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Abstract

Fit-Hi-C is a programming application to compute statistical confidence estimates for Hi-C contact 

maps to identify significant chromatin contacts. By fitting a monotonically non-increasing spline, 

Fit-Hi-C captures the relationship between genomic distance and contact probability without any 

parametric assumption. The spline fit together with the correction of contact probabilities with 

respect to bin- or locus-specific biases accounts for previously characterized covariates impacting 

Hi-C contact counts. Fit-Hi-C is best applied for the study of mid-range (e.g., 20 kb−2 Mb for 

human genome) intra-chromosomal contacts; however, with the latest reimplementation, named 

FitHiC2, it is possible to perform genome-wide analysis for high-resolution Hi-C data, including 

all intra-chromosomal distances and inter-chromosomal contacts. FitHiC2 also offers a merging 

filter module, which eliminates indirect/bystander interactions, leading to significant reduction in 

the number of reported contacts without sacrificing recovery of key loops such as those between 

convergent CTCF binding sites. Here, we describe how to apply the FitHiC2 protocol to three use 

cases: (i) 5-kb resolution Hi-C data of chromosome 5 from GM12878 (a human lymphoblastoid 

cell line), (ii) 40-kb resolution whole-genome Hi-C data from IMR90 (human lung fibroblast), and 

(iii) budding yeast whole-genome Hi-C data at a single restriction cut site (EcoRI) resolution. The 

procedure takes ~12 h with preprocessing when all use cases are run sequentially (~4 h when run 

parallel). With the recent improvements in its implementation, FitHiC2 (8 processors and 16 GB 

memory) is also scalable to genome-wide analysis of the highest resolution (1 kb) Hi-C data 
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available to date (~48 h with 32 GB peak memory). FitHiC2 is available through Bioconda, 

GitHub and the Python Package Index.

Introduction

Analysis of chromosome conformation capture data

Powered by high-throughput DNA sequencing methods, chromatin conformation capture 

has enabled genome-wide analysis of the 3D folding of DNA within the eukaryotic cell 

nucleus1–7. Specifically, the improvements in the efficiency, applicability and cost of Hi-C 

experiments have transformed our understanding of the principles governing domain-level 

organization of the genome as well as regulation of genes through distal enhancer elements8. 

Hi-C measures the pairwise contact frequency of genomic regions by a process that can be 

summarized as follows: crosslink, cut, label, religate, shear, enrich and sequence4–7. 

Mapping, filtering and binning9–11 of the millions or billions of paired-end reads that are 

sequenced from a Hi-C experiment provide rich information about genome-wide proximity 

between each possible pair of regions/bins (i.e., contact count) in a matrix format, which we 

refer to as contact maps here. However, the resulting raw contact counts heavily depend on 

the linear (i.e., one-dimensional) distance between interacting regions due to the random 

polymer looping effect and are confounded by technical biases of the Hi-C experiment and 

sequencing in general12,13. A crucial computational task is to properly model all these 

known dependencies and biases, to tease apart the biologically meaningful and important 

interactions involving genes, gene regulatory elements and structural anchor points of the 

genome from Hi-C data. Our earlier method, Fit-Hi-C14, proposed a computational method 

to model the distance decay and account for technical biases, to find statistically significant 

intra-chromosomal Hi-C contacts. The protocol described here, named FitHiC2, extends Fit-

Hi-C by incorporating various new computational modules and utilities (described below in 

detail) and an efficient reimplementation that allows FitHiC2 to scale for high-resolution Hi-

C maps. This protocol walks through the steps necessary to run FitHiC2.

Improvements compared to the original Fit-Hi-C implementation

FitHiC2 is a significantly more powerful version of Fit-Hi-C. Chief among the changes is 

the introduction of new options and modules, performance enhancements, pre/post-

processing utilities and an easily installable command line version of the tool. More 

specifically:

(i) The re-implementation described here allows the tool to run on the highest-

resolution Hi-C datasets currently available (1 and 5 kb) while retaining the 

same statistical significance estimation procedure as our previous version. These 

improvements were made possible by significantly refactoring the code and 

developing more efficient data structures to hold possible interactions at higher 

resolutions, especially when the user specifies that the Hi-C data will be 

analyzed at fixed-size genomic bins, which is a widely used practice in the 

analysis of Hi-C data. This is a substantial improvement because the previous 

version would not scale to such high-resolution maps due to memory usage.
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(ii) Another important change is the addition of new options such as ‘-x’, which 

allows the user to analyze different portions of their dataset such as inter-

chromosomal-only, intra-chromosomal-only or all interactions. The 

recommended settings for each option are described in detail in the Procedure 

and in Table 1, and options that were added only in FitHiC2 are marked with an 

asterisk.

(iii) We also introduce a new module named ‘merging filter’ that we recently used 

for HiChIP data analysis15, which helps eliminate indirect/bystander interactions 

happening around direct contacts between loop anchors. For high-resolution and 

deeply sequenced Hi-C maps, this module allows elimination of a significant 

portion of reported contacts without sacrificing recovery of key loops such as 

those between convergent CTCF binding sites.

(iv) Further, we developed a number of utilities to aid analysis both before and after 

FitHiC2 is run. These utilities span use cases from generating the input files 

from commonly used Hi-C data formats, to visualizing and exploring a 

hypertext markup language (HTML) summary of the results as well as scripts to 

convert FitHiC2 output to formats accepted by commonly used browsers such as 

the WashU Epigenome Browser (http://epigenomegateway.wustl.edu) and the 

UCSC Genome Browser (http://genome.ucsc.edu).

(v) Finally, FitHiC2 is now easily installable on the command line through the 

Bioconda distribution platform or through the Python Package Index.

The purpose of this protocol is to walk users, old and new, through a series of representative 

use cases to aid in their own analyses conducted with this new version of Fit-Hi-C named 

FitHiC2.

Overview and development of the method

FitHiC2 is a programming application designed to compute statistical confidence estimates 

to Hi-C contact counts by jointly modeling the random polymer looping effect and potential 

technical biases in Hi-C data sets14. FitHiC2 first learns an empirical null using observed 

contact counts to model the expected contact count or contact probability conditioned on the 

genomic distance between interacting regions. This is achieved by first using an equal 

occupancy binning strategy that divides the total number of contact counts (N, i.e., sum of 

the Hi-C matrix entries) between all locus pairs in range (M pairs) into a user-specified 

number of bins (b bins), each with approximately equal number of contacts (~N/b). Such 

binning is achieved by sorting all locus pairs with a non-zero contact count with respect to 

increasing genomic distance between the two ends of the pair and breaking this sorted list 

into b bins, where the first bin has all the pairs with the smallest genomic distances whose 

total contact count is at least N/b. FitHiC2 employs tiebreak conditions to avoid assigning 

two pairs with the same genomic distance into two different bins, and, hence, the total 

contact count per bin may show a slight deviation from the desired bin total of N/b. For each 

such bin, we then compute the average genomic distance (x-axis) and contact probability (y-

axis) among all pairs (including possible pairs with zero contact counts) in that bin. FitHiC2 

then fits a cubic smoothing spline (third degree polynomial) to these x, y values (one per 

Kaul et al. Page 3

Nat Protoc. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://epigenomegateway.wustl.edu/
http://genome.ucsc.edu/


bin) to learn a continuous function that relates these two entities. Equal occupancy binning, 

instead of fixed-size bins with respect to genomic distance intervals, prevents having high 

variance bins such as bins for long genomic distances with only a small number of contact 

counts, whereas the smoothing spline fit allows contact probability to be defined (i.e., exact 

look up from the spline function) for each possible genomic distance. FitHiC2 also allows 

for the refinement of the initial spline fit by removing ‘positive outliers’ that correspond to 

bona fide (i.e., non-null) interactions and refitting the spline to the remaining interactions 

that belong to the random (i.e., null) portion of the data.

Another feature of FitHiC2 is that it corrects expected contact probabilities learned from the 

spline fit described above through integrating normalization factors (i.e., bias values), which 

are computed per locus/bin by matrix balancing–based Hi-C normalization methods such as 

iterative correction and eigenvector decomposition (ICE)12 or Knight and Ruiz (KR)4,16. 

Using the corrected contact probability and the observed contact count for each entry in the 

raw contact map, FitHiC2 computes a binomial P value for the significance of observing a 

contact count that is at least equal to the observed integer count value or higher. All P values 

are then subjected to multiple testing correction using the Benjamini-Hochberg procedure to 

gather Q values, which represent the minimum false discovery rate (FDR) threshold at 

which the contact is deemed significant17. Overall, FitHiC2 computes accurate empirical 

null models of contact probability without any distribution assumption, uses these 

probabilities for calculation of a binomial P value; successfully corrects for binning artifacts, 

distance dependence and technical biases; and provides biologically relevant statistical 

confidence estimates that capture known interactions14.

Step-by-step workflow of FitHiC2

The procedure described here outlines the complete workflow starting from generation of 

FitHiC2 input files to final analysis and visualization of the statistical confidence estimates 

computed (Fig. 1). This procedure assumes that the user has used an existing tool to align 

and filter the sequencing data from a Hi-C assay. Through several utility functions, the 

FitHiC2 package allows multiple possible input formats and entry points to the overall 

pipeline (Fig. 1). FitHiC2 first reads the nonzero interaction counts within the user-specified 

range and builds an index of genomic distances and their associated contact counts. These 

contact counts are placed into equal occupancy bins, and the associated genomic range of 

each bin is recorded. Next, FitHiC2 utilizes the fragments file to either enumerate all 

possible fragment pairs (in the case of non-fixed-size data) or loop through the possible 

fragment pairs (in the case of fixed-size data) to compute for each equal occupancy bin the 

number of all possible fragment pairs that fall within the bin’s distance interval and in turn, 

the average contact count and average distance of all pairs within that specific bin. FitHiC2 

then reads and stores the estimated bias value for each fragment/locus if a bias values file is 

inputted (not required but very strongly suggested). Finally, the null model of a univariate 

cubic spline function is fit to the average distance versus the average contact count for each 

bin, and the resulting spline is subjected to antitonic regression to ensure that it is non-

increasing with respect to increasing distance.
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Once the spline is fit, the P value calculation consists of reading each entry (i.e., a pair of 

loci with a non-zero contact count) from the contact count file, computing the prior contact 

probability of this locus pair using their genomic distance by a lookup from the spline fit, 

multiplying that prior probability by the bias value for each locus and plugging that 

corrected probability P into a binomial distribution, where n is the observed total sum of 

contact counts, and k is the observed contact count for that given interaction (see Fig. 1 of 

Ay et al.14). After correcting for multiple testing, these P values and their corresponding Q 
values are appended to the entry/line read from the contact counts file and outputted to a 

significance file. If the user specifies through the ‘number of passes’ parameter, additional 

passes of spline fit will be performed on the refined null models. At each pass, positive 

outliers will be filtered using a stringent P value threshold of 1/M, where M is the total 

number of locus pairs, to refine the null. Such outliers are removed from observed as well as 

from possible pairs of loci during spline fit; however, they will be considered again and 

assigned confidence estimates alongside non-outliers. Our recommendations with respect to 

this step are discussed in detail in the Procedure section.

Applications of the method

FitHiC2 may easily be applied to the study of intra-chromosomal, inter-chromosomal, and 

whole genome interactions and is perfectly suited to complement any and all Hi-C analysis 

pipelines. Our Google Group (https://groups.google.com/forum/#!forum/fithic) provides a 

community for users and allows the free exchange of knowledge and ideas. In addition, the 

tool is freely available and easily installable through GitHub and the Python Package Index.

An important aspect of FitHiC2 is that it does not make any assumptions about the size or 

the structure of the genome besides expecting that the contact probability will not increase 

with increasing genomic distance on average. It also does not require a strict minimal 

sequencing depth or a minimum or maximum resolution for contact maps. These features 

allowing FitHiC2 to be very flexible are mainly due to our use of an empirical null model 

that adjusts to the input data. Even though used mostly for human and mouse Hi-C data, 

FitHiC2 has found use in studies of a wide range of organisms, including yeasts, malaria 

parasites and plants including cotton and Arabidopsis thaliana18–22.

While FitHiC2 may be applied in many different settings where statistical confidence 

estimates of chromosomal interactions are of interest, we suggest that it be used to 

interrogate only the range and type of interactions that are of biological relevance and are 

reasonable to study with the sequencing depth and resolution at hand. More specifically, it 

may make sense to study all inter- and intra-chromosomal interactions for a small genome 

(e.g., yeast) at a moderate bin size (e.g., 5 or 10 kb) or for a large genome with big window 

sizes (e.g., human genome at 40 or 100 kb). Such an analysis may reveal preferences of 

large genomic regions on different chromosomes to colocalize with each other. However, it 

will not be as appropriate to analyze all inter- and intra-chromosomal interactions with no 

distance limit for the human or mouse genome at 5- or 1-kb resolution without sufficient 

sequencing depth. Moreover, by interrogating a very large distance range and including 

inter-chromosomal interactions, say at 5-kb resolution, the statistical power of detecting 

significant interactions at more relevant ranges, say up to 2 Mb, will be hampered due to a 
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very heavy multiple-testing burden. Regardless, we provide options and parameter settings 

that allow users to study any subset or all interactions as they desire.

We also designed FitHiC2 to have versatile, human-readable inputs (Boxes 1–4) to enable 

users to select from a wide array of Hi-C analysis tools, which can then feed into our 

workflow. One such tool, HiCPro10, is commonly used and provides a conversion script 

between their output and FitHiC2’s input format. Such conversion of file formats is also 

described in our Procedure. HiCPro already provides a script for Hi-C normalization using 

ICE. However, the normalization procedure, unlike the steps of mapping, filtering and 

contact map generation, is not included by default in most of the existing Hi-C data-

processing tools. In view of this, we also developed HiCKRy, a Python implementation of 

the KR algorithm for matrix balancing16, and bundled it with our release of FitHiC2. 

Regardless of which algorithm is used to normalize Hi-C data (ICE, KR, etc.), integration of 

per-locus bias values from the normalization to FitHiC2 is critical for reducing the number 

of false positives and can be accomplished through creating a very simple file, the format of 

which is described in Box 3.

In addition, FitHiC2 provides users with an output (Box 5) that can easily be converted into 

formats for a variety of other tools together with an HTML report (Box 6). The Procedure 

walks the user through how to convert FitHiC2 output into an input for the WashU 

Epigenome Browser or the UCSC Genome Browser; an example of each is reproduced in 

Box 7.

Related methods

In recent years, a number of computational methods have been developed, which aim to 

identify significant interactions from and/or assign confidence estimates to Hi-C contact 

maps. Since a detailed description and full comparison of these different methods is beyond 

the scope of this protocol, we refer the readers to recent review articles that outline features 

of each tool and discuss their advantages and disadvantages with respect to each other9,10,23. 

Several such tools depend on epigenomics data other than Hi-C to prioritize a subset of (e.g., 

promoter-enhancer) Hi-C interactions24, whereas others are primarily for comparison of Hi-

C data from two different conditions25. The tools that are more directly comparable to Fit-

Hi-C/FitHiC2 include HiCCUPS4, HOMER (http://homer.ucsd.edu/homer/), GOTHiC26 and 

the more recent HiC-DC27. All of these tools, including FitHiC2, are designed to analyze 

standalone Hi-C contact maps, but they significantly differ from one another in their 

background estimation and distribution assumptions.

FitHiC2 computes the expected number of contacts (or contact probability) from a global 

background that considers all possible pairs of bins in the desired distance range or the 

specified interaction type. It then corrects the contact probability from the global expectation 

represented by a spline for technical biases computed on a per-bin basis prior to calculation 

of the binomial P value. GOTHiC, a later method, simply drops the modeling of the change 

in contact probability with respect to genomic distance (i.e., the spline-fitting of FitHiC2) 

and computes a binomial P value for a given pair of bins using the observed count, coverage 

of each bin and the total number of reads in the experiment. As a result, GOTHiC confidence 

estimates report most of the very-short-range genomic bins as significantly interacting, 
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which leads to very low specificity of interaction calling23. The HOMER Hi-C workflow, as 

part of the overall HOMER suite, also provides a statistical test for comparing the observed 

contact counts to an expected count. Akin to GOTHiC, HOMER uses coverages of each bin 

in calculation of the expected count for that bin pair; however, it also considers the scaling of 

counts with respect to genomic distance, unlike GOTHiC and similar to FitHiC2. HOMER’s 

distance scaling model simply takes an average at each possible genomic distance (only 

possible with fixed-size bins) and does not enforce monotonicity or account for the high 

variance of contact counts for pairs at large genomic distances. Similar to GOTHiC and 

FitHiC2, HOMER also plugs in the observed counts to the binomial distribution for 

computing P values.

Two methods that diverge from the use of binomial P values are HiCCUPS and HiC-DC. 

HiCCUPS employs a set of heuristics to quantify local enrichment of a contact count cluster 

(i.e., several adjacent entries in the contact map) with respect to its neighboring pixels and 

couples this quantification with several criteria to report only the centroid if a cluster is 

deemed significantly enriched with respect to all criteria4. The use of local background and 

the reporting of only the centroid of a cluster leads to identification of only a small set of 

interactions as significant. The resulting set of interactions mainly corresponds to strong 

loops between CTCF-bound boundaries of topological domains and/or loop domains4,28. 

Even though these structural interactions are of utmost importance in understanding the 

domain level of genome organization, because of its high stringency and requirement for 

deeply sequenced Hi-C data, HiCCUPS lacks the sensitivity to capture many of the 

functionally important within-domain interactions that link regulatory elements such as 

enhancers and promoters to each other. A more recent method, HiC-DC, borrows several 

elements from Fit-HiC (e.g., spline fit and null refinement) and couples them with a zero-

truncated negative binomial regression (i.e., hurdle regression) model, which accounts for 

inflation of zeros and overdispersion of contact counts in Hi-C data. Overlap analysis of 

HiC-DC and Fit-Hi-C calls reveals a significant amount of overlap for long-range contacts 

(>500 kb), but the overlap was much lower for contacts with shorter distances27. Overall, 

however, the lack of an orthogonal set of genome-wide chromatin contacts (i.e., not from 

conformation capture) that could be regarded as a gold standard makes it difficult to assess 

the biological relevance of the set of interactions reported by each one of these methods.

Assessment of FitHiC2 interaction calls

Since the original Fit-Hi-C manuscript included several analyses for evaluation of the 

biological relevance of identified interactions14, in this protocol, we focus on evaluation of 

the newly added features in FitHiC2, which are the introduction of the merging filter (Box 8) 

and inclusion of inter-chromosomal interactions as an option. As described here for Hi-C 

and in our recent work for HiChIP data15, the merging filter step retains the strongest 

interactions that are also mutually distant by a number of bins (W) in at least one of the 

interacting ends. That is, if both endpoints of two interactions are within W bins, one of the 

interactions would not be reported after the merging filter. First, to decide the value of W 

empirically, we have tested FitHiC2 with three different values of W (W = 2, 5 or 10) in 

terms of its recovery performance for an extensively studied small set of interaction calls 

from HiCCUPS with or without considering convergent CTCF binding for the GM12878 in 
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situ Hi-C data4 (Fig. 2a). Since W = 2 achieves a higher overall recovery compared to 5 and 

10 and shows an equal performance to the full set of FitHiC2 interaction calls without 

merging with less than one-third of the interaction calls, we select W = 2 as our default 

option. Note that the optimal setting may be different for data with different resolutions and 

sequencing depth. In another evaluation of the merging filter (M), we show that both the 

reduction in interaction calls reported and the preservation of HiCCUPS recovery are 

reproducible between the two replicates of GM12878 Hi-C data for FitHiC2 (Fig. 2b). We 

observe similar results when we consider HICCUPS calls that overlap for a pair of 

convergent CTCF binding motifs as our reference (3,307 out of 8,519) (Fig. 2c).

In terms of the overlap of interaction calls between the two replicates, the merging filter 

leads to a slight decrease compared to no filter (from ~93% to ~79% with overlap computed 

using 5-kb slack15) when we consider the percentage of interaction calls from the second 

replicate that are recovered by that of the primary replicate (Fig. 2d and e). The concave 

shape of these recovery plots also suggests that the more stringent set of calls in one 

replicate is likely to have an overlapping call in the other compared to less stringent ones, 

highlighting the consistency of ranking among significant calls by FitHiC2 between the 

replicates regardless of the use of the merging filter. When we consider the overlap of 

FitHiC2 calls on the same Hi-C data that is binned at different resolutions (1- and 5-kb 

binned primary replicate GM12878 data), we observe that even though the number of 

resulting calls varies quite significantly, 96% of the interactions reported at 1-kb resolution 

(19,164 out of 20,050) overlap with a significant interaction at 5-kb resolution.

Given the large number of interactions reported by FitHiC2 at 5 kb but not by HiCCUPS, we 

next investigate the biological relevance of FitHiC2-specific calls. We identify an additional 

10,938 interactions with convergent CTCF binding with FitHiC2 from the primary 

GM12878 replicate, which were not in the set of 3,307 reported by HiCCUPS. Furthermore, 

when compared against a set of predictions of promoter-enhancer interactions using a 

recently proposed activity-by-contact model29, for GM12878 FitHiC2 with a merging filter 

captured 13,502 out of 17,023 contacts, whereas HiCCUPS loops covered only 1,667 for the 

distance range of 15 kb–1 Mb. These results suggest that at least a subset of the additional 

interactions reported by FitHiC2 is likely functional either by contributing to domain- and 

sub-domain-level organization of the chromatin or by bringing distal enhancers in close 

proximity to their potential target genes.

To further evaluate FitHiC2 interaction calls, we ask whether they are in agreement with 

contact information from a recent crosslink-free assay named Split-Pool Recognition of 

Interactions by Tag Extension (SPRITE)3 to capture chromatin conformation. Comparing 

FitHiC2 interaction calls for GM12878 Hi-C data at 5-kb resolution stratified into 10 

distance ranges (0–100 kb, 100–200 kb, etc.) with 10-kb binned GM12878 SPRITE data, we 

show that pairs of regions with FitHiC2 called interactions are significantly enriched in 

SPRITE tag counts at each distance range compared to pairs with no significant FitHiC2 

interaction (Fig. 2f). This suggests that FitHiC2 calls from Hi-C data are supported by an 

orthogonal method that does not depend on crosslinking of chromatin.
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Finally, we focus on the inter-chromosomal interaction calls from FitHiC2 in terms of their 

reproducibility across replicates and their overlap with previously identified inter-

chromosomal translocations, which by definition create very strong and ‘significant’ 

interaction enrichments by adjoining regions from two different chromosomes. When we 

apply FitHiC2 in the ‘-x interOnly’ mode to a subset of chromosomes (chr10–15) for two 

replicates of the GM12878 Hi-C data at 100-kb resolution, we identify 8,573 and 1,887 

significant interactions from the primary and secondary replicates, respectively. Nearly half 

of the interactions from the secondary replicate are also reported in the first when we 

consider an exact overlap. This percentage goes up to 78% when we allow a one-bin slack 

(i.e., 100 kb) for overlap calculation. To assess the overlap of FitHiC2 inter-chromosomal 

interactions with previously predicted translocations in cancer cells30,31, we use Hi-C data at 

40-kb resolution from CAKI2 (renal carcinoma) and T47D (breast cancer) cell lines31. For 

CAKI2, 4,034 out of 6,208 significant inter-chromosomal interactions (1% FDR) fall on the 

20 pairs of chromosomes (out of 253 possible chromosome pairs) with translocations. Over 

80% of these interactions lie within 1 Mb of a translocation call from HiCtrans30. Similarly, 

for the T47D cell line, 950 out of 2,325 inter-chromosomal calls are from 16 different 

translocated chromosome pairs with 907 (>95%) within 1 Mb of a HiCtrans call. These 

results suggest that an important fraction of inter-chromosomal ‘interactions’ may actually 

indicate chromosomal rearrangements. Note that, unlike intra-chromosomal interactions 

where we use all possible pairs among the regions passing an initial filter (including those 

with zero counts) in the computation of prior contact probability, for inter-chromosomal 

interactions, we omit the pairs with no count from the probability calculation due to an 

extremely large number of zeros (>97%).

Limitations

The limitations of FitHiC2 currently include the technical requirements necessary to run 

FitHiC2 and the domain knowledge required to determine appropriate parameters and 

settings for each data set. These parameters include selection of a contact map resolution and 

a genomic distance range to consider. Another critical limitation relates to misunderstanding 

or incomplete understanding of the documentation in terms of how normalization is taken 

into account in FitHiC2. This has to be achieved through using the bias file together with 

raw (integer) contact counts and not the normalized counts. Under no circumstances does 

FitHiC2 expect normalized counts as an input or should it be used with normalized counts 

directly. The wrong parameters, settings or input files have the potential to severely impact 

the quality of downstream analysis, potentially leading to many false positives as well as 

false negatives in some cases.

Another important limitation of FitHiC2 that is also an intended feature is the dependency of 

significance estimates and the number of significant contacts on the read depth of the Hi-C 

library. This behavior is similar to peak calling methods of other genomics/epigenomics data 

such as ChIP-seq and allows full utilization of the high sequencing depth when available. 

Given that Hi-C contact maps are generally far away from saturation, we believe that the 

ability to report more discoveries with increased sequencing depth is a desired feature. 

However, this may complicate analysis when FitHiC2 estimates from two or more Hi-C 

contact maps with different sequencing depths are directly compared with each other. One 
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trivial solution to this would be downsampling before FitHiC2 for comparative studies. 

Another possibility would be to use a certain number of strongest contacts (i.e., top-k with 

lowest P value) instead of a fixed Q value threshold.

Experimental design

The Procedure outlined in this protocol will follow applying FitHiC2 to study three 

representative use cases and assign statistical confidence estimates for each dataset: (i) fixed-

size chromosome 5 Hi-C data at 5-kb resolution of an IMR90 cell line4, (ii) restriction 

fragment resolution Hi-C dataset from budding yeast5 and (iii) fixed-size whole-genome 

data at 40-kb resolution of an IMR90 cell line28,32. We recommend that users not familiar 

with Hi-C data first follow along using these test datasets before applying FitHiC2 on their 

own datasets. FitHiC2 requires the contact maps file and the fragment mappability file in the 

format described in Box 2; however, the Procedure will describe how to generate these files 

using commonly produced files from a host of other Hi-C tools.

The Procedure begins with describing how to compute the contact maps file and the 

fragments file using bundled FitHiC2 utilities. The contact maps file describes the observed 

interaction count between two labeled loci, while the fragment mappability file is a 

comprehensive mapping of every possible genomic locus (even those not included in the 

contact maps file). Next, we describe using HiCKRy, a Python implementation of the KR 

method for matrix balancing that is bundled with FitHiC2 and computes the bias values for 

each locus. We then discuss the proper parameter settings and configurations and run 

FitHiC2 on each use case. Finally, we provide some initial steps and visualization options 

for further analysis of the FitHiC2 output.

Choosing an appropriate binning strategy—Even though the native resolution of Hi-

C is at a single restriction fragment (i.e., a genomic region demarcated on both sides by the 

cut site of the restriction enzyme used), the default mode of Hi-C data analysis has been 

binning the genome into fixed-size, non-overlapping regions (e.g., 40-kb bins). FitHiC2 can 

handle both cases and leaves it to the user to determine which mode is more appropriate for 

their data. For instance, for a small genome (e.g., budding yeast) with sufficient sequencing 

depth and non-frequently cutting restriction enzymes (e.g., 6-bp cutters such as HindIII), it 

may make sense to use restriction fragment level contact maps to achieve a high-resolution 

picture of the genome organization. However, for large genomes (e.g., human) with frequent 

cutters (e.g., 4-bp cutters such as MboI), unless extremely high depth sequencing is 

available, it may be more appropriate to bin the contacts at a fixed size such as 5 or 40 kb.

Choosing an appropriate contact map resolution—Another important choice is the 

bin size or the resolution of the contact map. This choice is critical as it will have a 

significant effect on the downstream analysis and is a tradeoff between the resolution of the 

analysis and its statistical power. Unfortunately, there is no consensus on how to pick the 

most appropriate bin size, and only a few articles provide any guideline4,33. For instance, 

Rao et al.4 suggest using a resolution that results in ≥80% of all possible bins/loci having 

>1,000 contacts in total. In addition, one could use the density (i.e., percentage of non-zero 

entries) of the cis- or trans- contact matrices as the cutoff threshold instead of the total 
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contact counts per locus. As determining a correct bin size is critical, it may also be 

worthwhile repeating some analyses such as FitHiC2 with different resolutions and 

extracting results that are consistent and robust to the change in resolution.

Normalizing contact maps—Normalization of the initial data is crucial to correct for 

systematic biases present within Hi-C data4,12,13. This Procedure shows how to correctly use 

HiCKRy to compute these biases; however, the choice of normalization is ultimately up to 

the user. Regardless of the implementation, we strongly recommend the use of a 

normalization method in order to have meaningful results for further analysis. The only way 

for FitHiC2 to utilize data from Hi-C normalization is through the bias files. As long as the 

bias values are scaled to have an average of 1 and high values represent loci with higher 

overall raw counts, FitHiC2 will be able to use them in significance assignment.

Choosing a distance range—Similar to the choice of an appropriate resolution, it is 

also critical to specify a reasonable distance range to FitHiC2 for the specific dataset being 

studied. We suggest that users always provide a lower bound threshold (at least two times 

the resolution) to avoid very-short-range contacts distorting the spline fit. The use of an 

upper bound threshold is also important to keep FitHiC2 analysis within the range where 

contact counts are large enough to have statistical meaning and to keep in check the number 

of multiple tests for which the P values will be corrected. For each different organism, we 

also suggest considering the evidence in the literature for the longest-range interactions with 

biological implications (e.g., gene expression regulation) while setting the upper bound 

threshold. This could be up to 2 or 5 Mb for human and mouse genomes, which would span 

CTCF loops, topologically associated domain (TAD) boundaries and promoter-enhancer 

interactions, and the whole chromosome length for yeast and similar genomes where 

evidence suggests strong interactions between the two telomeres of each chromosome. If 

there is good reason to include ultra-long distances and/or inter-chromosomal contacts, 

FitHiC2 will also allow the user to interrogate these as demonstrated in the use cases of this 

Procedure.

Adapting the procedure—The provided protocol is easily adaptable to any Hi-C data 

provided. FitHiC2 is versatile enough to work with fixed-size or non-fixed-size datasets and 

has been successfully run on a wide range of data with varying resolution and parameters. 

As the resolution of the dataset is increased, computational time and memory required both 

increase as well. The memory requirement of FitHiC2 scales relative to the number of 

interactions provided in the contact maps file, the genomic distance range being studied and 

the type of chromosomal contact being studied. As the genomic distance range shrinks, the 

number of intra-chromosomal contacts stored in memory also decreases. In a similar 

manner, studying inter-chromosomal contacts in whole genome datasets at high resolutions 

will take greater computational time and memory than only studying intra-chromosomal 

contacts.

Using the protocol on non-human species is also simple. The protocol describes how to run 

FitHiC2 on provided yeast datasets; however, the same tools and scripts may be applied to 

any nonhuman organism. So long as the basic file format stays consistent, FitHiC2 does not 

rely on any prior assumptions regarding the organism from which the data originated.
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Depending on what the user’s interest in Hi-C data is, the output of FitHiC2 is versatile 

enough to lend itself to multiple uses and downstream analysis. For example, if a user is 

interested in understanding significant promoter-enhancer contacts, it is trivial to intersect 

the output of FitHiC2’s most significant interactions with known promoter regions using a 

tool like bedtools intersect. If the user is interested in studying the correlation with 

epigenomic data such as ChIP-seq, then they can intersect the significant FitHiC2 

interactions with the peak regions or compute ChIP-seq coverages for each side of an 

interaction. Additionally, chromatin hubs and super enhancer regions may be easily analyzed 

with FitHiC2. By filtering only the most significant interactions provided by FitHiC2 and 

extracting loci with the highest number of such interactions (e.g., top 10% among all loop 

anchors), one could identify regions that have been termed as chromatin hubs34. Finally, if a 

user is interested only in interactions within a specific locus (e.g., a haploblock or a TAD), 

they can achieve this by either extracting only the contacts within that locus beforehand or 

by subsetting the results after running FitHiC2 genome wide. The former case has the 

benefit of correcting only the P values for the within-region contacts, whereas the latter may 

be desirable to have a more robust estimate of the spline from genome-wide data.

Level of expertise required—The following protocol is written for an individual with 

some experience operating the command line.

Materials

Equipment

Starting data

• FitHiC2 contact maps file (Box 2)

• FitHiC2 fragment mappability file (Box 2)

Software

• Operating System: Linux, Macintosh or Windows

• Python v3.6 (https://www.python.org/downloads/) (Box 9)

• Python library: scipy (https://www.scipy.org/scipylib/download.html)

• Python library: numpy (https://www.scipy.org/scipylib/download.html)

• Python library: matplotlib (https://matplotlib.org/faq/installing_faq.html)

• Python library: sortedcontainers (https://pypi.org/project/sortedcontainers/)

• Fit-Hi-C v.2.0.X (https://github.com/ay-lab/fithic)

Hardware

• 4 GB memory (minimum)

• ≥4 processors (suggested)
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Equipment setup

Minimal requirements—FitHiC2 requires a minimum of 4 GB of memory and a 64-bit 

central processing unit (CPU) with an operating system capable of running Python 

applications. Certain utilities may require access to a bash shell.

Required data—The GitHub repository already includes test data (under fithic/tests/data), 

which can be directly used to run FitHiC2 on small subsets of human and mouse Hi-C data 

from Dixon et al.28, as well as whole genome Plasmodium falciparum ring-stage Hi-C data 

from Ay et al.18. In addition, we also included more test data for this Procedure, including 

whole-genome and high-resolution human Hi-C data from Rao et al.4 and Dixon et al.28, 

restriction fragment–level Hi-C data for budding yeast from Duan et al.5 and raw valid pairs 

format files to describe the use of provided utility scripts in converting different inputs to 

FitHiC2 format. The downloading and use of these data are required for this Procedure and 

are described below.

Downloading and organizing the data

Since data from high-resolution Hi-C contact maps for human cell types are too large to be 

provided within supplementary files or included in GitHub, we provide a direct download 

for the data that will be used in this Procedure through the following link: http://fithic.lji.org/

fithic_protocol_data.tar.gz.

These data can be downloaded and extracted as follows:

wget http://fithic.lji.org/fithic_protocol_data.tar.gz

Tar –xvzf fithic_protocol_data.tar.gz

cd fithic_protocol_data/data

DATADIR=$(pwd)

The contents of this directory should be:

data/validPairs/

data/validPairs/IMR90_HindIII_r4.hg19.bwt2pairs.withSingles.mapq30.validPairs.gz

data/fithicOutput/

data/biasValues/

data/referenceGenomes/

data/referenceGenomes/hg19wY-lengths

data/referenceGenomes/yeast_reference_sequence_R62–1-1_20090218.fsa data/

contactCounts/
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data/contactCounts/Duan_yeast_EcoRI.gz

data/contactCounts/Dixon_IMR90-wholegen_40kb.gz

data/contactCounts/Rao_GM12878-primary-chr5_5kb.gz

data/fragmentMappability/

data/fragmentMappability/Dixon_IMR90-wholegen_40kb.gz

data/fragmentMappability/Rao_GM12878-primary-chr5_5kb.gz

data/fragmentMappability/Duan_yeast_EcoRI.gz

Downloading and installing software

To install Python, follow the procedure outlined in Box 9. Python dependencies may be 

installed through following the instructions at each of the links provided in the Materials 

Software section. FitHiC2 can be installed through the method below (GitHub) or through 

the outline described in Box 10.

git clone https://github.com/ay-lab/fithic.git

cd fithic/fithic

FITHICDIR=$(pwd)

By running the command below, you may ensure that you have all the dependencies 

installed. If a dependency is not installed, this command will result in an error message.

python3 fithic.py –help

Procedure

Generation of input files for FitHiC2 ● Timing ~1 h

1. To first generate the contact maps file, we consider a validPairs file produced 

from HiC-Pro on a 40-kb IMR90 whole-genome run. To convert the validPairs 

file to a form that FitHiC2 may take in, run the following commands. Note that if 

you already have a contact maps file, you may skip to Step 2. For more details 

about how to generate a validPairs file, please see Box 11.

bash $FITHICDIR/utils/validPairs2FitHiC-fixedSize.sh 40000 IMR90 

$DATADIR/validPairs/IMR90_HindIII_r4.hg19.bwt2pairs.withSingles. 

mapq30.validPairs.gz $DATADIR/contactCounts

DESCRIPTION:

bash validPairs2FitHiC-fixedSize.sh [resolution] [libraryName] [validPairsFile]

[resolution] The resolution of the dataset being studied
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[libraryName] The prefix of the file generated

[validPairsFile] A text file containing the validPairs, can be zipped or not

[outDir] A path to the output directory to write the new contactCounts file to

? TROUBLESHOOTING

2. To generate the second input file for FitHiC2, the fragment mappability file, run 

the following commands on the command line. Note that if you already have a 

fragment mappability file, you may skip to Step 4.

python3 $FITHICDIR/utils/createFitHiCFragments-fixedsize.py

—chrLens $DATADIR/referenceGenomes/hg19wY-lengths

—resolution 40000

—outFile $DATADIR/fragmentMappability/IMR90_fithic.fragmentsfile.gz

DESCRIPTION:

python3 createFitHiCFragments-fixedsize.py —help

— chrLens Path to a file describing chromosome lengths of the model 

organism

— resolution Resolution of dataset being studied

— outFile Full path to the output file desired

— help Display this help message

? TROUBLESHOOTING

3. To generate the fragment mappability file, but for a non-fixed-size dataset, use 

the following command to in silico digest the reference genome using the 

specified restriction enzyme:

Bash $FITHICDIR/utils/createFitHiCFragments-nonfixedsize.sh 

$DATADIR/fragmentMappability/yeast_fithic.fragments HindIII 

$DATADIR/reference Genomes/yeast_reference_sequence_R62–

1-1_20090218.fsa

DESCRIPTION:

bash createFitHiCFragments-nonfixedsize.sh [outputFile] [RE] 

[fastaReferenceGenome] [outputFile] A desired output file path

[RE] Either the name of the restriction enzyme used, or the cutting position using 

‘^’. For example, AÂGCTT for HindIII.

[fastaReferenceGenome] A reference genome in fasta format
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? TROUBLESHOOTING

Computing biases ● Timing ~1 h

4 We generally recommend that users use FitHiC2 with the biases flag (-t). This 

flag takes in a bias file (described in Box 3) that could be generated by running 

the command below using HiCKRy for each of the three use cases. Note that if 

you already have a bias file pre-generated, you may skip to Step 5.

python3 $FITHICDIR/utils/HiCKRy.py

–i $DATADIR/contactCounts/Duan_yeast_EcoRI.gz

–f $DATADIR/fragmentMappability/Duan_yeast_EcoRI.gz

–o $DATADIR/biasValues/Duan_yeast_EcoRI.gz

python3 $FITHICDIR/utils/HiCKRy.py

–i $DATADIR/contactCounts/Dixon_IMR90-wholegen_40kb.gz

–f $DATADIR/fragmentMappability/Dixon_IMR90-wholegen_40kb.gz

–o $DATADIR/biasValues/Dixon_IMR90-wholegen_40kb.gz

python3 $FITHICDIR/utils/HiCKRy.py

–i $DATADIR/contactCounts/Rao_GM12878-primary-chr5_5kb.gz

–f $DATADIR/fragmentMappability/Rao_GM12878-primary-chr5_5kb.gz

–o $DATADIR/biasValues/Rao_GM12878-primary-chr5_5kb.gz

DESCRIPTION:

python3 HiCKRy.py —help

-i, interactions Path to the interactions file to generate bias values. Required.

-f, fragments Path to the interactions file to generate bias values. Required.

-o, output Full path for output of the generated bias file. Required.

-x, percentOfSparseToRemove Percent of sparse low contact count loci to 

remove. The default value is 0.05.

▲CRITICAL STEP Non-fixed-size data (especially on small genomes) are 

subject to oddities that may cause the normalization to converge at suboptimal 

bias values. We encourage you to visually inspect the outputted bias file to make 

sure that the resulting bias values are centered around 1 and are not dominated 

by a significant proportion (>30–40%) of very small numbers (<10−3) and 
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ascertain if an increase to ‘-x’ is required, or if FitHiC2’s run should vary the -tL 

and -tU options.

■ PAUSE POINT At this point, all input files to FitHiC2 have been generated, 

and the procedure can be paused. The next series of steps involve running 

FitHiC2.

? TROUBLESHOOTING

Running FitHiC2: 5-kb chromosome 5 human ● Timing ~20 min

5 Deciding the parameters with which to run FitHiC2 is a significant portion of the 

analysis step. To ease this choice, we have created a flowchart to help users 

determine the best choices for them (Fig. 3). A full list of FitHiC2’s options may 

be found in Table 1. Some of the options are mandatory, while others are tunable 

parameters used according to the input data.

6 Since we have all of the bias files generated, we may move forward with running 

FitHiC2. First, analyze the IMR90 5-kb data with the recommended flags set for 

each. This is done through the following commands:

python3 $FITHICDIR/fithic.py

–I $DATADIR/contactCounts/Rao_GM12878-primary-chr5_5kb.gz

–f $DATADIR/fragmentMappability/Rao_GM12878-primary-chr5_5kb.gz

–t $DATADIR/biasValues/Rao_GM12878-primary-chr5_5kb.gz

–r 5000

–o $DATADIR/fithicOutput/Rao_GM12878-primary-chr5_5kb

–l Rao_GM12878-primary-chr5_5kb

–U 1000000

–L 15000

–v

? TROUBLESHOOTING

7 To create an HTML report summarizing and depicting the output of FitHiC2, 

run the following commands. The output of the command below is an HTML 

report created in the output folder with the library name as its prefix.

bash $FITHICDIR/utils/createFitHiCHTMLout.sh Rao_GM12878–primary–

chr5_5kb 1 $DATADIR/fithicOutput/Rao_GM12878–primary–chr5_5kb
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DESCRIPTION:

bash createFitHiCHTMLout.sh [Library Name] [No. of passes] [Fit-Hi-C output 

folder]

[Library Name]The library name (-l option) used during Fit-Hi-C’s run

[No. of passes]The number of spline passes conducted by the Fit-Hi-C run

[Fit-Hi-C output folder]Path to the output folder for that Fit-Hi-C run (-o option)

? TROUBLESHOOTING

Running FitHiC2: yeast ● Timing ~10 min

8 Then, conduct the analysis on the Duan yeast dataset, with the following 

command:

python3 $FITHICDIR/fithic.py

–i $DATADIR/contactCounts/Duan_yeast_EcoRI.gz

–f $DATADIR/fragmentMappability/Duan_yeast_EcoRI.gz

–t $DATADIR/biasValues/Duan_yeast_EcoRI.gz

–r 0

–o $DATADIR/fithicOutput/Duan_yeast_EcoRI

–l Duan_yeast_EcoRI

–p 2

–v

? TROUBLESHOOTING

9 To generate an HTML report for this run, use the commands below. Users will 

note that the HTML outputs differ in more than content. For this sample, we 

have two new graphs included in the top of the report. These graphs are only 

outputted when multiple spline passes are run and showcase the difference 

between the first and last spline pass. An example of the first few lines of this 

file is shown in Box 5.

bash $FITHICDIR/utils/createFitHiCHTMLout.sh Duan_yeast_EcoRI 2 

$DATADIR/fithicOutput/Duan_yeast_EcoRI

? TROUBLESHOOTING
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Running FitHiC2: 40-kb whole-genome human, intra-chromosomal contacts ● Timing ~1 h 
30 min

10 Now, analyze the 40-kb IMR90 whole-genome dataset using different flags to 

simulate multiple use cases. The first is studying intra-chromosomal contacts 

only.

python3 $FITHICDIR/fithic.py

–i $DATADIR/contactCounts/Dixon_IMR90-wholegen_40kb.gz

–f $DATADIR/fragmentMappability/Dixon_IMR90-wholegen_40kb.gz

–t $DATADIR/biasValues/Dixon_IMR90-wholegen_40kb.gz

–r 40000

–o $DATADIR/fithicOutput/Dixon_IMR90-wholegen_40kb/intraChromosomal

–l Dixon_IMR90-wholegen_40kb-intraChromosomal

–U 10000000

–L 80000

–x intraOnly

–v

? TROUBLESHOOTING

Running FitHiC2: 40-kb whole-genome human, inter-chromosomal contacts ● Timing ~ 4 h

11 Now, analyze inter-chromosomal contacts.

python3 $FITHICDIR/fithic.py

–I $DATADIR/contactCounts/Dixon_IMR90-wholegen_40kb.gz

–f $DATADIR/fragmentMappability/Dixon_IMR90-wholegen_40kb.gz

–t $DATADIR/biasValues/Dixon_IMR90-wholegen_40kb.gz

–r 40000

–o $DATADIR/fithicOutput/Dixon_IMR90-wholegen_40kb/interChromosomal

–l Dixon_IMR90-wholegen_40kb-interChromosomal
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–U 10000000

–L 80000

–x interOnly

–v

Running FitHiC2: 40-kb whole-genome human, all contacts ● Timing ~ 4 h

12 Finally, run the analysis below to identify all interactions, inter-chromosomal 

and intra-chromosomal.

python3 $FITHICDIR/fithic.py

–I $DATADIR/contactCounts/Dixon_IMR90-wholegen_40kb.gz

–f $DATADIR/fragmentMappability/Dixon_IMR90-wholegen_40kb.gz

–t $DATADIR/biasValues/Dixon_IMR90-wholegen_40kb.gz

–r 40000

–o $DATADIR/fithicOutput/Dixon_IMR90-wholegen_40kb/All

–l Dixon_IMR90-wholegen_40kb-All

–U 10000000

–L 80000

–x All

–v

? TROUBLESHOOTING

■ PAUSE POINT The next series of steps involves post-processing and 

analyzing FitHiC2’s output. We encourage users to save copies of the previous 

results elsewhere so they may freely manipulate the output without fear of 

erasing FitHiC2’s results.

Merging significant interactions ● Timing ~40 min

13 To merge spatially close, significant interactions from FitHiC2, we make use of 

another utility that FitHiC2 provides. Specifically, we call the script merge-

filter.sh.
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bash merge-filter.sh $DATADIR/fithicOutput/Rao_GM12878-primary-

chr5_5kb/Rao_GM12878-primary-

chr5_5kb.spline_pass1.res5000.significances.txt.gz 5000 $DATADIR/

fithicOutput/Rao_GM12878-primary-chr5_5kb/Rao_GM12878-primary-

chr5_5kb-merged.gz0.01

DESCRIPTION:

bash merge-filter.sh [inputFile] [resolution] [outputDirectory] [fdr]

[inputFile]Input file of Fit-Hi-C interactions

[resolution]Resolution used for run

[outputFile]Path to output file to dump contacts

[fdr]FDR to use when subsetting interactions

? TROUBLESHOOTING

Analyzing FitHiC2 output ● Timing ~10 min

▲ CRITICAL We can now visualize the FitHiC2 interaction calls through the WashU 

Epigenome Browser. Below we show an example using the GM12878 5-kb FitHiC2 calls, 

using an FDR (Q value) threshold of 1 × 10−10. A similar procedure is to be employed for 

any FitHiC2 output, to output a new file formatted specifically for the WashU Epigenome 

Browser.

14 Run this one-line awk command, and note the value of ‘q’:

Zcat $DATADIR/fithicOutput/Rao_GM12878-primary-chr5_5kb/

Rao_GM12878–primary–

chr5_5kb.spline_pass1.res5000.significances.txt.gz | awk –v q=1e–

10 ‘{if($7 <q) {print $0}}’ | awk –F[‘\t’] ‘{if(NR>1) {if($NF>0) 

{print $1”\t”($2−1)”\t”($2+1)”\t”$3”:”($4−1)”-“($4+1)”,”(−log($7)/

log(10))”\t”(NR−1)”\t.”}else { print $1”\t” ($2−1)”\t”($2+1)”\t”

$3”:”($4−1)”-“($4+1)”,500\t”(NR−1)”\t.”}}}’ | sort –k1,1 –k2,2n > 

$DATADIR/fithicOutput/Rao_GM12878-primary-chr5_5kb/

washu_browser_format.bed

15 Using bgzip and tabix (tools included in htslib; installation instructions found 

here: www.htslib.org/download/), run the following commands on the outputted 

bed file:

Bgzip $DATADIR/fithicOutput/Rao_GM12878-primary-chr5_5kb/

washu_browser_format.bed

tabix –f –p bed $DATADIR/fithicOutput/Rao_GM12878-primary-chr5_5kb/

washu_browser_format.bed.gz
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16 Go to epigenomegateway.wustl.edu/browser and select the correct organism and 

genome; in our case, Human and hg19.

17 Click ‘Tracks’ and then ‘Upload Local Track’.

18 Select ‘longrange’ when selecting the option for ‘Choose track file type’ and 

locate the created output files (found at $DATADIR/fithicOutput/

Rao_GM12878-primary-chr5_5kb/washu_browser_format.bed.gz and /

washu_browser_format.bed.gz.tbi). Note that both of these files need to be 

selected and uploaded together.

19 Click the red ‘X’ in the top right and then left-click the name of the added track. 

Click ‘Display mode:’ and change the option to ‘ARC’.

20 Your results should now be displayed as a track in the browser. Try clicking the 

coordinate location and typing in the following region: chr5:171842908–

174092908. An example of what should be depicted is shown in Box 6. More 

detailed information about how to navigate the Epigenome Browser can be 

found at: https://epigenomegateway.readthedocs.io/en/latest.

Troubleshooting

Troubleshooting advice can be found in Table 2.

Timing

The total time of the Procedure for all of the given use cases is ~12 h including 

preprocessing. This number decreases to ~4 h if different use cases are run in parallel. The 

steps that require the most time are Steps 8–11 (dealing with running FitHiC2). The runtime 

for these steps is dependent on the resolution of Hi-C data and the options chosen by the 

user as described in the article.

Anticipated results

The protocol results in bin statistics, graphs and statistical confidence estimates appended to 

the end of the contact maps file provided. Additional post-processing may be conducted to 

generate an HTML report (Box 6) summarizing this information and to visualize the results 

on the WashU Epigenome Browser (Box 7).

The resulting confidence estimates or statistically significant interactions may be intersected 

with an external browser extensible data (BED) file to gather a subset of interactions such as 

those from gene promoters or peaks from ChIP-seq analysis. In addition, the set of 

significant interactions can be summarized to find interaction hubs, which are defined as 

top-k regions with the highest number of stringent interactions.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Data availability

FitHiC2 calls for different Hi-C datasets as well as processed files from published data that 

are used as references are provided in the Zenodo repository: https://doi.org/10.5281/

zenodo.338058935.

Code availability

The source code and the documentation of FitHiC2 are publicly available through GitHub: 

https://github.com/ay-lab/fithic. An executable version is also provided on Code Ocean at 

https://codeocean.com/capsule/4528858/36. The source code is distributed under the MIT 

license at https://opensource.org/licenses/MIT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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validPairs file format

The validPairs file is produced by most Hi-C assay analysis pipelines such as HiCPro11 

and Juicer37; although its exact name and format may vary from tool to tool, the essential 

set of fields is mostly present. This file is the result of mapping fastq files for each read 

end to the reference genome and joining them using the read identifiers to get a set of 

paired-end reads with both ends mapped to unique locations. Depending on the pipeline, 

this set may or may not contain chimeric read ends that are mapped only after a second 

round of read mapping. This file could also be filtered using stringent mapping quality 

criteria (MAPQ >30) and/or from unwanted chromosomes or contigs. Typically, the first 

column corresponds to a read identifier pertaining to the fastq read, the next six columns 

refer to the chromosome, coordinate and strand where the first read end and the second 

read end of the paired-end read mapped, respectively. The last column refers to the total 

distance of read mapping coordinates to the nearest restriction enzyme cut site location 

for each end. FitHiC2’s provided script requires only chromosome identifiers and 

mapping coordinates (columns 2, 3, 5 and 6) while converting the valid pairs file to 

contact maps. Therefore, any file with the relevant chromosome and coordinate 

information located in those columns (maintaining the expected ordering of columns) 

will be successfully converted to a contact counts file to be used as the input of FitHiC2 

(Boxes 1–4).

validPairs file format

Identifier 1 chr2 147501087 + chr7 120502771 – 180

Identifier 2 chr8 95345354 + chr13 72476846 + 296

Identifier 3 chr11 8481536 + chr11 8527887 – 455

Kaul et al. Page 26

Nat Protoc. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FitHiC2 required input file format

FitHiC2 takes two required input files even though it is highly suggested that a third one, 

the bias file, is also used for correcting potential technical biases. The first required file is 

the contact counts file in the sparse format, listing each pair of bins with a nonzero count 

observed from the Hi-C data. FitHiC2’s interaction counts file is formatted with the first 

two columns representing the chromosome identifier (name or number) and the midpoint 

of one interacting genomic region and the next two columns representing the same for the 

second region. The fifth column corresponds to the contact count between these two 

chromosomal regions. This file must be compressed (using gzip) in order to be read by 

FitHiC2. The exact format is described below and may be checked with the command 

(zcat FILE | head).

Contact counts file format

chr1 20000 chr10 135340000 1

chr1 20000 chr10 26380000 1

chr1 20000 chr11 19180000 3

The second required input is the fragments file, listing every possible genomic bin in the 

genome that could appear in the contact counts file. An example of this file is shown 

below. The first column and the third column must denote bin identifiers that are used in 

the contact counts file, which are generally the chromosome and the midpoint of each 

bin. The second column could represent the starting point of the genomic bin or any 

auxiliary information and is not used by FitHiC2. The fourth and fifth columns could be 

used for the marginalized contact count (i.e., row sum) and a binary mappability indicator 

(0: not mappable; 1: mappable) for that bin, respectively, which could be used in 

conjunction with several arguments/options (e.g., used by the mappability threshold 

option ‘—mappabilityThres’) to filter out several low coverage or unmappable regions 

from FitHiC2’s consideration.

Fragments file format

chr1 0 20000 1 1

chr1 40000 60000 1 1

chr1 80000 100000 1 1
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FitHiC2 bias file format

As mentioned above and in the literature, it is critical to properly normalize Hi-C data for 

potential technical biases. It is also crucial for FitHiC2 to correct for these normalization 

factors, which are called bias values, in its significance estimation to avoid false 

positives. Many Hi-C data-processing pipelines already provide means to normalize Hi-C 

data and gather these biases. We also provide our own Python implementation of the KR 

algorithm (HiCKRy), which was first used for Hi-C data by Rao et al.4, for users to carry 

out normalization and compute bias values within FitHiC2 package.

Regardless of the normalization platform, the output bias file should have the first two 

columns denote bin identifiers that are used in the contact counts file, which are generally 

the chromosome and the midpoint of each bin. The third column corresponds to the 

actual bias value generated by the normalization method. A value of −1 in the third 

column means that this column was skipped in the normalization step and that contact 

count entries involving this locus will be removed from consideration during FitHiC2. 

The bias values (excluding −1s) should be centered on 1, with the expectation that a value 

of 1 represents no bias, a value <1 represents that this region is underrepresented in 

contact counts (i.e., lower number of total contact counts than average) and vice versa for 

a value >1.

Bias file format

chr1 60000 −1

chr1 100000 0.146

chr1 140000 1.023
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FitHiC2 compatibility with other tools

HiCPro

FitHiC2 also provides a utility to automatically generate its input files directly from the 

output of a commonly used Hi-C mapping tool, HiCPro. This conversion script is 

provided within utilities as well as by HiCPro under their bin/utils/hicpro2fithic.py. This 

script uses HiCPro’s bed and matrix files simultaneously to generate the input files for 

FitHiC2 as described in Box 2. In addition, the bias files generated through HiCPro’s ICE 

normalization method (for HiCPro version 2.10 or newer) can also be inputted and 

formatted, alongside other files, to FitHiC2’s input bias file format described in Box 3.

.hic Files

If the Juicer platform was previously used for analysis, the resulting .hic files may be 

used in conjunction with FitHiC2 through the development of another utility developed. 

The script titled ‘createFitHiCContacts-hic.sh’ uses four arguments. The first is the text 

file output by the juicebox dump command, and the next two arguments are the two 

chromosomes to which the text file corresponds. The last argument is the name of the 

output file to write the resulting interaction counts.
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FitHiC2 output files

FitHiC2 produces two important files for every spline fit conducted. The first file is the 

‘$libraryname.fithic_pass $i’ file, where library name is the user specified ‘−1’ flag, and i 

refers to the ith spline fit. This file consists of five total columns depicting the bin 

statistics used by this run of FitHiC2, an example of which is reproduced below:

Average 
genomic 
distance

Contact probability Standard 
error

No. of locus 
pairs

Total contact 
counts

120,000 6.96 × 10−07 0.00 77,331 3,667,637

160,000 5.90 × 10−07 0.00 77,307 3,107,143

This file depicts how each bin was created and the various statistics FitHiC2 used to 

compute the spline. In addition to the visual graphs, this is a key file to study if one is 

unsure of the results.

The second file is the ‘$libraryname.spline_pass’ file. This file is a 10-column file. The 

first five columns will be exact copies of the columns within the contact maps file. An 

example of the next five columns is provided below:

P value Q value Bias1 Bias2 Expected contact count

1.00 1.00 –1 –1 12.87

1.0337 × 10−07 5.7828 × 10−07 0.8124 0.7742 32.21

The P value and Q value are the statistical significance of the interaction depicted in that 

row as determined by FitHiC2. The next two columns list the bias values for each 

respective genetic locus, which are ‘–1’ for loci that were excluded from normalization or 

had bias values out of the desired range specified either by default [0.5, 2] or by the user 

through —biasLowerBound and —biasUpperBound options. The last column reports the 

expected contact count for the specific locus pair, which is calculated by multiplying the 

prior probability by the sum of all contact counts within the specified distance range, 

which is then multiplied with both bias1 and bias2 values.

Kaul et al. Page 30

Nat Protoc. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FitHiC2 HTML output

FitHiC2 provides a script to convert the output of the -v, visual option, into an HTML 

report for easy viewing and analysis. The exact usage of the script is described in the 

Procedure and is flexible to however many spline passes the user ran. The HTML report 

includes links to log file, the statistical significance estimates and the bin statistics 

outputted by FitHiC2. In addition, the graphs FitHiC2 created will be embedded into the 

HTML report, allowing easy transfer of files.
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Visualizing FitHiC2 output in genome browsers

The set of significant interactions reported by FitHiC2, as well as the input Hi-C contact 

maps, can be visualized on multiple different platforms, most of which have been 

discussed in a recent review38. In this Procedure, we demonstrate how to format 

FitHiC2output for visualization on one such platform, namely the WashU Epigenome 

Browser (Steps 14–21). Additionally, we have created a simple script (visualize-

UCSC.sh) to convert the output of FitHiC2 into a visualization input for the UCSC 

Genome Browser. For the sake of brevity, we do not describe the usage in this Protocol; 

however, instructions can be found in the README for FitHiC2. The example regions 

below show arcs, which correspond to significant interactions computed by FitHiC2 at a 

−log10(Q value) threshold of 10 for a select region of the Rao GM12878 5-kb 

chromosome 5 data analyzed in the protocol. a, Snapshot of this interaction in the UCSC 

Genome Browser. b, Snapshot of this interaction in the WashU Epigenome Browser.
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FitHiC2 interaction filtering

In FitHiC2, we have developed a post-processing method for distinguishing direct 

interactions from enrichments of contacts among their neighboring loci, which can be 

explained away by such direct interactions15. This method (merging filter) works first by 

merging neighboring loop calls into one connected component in the binary interaction 

matrix (0 = not significant, 1 = significant) and then by iteratively picking the strongest 

loop/interaction (FitHiC2 Q value) that is not within a defined vicinity of any of the 

readily picked loops in the result set to be reported after filtering. The vicinity between 

two loops is defined by a threshold of distance in terms of number of bins (default is 2) 

for each end of the loop simultaneously (i.e., left end of loop1 within ± two bins of the 

left end of loop2, and the same holds for the right end). This merging filter step 

significantly decreases the number of significant interactions and is useful to decrease the 

search space of interesting Hi-C calls. Three scripts perform this action: two are bash 

scripts that merge and filter the interactions for the user, and one is a Python script with 

more user options. For most users, the unparalleled bash script will be sufficient. An 

example of its usage is described in the Procedure. All three are described in detail in the 

FitHiC2 documentation. We have provided detailed evaluation of the merging filter in 

Fig. 2.

Kaul et al. Page 33

Nat Protoc. Author manuscript; available in PMC 2020 August 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Installing Python and dependencies

For most individuals, installing Python from source can be a time-consuming process. We 

recommend installing Miniconda. Miniconda is a lightweight way to access the conda 

distribution system and is ideal for easily installing Python and FitHiC2’s dependencies 

(https://conda.io/miniconda.html). Please note that Python3 is required for FitHiC2. Once 

Miniconda is installed, FitHiC2’s dependencies may be installed through running the 

following commands:

conda install numpy

conda install scipy

conda install matplotlib

conda install sortedcontainers

conda install scikit-learn

Alternatively, you could use Anaconda to download Python3, which comes with a 

comprehensive list of preloaded packages including those listed above (https://

www.anaconda.com/download/). However, this option will take more time and more disk 

space to install.
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Alternatives for FitHiC2 installation

Another alternative to FitHiC2 installation is to install FitHiC2 directly through the 

Python Package Index or Bioconda. These approaches will automatically install all 

dependencies and create a command line-accessible version of FitHiC2.

To download FitHiC2 through the Python Package Index, run the following command:

pip install fithic.

? TROUBLESHOOTING

To download FitHiC2 through Bioconda, run the following commands:

conda config —add channels defaults

conda config —add channels conda-forge

conda config —add channels bioconda

conda install fithic

After doing so, ensure that your version is the most up-to-date version of FitHiC2 by 

cross-referencing the output of the following command to the one stated on GitHub:

fithic —version

This installation will leave out the utilities of FitHiC2, which can then be downloaded 

using the source tar.gz file from the following link, if needed: https://pypi.org/project/

fithic/#files.
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Creating validPairs file

FitHiC2 is designed to have as modular an input file format as possible; however, we 

have also created a number of utility functions to allow users to convert outputs from 

other tools into the FitHiC2 format automatically. One such tool is HiC-Pro, a software 

package that allows single-click analysis of a Hi-C experimental assay. FitHiC2 provides 

a utility to convert HiC-Pro’s validPairs output file into FitHiC2’s interactions input file. 

The command to generate this validPairs file is replicated below:

MY_INSTALL_PATH/bin/HiC-Pro –i FULL_PATH_TO_DATA_FOLDER –o 

FULL_PATH_TO_OUTPUTS –c MY_LOCAL_CONFIG_FILE

For further details, please refer to the HiC-Pro online documentation (http://

nservant.github.io/HiC-Pro).
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Fig. 1 |. FitHiC2 flowchart.
a, A brief overview of the main stages of analysis performed by FitHiC2. b, A more 

complete overview of all scripts and utilities incorporated into the FitHiC2 repository. 

FitHiC2 provides multiple different entry points to the workflow (denoted by i1 and i2), 

thereby allowing several file formats to be converted to expected input files, namely, contact 

counts, fragments and bias values files. For b, the numbers listed in boxes represent the 

corresponding steps in the Procedure section.
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Fig. 2 |. Reproducibility and validation of FitHiC2 calls.
We use whole-genome 5-kb GM12878 data from Rao et al.4 with two replicates (‘Primary’ 

and ‘Replicate’). We consider the distance range of 15 kb to 1 Mb for all interaction calls 

and use 5-kb resolution contact maps to identify significant interactions at an FDR of 0.01 

for FitHiC2 for each figure. a, The recovery of HiCCUPS calls from GM12878 Hi-C data 

using different window sizes for the merging filter in FitHiC2 on the Primary replicate Hi-C 

data. The fraction of reference interactions (HiCCUPS calls in this case) recovered by 

FitHiC2 calls when taking the top-k (x-axis) number of significant interactions sorted 

according to decreasing significance. b, Similar to a but when W = 2 is used for both the 

Primary and the Replicate sample. c, Same as b but when only the HiCCUPs calls with 

convergent CTCF motifs (3,307 out of 8,519 total) are used as the reference set. d, 
Reproducibility of FitHiC2 interaction calls between the two replicates of GM12878 Hi-C 

data. e, Same as d but when the merging filter is employed. f, Enrichment of SPRITE tag 

counts (10-kb binned GM12878 SPRITE data3) of FitHiC2 significant interactions from 

GM12878 5-kb resolution Hi-C data.
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Fig. 3 |. 
Flowchart of FitHiC2 parameter and configuration setting choices.
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Table 1 |

Description and flag of each of FitHiC2’s options Options

Option flag Description of option

—help, -h Displays help message of all available options

—interactions, -i Path to the interactions file being used. This flag is required.

—fragments, -f Path to the fragments file being used. This flag is required.

—outdir, -o Path to a directory where all the output files will be written. If the directory is not already made, FitHiC2 will 
automatically create it. This flag is required.

—resolution, -r (*) Resolution of dataset being used. If the dataset is not fixed size, then a value of 0 should be used here. This flag 
is required.

—biases, -t Path to the bias file being used. This flag is highly recommended.

—passes, -p Number of spline passes. If no refinement to the null model is desired, then provide 1. The default value is 1.

—noOfBins, -b Number of equal occupancy bins into which the locus pairs within the specified genomic distance range are 
divided. This parameter does not have a significant impact on the spline fit in general. We suggest using 100 or 
200 in most cases.

—mappabilityThres, -m This is the minimum coverage necessary to call a locus mappable and include it in the calculations. The default 
value of 1 could also be used as a binary filter if the input file has 1 for mappable and 0 for unmappable regions. 
Higher values may be desired if the data is of high sequencing depth and input files correctly reflect the coverage 
for each locus.

—lib, -l The library name being utilized. This changes the name of the prefix appended to the outputs of FitHiC2. This 
value has no effect on actual analysis, and its default is fithic.

-distUpThres, -U This value determines the upper bound of interaction distances to be considered.

—distLowThres, -L This value determines the lower bound of interaction distances to be considered.

—biasUpperBound, -tU (*) This value determines the upper bound above which a locus and all contacts involving the locus will be 
discarded. The default value is 2.

—biasLowerBound, -tL. (*) This value determines the lower bound below which a locus and all contacts involving the locus will be 
discarded. The default value is 0.5.

—visual, -v Visual option if graphs would like to be outputted. These will be outputted in the same directory as specified in -
o.

—contactType, -x. (*) Option to determine which interactions would be studied. The options are interOnly, intraOnly and All. The 
default value is intraOnly (intra-chromosomal interactions).

—version, -V Version number is outputted, and FitHiC2 exits.

*
Option is exclusive to FitHiC2.
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Table 2 |

Troubleshooting table

Step Problem Possible reason Solution

Materials Incorrect version of Fit-Hi-C being 
installed (not 2.0.x)

Old version of Python is being used. Ensure that you are using Python3.6’s pip 
command.

1–13 ‘No such file or directory’ Not in correct working directory Make sure that the path to the script being run 
is correct.

1, 3, 7 ‘Invalid argument’ Arguments in incorrect order Follow exact order of arguments as outlined in 
Procedure.

3 ‘python2 not found’ Internal script requires Python2. Install Python2 from the official Python 
distributors or Anaconda.

4 ‘Nan’ values present in bias file KR algorithm failed to converge. Increase value of -x.

6 Code takes too long. Running HiCKRy on the IMR 5-kb 
dataset is too slow on a personal laptop.

Utilize a high-performance compute cluster, or 
skip this step.

7 HTML contains no graphs. Ensure that FitHiC2 was run with -v 
option.

Rerun FitHiC2 with -v option.

8 ‘A theoretically impossible result 
was found during the iteration 
process for finding a smoothing 
spline with fp = s: s too small.’

Too many spline passes have been 
computed; spline is now undefined.

Decrease number of spline passes.

8–11 ‘Argument required’ Not all required arguments have been 
passed to FitHiC2.

Ensure that all of the following arguments are 
explicitly defined: —interactions, —
fragments, —outdir, —resolution.
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