannabinoids with CB1R antagonist and/or 

CB2R agonist profiles (CBD, BCP, Δ8-THCV, or Δ9-THCV) show great therapeutic 

potential as they can attenuate drug reward and relapse to drug-seeking behavior without 

adverse effects. In addition, strategies targeting the allosteric binding sites of CB1Rs and 

CB2Rs or targeting the metabolizing enzymes (FAAH, MAGL) are currently being pursued 

with limited success in reducing reward and relapse to drug-seeking behavior. Clinical 

studies have demonstrated that Δ9-THC-based agonist therapies (dronabinol, nabilone) and a 

novel FAAH inhibitor (PF-04457845) were effective in reducing cannabis withdrawal 

symptoms but not in reducing cannabis use or in preventing relapse to drug-seeking 

behavior. Given the current opioid epidemic and the urgent need for effective treatment, it is 

important that pursuit of innovative strategies, such as those targeting the eCB system, 

continues and that repurposing medications already approved by the FDA for other 

indications is considered in the treatment of SUDs.
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Key Points

Rimonabant or other CB1 receptor (CB1R) antagonists with inverse agonist profiles have 

failed in clinical trials for the treatment of substance use disorders (SUDs).

Recent preclinical studies with peripheral CB1R antagonists or inverse agonists, neutral 

CB1R antagonists, CB2R agonists, and allosteric CB1R or CB2R modulators have shown 

encouraging results for SUDs.

Among the phytocannabinoids, cannabidiol (CBD), β-caryophyllene (BCP), and Δ9-

tetrahydrocannabivarin (Δ9-THCV) have shown significant CB1R antagonist and/or 

CB2R agonist profiles and great therapeutic potential for SUDs.

Clinical studies have shown that dronabinol, nabilone, or CBD fail to prevent relapse but 

can attenuate the symptoms of withdrawal from cannabis and opioids, making them 

potential candidates for the treatment of some SUDs.
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Fig. 1. 
The endocannabinoid system, including the synthesis and degradation enzymes (FAAH, 

MAGL) of endocannabinoids (AEA and 2-AG), cannabinoid receptors (CB1 and CB2), 

anandamide transporter (FABPs), and the five major therapeutic targets (CB1, CB2, FAAH, 

MAGL, FABPS). AEA anandamide, DAG diacylglycerol, FAAH fatty acid amide hydrolase, 

FABPs fatty acid-binding proteins, MAGL monoacylglycerol lipase, NAPE-PLD N-

arachidonoyl phosphatidylethanolamine-phospholipase D, PE phosphatidylethanolamine, 2-
AG 2-arachidonoylglycerol
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Fig. 2. 
Neuronal vs. glial CB1 receptor signaling that regulates synaptic transmission. Presynaptic 

or postsynaptic neuronal depolarization may increase eCB (2-AG) release from postsynaptic 

neurons by glutamate-mGluR1/5 and Ca2+-dependent mechanisms. eCBs released by the 

postsynaptic neurons directly activate CB1Rs in the presynaptic terminals, which leads to 

synaptic depression at eCB-releasing synapses (homoneuronal synapses). In addition, eCBs 

activate CB1Rs in astrocytes, elevate their intracellular Ca2+ level, and stimulate the release 

of gliotransmitters (such as glutamate, ATP, D-serine) that potentiates synaptic transmission 

in adjacent neurons (heteroneuronal synapses). The biological effects of cannabinoids (such 

as Δ9-THC) may be mediated by stimulation of CB1Rs in both neurons and/or astrocytes 

cells, depending upon the cellular distributions of CB1Rs in different brain regions. AMPA 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, ATP adenosine 

triphosphate, CB1R CB1 receptor, eCB endocannabinoid, Glut glutamate, IP3R inositol 

trisphosphate receptor, mGluR1 type 1 metabotropic glutamate receptor, NMDA N-methyl-

D-aspartate receptor, VGCC voltage-dependence calcium channel, 2-AG 2-

arachidonoylglycerol, Δ9-THC Δ9-tetrahydrocannabinol
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Fig. 3. 
Neural mechanisms underlying cannabis reward vs. aversion. Cannabinoid CB1Rs are 

expressed in VTA GABAergic interneurons and glutamatergic neurons as well as their 

afferent projections to the VTA DA neurons, whereas CB2Rs are found in VTA DA neurons. 

Cannabis or cannabinoids modulate the mesolimbic DA system via activation of brain 

CB1Rs and CB2Rs. Cannabinoids such as Δ9-THC may produce rewarding effects by 

binding to CB1R on VTA GABAergic interneurons and/or their afferents, thereby reducing 

GABA-mediated inhibition of VTA DA neurons and increasing DA release in the NAc. 

Conversely, cannabinoids may produce aversive effects by activating CB1R on glutamatergic 

neurons in the VTA, and/or CB2Rs on DA neurons, thereby inhibiting VTA DA release to 

the NAc. The subjective effects of cannabinoids may thus depend on the balance of opposing 

CB1R and CB2R effects and individual differences in neural CB1R and CB2R expression. 

CB1/2R CB1/2 receptor, DA dopamine, GABA γ-aminobutyric acid, NAc nucleus 

accumbens, VTA ventral tegmental area, Δ9-THC Δ9-tetrahydrocannabinol
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Fig. 4. 
Distributions of CB1Rs in the brain. A [35H]CP55,940 autoradiography image showing a 

high density of CB1R expression in the SNr, globus pallidus, hippocampus, and cerebellum 

[24]. B CB1R immunostaining in the midbrain, illustrating that CB1Rs are highly expressed 

in the SNr, not in the VTA or SNc. BrS Brain stem, CB1R CB1 receptor, Cer cerebellum, 

Col colliculi, CP caudate-putamen, Cx Cortex, Ep entopeduncular nucleus, GP globus 

pallidus, Hi hippocampus, SNc substantia nigra pars compacta, SNr substantia nigra pars 

reticulata, Th thalamus, VTA ventral tegmental area
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