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Chromosomes have a complex spatial
organization in the cell nucleus (1,2),
as revealed by new high-throughput
technologies (3,4). Such an organiza-
tion serves vital functional purposes as
genes have to establish physical con-
tacts with their distal DNA regulators
to control transcriptional activities.
Mutations producing architectural rear-
rangements can rewire those regulatory
interactions and induce severe human
diseases (5). However, the physical
and molecular mechanisms whereby
those contacts are formed and
controlled across genomic scales
remain to be understood.

To explain the complexity of chro-
mosomes’ architectural data, two
main models from polymer physics
have been introduced to date that are
supported by growing experimental
evidence. The loop-extrusion model
envisages that a molecular complex
acts as an active motor extruding
DNA loops between cognate anchor
points in a nonequilibrium process
requiring energy influx by, e.g., ATP
molecule consumption (6). In another
scenario, recapitulated by the Strings
and Binders model (7), the interactions
between DNA sites are mediated by
diffusing cognate binding molecules
that can bridge those sites. DNA-mole-
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cule interactions cause thermody-
namics phase transitions, resulting in
structural changes of the DNA chain,
such as coil-to-globule or phase-sepa-
ration transitions. The system archi-
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New and Notable
In this issue of Biophysical Jour-
nal, Chiariello and co-workers (11)
make an important step within the
latter framework. They investigate
how a system of mutually interacting
molecules, which can also bind to
sites along the chromatin fiber, can
self-assemble in aggregates by phase
separation, hence producing stable,
robust bridges between distant regu-
latory elements, such as gene
promoters and enhancers. An inter-
esting aspect is that binding sites
along the DNA chain can locally
nucleate cluster growth. Those mo-
lecular clusters emerge under suitable
conditions of molecules concentra-
tion, DNA binding sites abundance,
and molecule-molecule and mole-
cule-DNA interactions. In particular,
as predicted by the theory of phase
separation, the clusters can form,
within different dynamical regimes,
either by nucleation at DNA binding
sites or by spontaneous aggregation
in the nucleoplasm, next bridging
cognate DNA sites (see Fig. 1).
Interestingly, those mechanisms
could also play a role in other bio-
logical processes, such as in the
symmetry breaking events, leading
to X chromosome inactivation (12).

Chiariello and co-workers consid-
ered a minimal toy model of mole-
cule-DNA interactions, based on the
concept of universality in phase transi-
tions. More complex molecular sys-
tems can exhibit a variety of
thermodynamics phases and related
structures, which could be relevant to
different biological situations. It also
remains to be clarified under which cir-
cumstances near equilibrium can be
reached in the nucleoplasm. Neverthe-
less, thermodynamics phase transitions
and molecular self-assembling are reli-
able and reversible organizational
mechanisms, requiring no fine-tuning
of, e.g., concentrations and affinities,
and no energy inputs beyond the ther-
mal bath. They can be implemented
in the cell via simple biological pro-
cesses, such as upregulation of genes
transcribing for binding molecules or
epigenetic modifications of DNA sites,
to transit the system across the
threshold point in a different structural
phase.
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