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Abstract

Complexity of cell-type composition has created much skepticism surrounding the interpre-

tation of bulk tissue transcriptomic studies. Recent studies have shown that deconvolution

algorithms can be applied to computationally estimate cell-type proportions from gene

expression data of bulk blood samples, but their performance when applied to brain tissue is

unclear. Here, we have generated an immunohistochemistry (IHC) dataset for five major

cell-types from brain tissue of 70 individuals, who also have bulk cortical gene expression

data. With the IHC data as the benchmark, this resource enables quantitative assessment

of deconvolution algorithms for brain tissue. We apply existing deconvolution algorithms to

brain tissue by using marker sets derived from human brain single cell and cell-sorted RNA-

seq data. We show that these algorithms can indeed produce informative estimates of con-

stituent cell-type proportions. In fact, neuronal subpopulations can also be estimated from

bulk brain tissue samples. Further, we show that including the cell-type proportion estimates

as confounding factors is important for reducing false associations between Alzheimer’s dis-

ease phenotypes and gene expression. Lastly, we demonstrate that using more accurate

marker sets can substantially improve statistical power in detecting cell-type specific expres-

sion quantitative trait loci (eQTLs).
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Author summary

Gene expression data generated from a tissue sample reflects an average gene expression

profile across heterogeneous populations of cells. Because composition of constituent cell-

types can vary across individuals (due to technical or biological factors), differential gene

expression analysis requires estimating and adjusting for such cellular heterogeneity.

While many deconvolution algorithms for estimating cellular composition from tissue

gene expression data have been tested extensively in blood, their performance when

applied to brain tissue is unclear. To address this gap, we generated an immunohis-

tochemistry (IHC) dataset for five major cell-types from brain, in order to apply and then

assess deconvolution algorithms for application to brain gene expression datasets. We

show that these algorithms can indeed produce informative estimates of constituent cell-

type proportions. Further, we show that adjusting for estimated cell-type proportions

across individuals when conducting differential gene expression analysis is important in

reducing false associations.

Introduction

Understanding the molecular aetiology of neurodegeneration and neuropsychiatric diseases

holds the promise of developing safe and effective treatments which despite decades of work

are still lacking. Large collaborative efforts such as the CommonMind Consortium[1] and the

AMP-AD venture[2] have been constructed to address these unmet needs. These consortia

have deeply phenotyped the brains of thousands of individuals with an array of ‘omic technol-

ogies including RNA and DNA sequencing. The vast majority of this molecular profiling has

been performed on bulk tissue samples meaning that changes in the measured expression of a

gene can be due to altered gene activity or simply because there has been a change in the num-

ber of cells that express that gene. Hence while promising, the complex cell-type composition

of the brain creates a level of uncertainty around the interpretation and validity of reported

molecular-disease associations, including our own[3], which demands further investigation.

Observed gene expression levels in tissues with high cellular heterogeneity are influenced

by the proliferation or death of specific cell-types and also by molecular processes within cell-

types. In the context of disease studies, this ambiguity in the origin of gene expression variabil-

ity can generate spurious disease associations or reduce statistical power to detect true associa-

tions[4]. Separating out the contributions of cell-type composition on gene expression,

through a mathematical method known as deconvolution, should result in more accurate dis-

ease associations.

Cell-type deconvolution methods are a spectrum of analytical approaches for separating out

changes in gene expression stemming from shifts in cell-type compositions from alterations in

gene activity. Typically variations of factor analysis and regression[5], deconvolution approaches

use known cell-type specific genes to generate robust estimates of cell-type composition. Model-

ling these changes in cell-type composition not only facilities segregating changes in gene expres-

sion associated with cell-type changes from those associated with disease-associated activity but

can also be used to infer which cell-types these changes in activity are occurring. This potential

has been experimentally validated in specific settings, for instance on immune cell subsets[6].

A key contribution to the reliability of deconvolution approaches are the cell-type markers,

or genes that are expressed predominately in a given cell-type, that are used in the modelling.

Recent single-cell RNA-seq[7–9] and cell-sorted datasets[10] from human brain tissue can

enhance the effectiveness of deconvolution methods through more accurate identification of
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cell-type marker genes. Deconvolution algorithms are being applied to gene expression in the

brain using these cell markers to infer and adjust for glial cell subsets with higher granularity

[11–13]. However, because of lack of availability of high-resolution benchmark datasets across

multiple individuals, their accuracy and resolution is not well understood.

In this work, we constructed a benchmark brain dataset for quantitative evaluation of

deconvolution algorithms. Specifically, we generated an immunohistochemistry (IHC) imag-

ing dataset and quantified the proportions of five distinct cell-types from the cortex of 70 indi-

viduals, for which bulk-tissue RNA-seq data have also been acquired. With the IHC dataset as

the benchmark, we evaluated four state-of-the-art deconvolution algorithms whose effective-

ness has not been assessed in brain tissue. We applied these algorithms to brain tissues by

using three sets of marker genes derived from human brain single-cell RNA-seq data[7],

human brain cell-sorted RNA-seq data[10], and cell-sorted microarray data[12]. We also

explored whether proportion of neuronal subpopulations can be estimated from bulk brain tis-

sue samples. Further, we assessed the importance of including cell-type proportion estimates

as confounding factors when associating gene expression to disease phenotypes. Lastly, we

tested the cell-type proportion estimates for detecting cell-type specific expression quantitative

loci (eQTL) in the brain. The IHC data generated as part of this study, as we all code for all

analysis and results is available from https://github.com/ellispatrick/CortexCellDeconv.

Results

Generation and quantification of IHC data

To establish a benchmark for cell-type proportions in heterogamous brain tissue, we used

immunohistochemistry to experimentally measure the proportion of neurons, astrocytes,

microglia, oligodendrocytes, and endothelial cells from dorsolateral prefrontal cortex

(DLPFC) tissue of 70 older individuals. These individuals are a subset of the larger ROSMAP

cohort with bulk RNA-seq (n = 508) from the same region[3]; donors showed a range of cogni-

tive function, from healthy to Alzheimer’s dementia (e.g., 33% incident of Alzheimer’s demen-

tia; S1 Table), which likely enhances the heterogeneity of cell-type proportions (S1 Fig).

To generate IHC-based cell-type proportions, antibodies were chosen to identify neurons

(NeuN), astrocytes (GFAP), microglia (IBA1), oligodendrocytes (OLIG2), and endothelial cells

(PECAM). Automated image analysis (EBImage) was applied to identify DAPI stained cells

and the cells that were positive for each antibody (Fig 1A). The proportion of each cell-type

was derived by averaging 30 images taken from 6 μm slides per individual. Confirming the

quality of the IHC-based cell-type proportions, we observed that the proportion of the five

major cell populations per subject approximately sums to one, despite separate staining per-

formed for each cell-type (Fig 1B). That is, because each cell-type is stained and counted inde-

pendently, both natural and technical variability (counting error or staining efficacy) can

result in the sum of the proportions being greater or less than one. The sum of the cell-types

approximately reaching one also implies that the five measured cell-types make up the bulk of

the DLPFC, with no other major cell population unmeasured.

We find that variability in the ROSMAP gene expression can be explained by changes in

cell-type proportions. We previously derived cell-type specific modules of covarying genes

from this cohort[3] which we claimed mimicked the behavior of cell-type proportion shifts.

Encouragingly. the expression levels of these gene modules correlate with the IHC estimates of

cell-type proportions. (S2 Fig). Moreover, when looking at global gene expression levels, the

IHC-based cell-type proportions explain ~11% of the variance in gene expression levels (Fig

1C) and are found to correlate with the expression levels of a large number of genes (Fig 1D).

These results confirm that cell-type heterogeneity is indeed a major contributor to the
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variation in bulk-tissue gene expression data from the brain, also verifying that our expression

data is a relevant test bed for evaluating deconvolution algorithms.

Adapting and evaluating deconvolution algorithms

Recent studies have shown that cell-type proportions in blood samples can be reliably esti-

mated through computational means, but the accuracy of these estimates for brain cell-type

deconvolution is currently unclear. To establish the validity of computational estimation of

Fig 1. Estimation of cell-type proportions by IHC. (A) Figure depicts an example segmented IHC image used to quantify cell-type proportions. (B) A bar plot illustrating

the total proportions of cell-types for an individual. Each bar represents an individual, y-axis shows the estimated proportion of each of the five cell-types. The proportions

of the different cell-types for a specific individual are estimated from different images. The sum of the proportions of the cell-types should be close to one. (C) A histogram

showing the Percent Variance Explained (PVE) of expression values of all genes (across 70 individuals) by the combination of proportion of five cell-types measured by

IHC. For each gene, linear regression was used to estimate the gene expression levels of that gene across individuals from five covariates (representing IHC proportions

from each of the five cell-types). A value of one would mean that all the variation in a gene’s expression could be explained by the IHC estimated proportions of cell-types.

All values are less than 0.6. (D) A p-value distribution corresponding to the PVE histogram in panel C, showing the p-values for the correlation between gene expression

levels (all expressed genes) and IHC-based cell-type proportions estimates across 70 individuals with paired data. As in panel C, expression level of each gene was used as

the outcome in linear regression, with covariates included for IHC measurements from each cell-type. A peak at zero provides evidence that the variation of many genes

can be explained by changes in cell-type proportions.

https://doi.org/10.1371/journal.pcbi.1008120.g001
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cell-type proportions in brain tissue, we used the IHC data as the benchmark to assess the

accuracy of four deconvolution methods. The methods fall into two classes: 1) “supervised”

reference-based methods, which included non-negative least squares (NNLS)[14], CIBER-

SORT[15], and dtangle[5], and 2) “semi-supervised” reference-based, exemplified by the digi-

tal sorting algorithm (DSA)[16]. Both classes rely on pre-defined marker genes (also referred

to as signature gene lists) for each cell-type derived from reference profiles. The distinction is

that supervised approaches also require cell-type specific expression profiles of the marker

genes as derived from cell-type specific gene expression datasets.

To adapt these deconvolution algorithms to brain tissue, we examined 3 sets of cell-type

marker genes derived from: (1) human brain single-cell RNA-seq data (“Zhang”), (2) human

brain cell-sorted RNA-seq data[7] (“Darmanis”), and (3) a curated collection of cell-sorted

microarray data and In-Situ Hybridization from mouse brains (Neuroexpresso)[12]. For each

data source, differential gene expression analysis identified sets of marker genes that are pref-

erentially expressed in each of the five cell-types (see Methods).

We assessed the concordance between the IHC-based cell-type proportions and estimates

generated by the deconvolution algorithms with two metrics: (1) correlation and (2) mean

squared error (MSE) between the inferred and measured proportions for each cell-type across

individuals. With correlation, we assess whether individuals with higher proportion estimates

also display higher proportion in the IHC data, i.e. the relative proportions across individuals

is assessed, but not the absolute values of the proportions. Having high correlation is often ade-

quate for the estimated proportions to be useful for downstream analysis; for example when

estimates are used as confounding factors in association analysis, only the accuracy of relative

proportions is important. On the other hand, if the abundance of different cell-types in varied

brain regions is of interest, the absolute difference between the estimated and ground truth

proportions as measured with MSE is more appropriate.

We observed that the correlations between IHC and deconvolution estimates are mostly

significant, with moderate effect sizes, but variable results for endothelial cell proportions

(Figs 2A and S3). We also observed that the various algorithmic approaches yield highly corre-

lated estimates as assessed more robustly across a larger set of 508 ROSMAP samples (S4 Fig).

However, CIBERSORT and NNLS are “outliers” in this respect for estimation of microglia

cells, which might stem from their difficulty in estimating such low abundant cell-type (Fig

2A). Overall, correlation results are similar for the different sources of marker genes (S5 Fig),

and so we report the results with “Zhang” markers in the main text and “Darmanis” markers

in the supplement. We note that we found removing technical confounds from gene expres-

sion data generally improves the accuracy of the tested algorithms (see S6 Fig) which provides

evidence that there may be other technical factors such as sample quality or effectiveness of

image analysis algorithms that are contributing to the moderate effect sizes.

Although statistically significant, the magnitude of the correlations are only moderate and

could have been reduced by technical variability. To approximate upper bounds for the corre-

lation values, we constructed “artificial mixtures” from a brain single cell RNA-seq dataset[17].

Without accounting for noise in image analysis, we estimated the upper bounds to be between

0.5 to 0.7 (S7 Fig). The observed correlations between IHC and deconvolution estimates are

thus reasonably within the expected range if noise in image analysis is considered.

In addition to evaluating the proportion estimates for each cell-type independently, we also

assessed the estimates based on relative magnitude across cell-types. When averaged across

samples, the relative magnitude across cell-types show high concordance between the IHC and

deconvolution estimates (Fig 2B), and are consistent with estimates based on single cell data

from cortex[8, 9]. This concordance implies that the estimated proportions are not con-

founded by the variability in the total amount of RNA across different cell-types, as one may
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Fig 2. Computational estimation of cell-type proportions. (A) Figure shows the Spearman correlation coefficient between IHC-based cell-

type estimates and four deconvolution algorithms, in addition to the “single marker” based approach. For the single marker based approach,

we used the expression of the widely used marker genes: ENO2 for neurons, GFAP for astrocytes, CD68 for microglia, CD34 for endothelial,

OLIG2 for oligodendrocytes. Correlations larger than 0.2 provide evidence that the gene expression cell-type proportion estimate for that cell-

type are correlated with the IHC cell-type proportion using an unadjusted p-value threshold of 0.05. (B) Estimates of absolute proportions of

each cell-type in the DLPFC according to the four algorithms tested, and IHC (experimentally measured in this study). Box plots depict the

range of proportions across 70 individuals. (C) Boxplots depict the similarities and differences of predicted cell-type proportions (using DSA

algorithm and Zhang markers) across nine brain regions, based on bulk GTEx tissue data.

https://doi.org/10.1371/journal.pcbi.1008120.g002
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suspect. We also assessed the robustness of these results with respect to variability in the size of

marker gene set and found results to be robust for a wide range of sizes (S8 Fig). To test the

generalizability of the results, we further estimated cell-type proportions across nine brain

regions from GTEx data[18]. For Cortex, we observed highly concordant proportions between

estimates derived from the ROSMAP and GTEx datasets (Fig 2B and 2C). For other brain

regions, we observed strong variations in the estimated cell-type proportions, with adjacent

regions tending to yield similar proportions (Fig 2C), which demonstrates the stability of the

computational estimations. Although not much is conclusively known about the variation in

cell-type proportions across human brain regions, encouragingly, these estimates matched

what was expected based on cell counts using a single-cell RNA-seq dataset[8] (S9 Fig).

In terms of MSE, which is a much stricter criterion for evaluation, we observed greater dif-

ferences in performance between methods (S10 Fig). DSA was the only algorithm that pro-

vided significantly accurate absolute proportions for 3 out of 5 cell-types, as assessed by

permutation tests (S10C and S10D Fig), and interestingly single cell markers (“Darmanis”)

generally yielded more accurate absolute proportions (S10A and S10B Fig).

Deconvolution of bulk gene expression data using single-nuclei RNA

sequencing profiles

Cell-type proportions estimated using single-nuclei RNA Sequencing (snRNA-seq) data per-

form poorly in this study. Single-nuclei RNA Sequencing has previously been performed on 48

individuals from the ROSMAP cohort[9] which provides the dual opportunity to compare

proportions estimated with deconvolution to proportions calculated directly with the snRNA-

seq data and those estimated using the snRNA-seq gene expression profiles as a reference.

Average cell-type proportions measured by counting the cell-type calls in the snRNA-seq are

substantially different to those calculated by counting in the IHC dataset (Fig 3A). While neu-

rons are the most abundant cell-type in each assay, there are very few endothelial cells labelled

Fig 3. Cell-type proportions estimates with snRNA-seq. (A) Boxplots show the cell-type proportions calculated from our IHC data and cell-type proportions calculated

using a snRNA-seq dataset that was also generated from the ROSMAP cohort. Boxplots depict the range of proportions across 48 individuals. The boxplots for each cell-

type should substantially overlap if the estimates from both datasets were similar. (B) Barplots of the correlations between the ROSMAP snRNA-seq data and the four

deconvolution methods, single gene markers and two additional deconvolution approaches MuSiC and BSEQ-sc. MuSiC and BSEQ-sc are two methods that use snRNA-

seq data as a reference to deconvolute bulk gene expression data and here they are using the ROSMAP snRNA-seq data as a reference to deconvolute the ROSMAP bulk

gene expression data. These estimates are then compared back to the ROSMAP snRNA-seq proportions. (C) Boxplots depict the predicted proportion of cell-types

estimated using MuSiC and BSEQ-sc compared to DSA and IHC. Both MuSiC and BSEQ-sc use cell-type markers and other information from the snRNA-seq data to

deconvolute the bulk gene expression data. DSA was chosen to represent other deconvolution approaches as DSA, dtangle, CIBERSORT and NNLS all had similar

estimates in Fig 2.

https://doi.org/10.1371/journal.pcbi.1008120.g003
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in the snRNA-seq data. There are also very few astrocytes relative to oligodendrocytes. While

this comparison does not make it clear which assay is more accurately identifying proportions,

unlike the IHC data, none of the deconvolution algorithms are significantly correlated with

the snRNA-seq proportions (Fig 3B). Additionally, MuSiC[19] and BSEQ-sc[20] are two

deconvolution algorithms that were both designed to use the gene expression profiles from

single-cell sequencing to deconvolute bulk expression data. While both methods perform rea-

sonably when estimating relative proportions (S11 Fig) neither method estimates absolute

proportions well (Fig 3C) suggesting that either the snRNA-seq data needs more cleaning, the

cell markers used need to be optimized or the snRNA-seq is simply not appropriate for decon-

volution in this case. These results indicate that this particular snRNA-seq dataset is not as use-

ful for calculating proportions or informing specialized deconvolution algorithms for

estimating proportions in the ROSMAP cohort.

Inferring neuronal sub-type proportions from bulk gene expression

Single cell and single nuclei transcriptomic studies of the brain have revealed notable hetero-

geneity in neurons, with a dozen different neuronal sub-types and states identified based on

clustering of gene expression data[9]. Although the IHC data generated as part of this study do

not enable direct assessment of the accuracy by which neuronal sub-types can be estimated

from bulk-tissue data, we indirectly tested this possibility in two ways. First, we assessed the

impact of including excitatory and inhibitory neuronal sub-type markers on the accuracy of

the other cell-type proportion estimates. We observed that including neuronal sub-types does

not negatively impact the accuracy of the other four major cell-types (Fig 4A), so long as genes

Fig 4. Inference of neuronal sub-types. We used markers for inhibitory and excitatory neurons from Darmanis dataset, to predict the proportion of these two-neuronal

sub-types, in addition to oligodendrocytes, endothelial, microglia, and astrocytes. To ensure that the deconvolution algorithms can robustly infer sub-types, we also

filtered the list of markers to only include those that are differentially expressed in neurons (and are not also highly expressed elsewhere). (A) correlation between

proportions of four major cell-types, in addition to two neuronal-subtypes, with measured IHC data. (B) Inferred proportions for four major cell-types, in addition to two

neuronal sub-types. DSA method with Darmanis markers was used. DSA: algorithm was run on five major cell-type, as Fig 2. DSA.Ex.Inh: algorithm was run using four

major cell-types, in addition to two neuronal sub-types. DSA.Ex.Inh.Filt: the neuronal sub-type markers where filtered to only include those that are highly expressed in

neurons (based on Zhang dataset). Neuron.Ex and Neuron.Inh are the excitatory and inhibitory neurons respectively while, for DSA.Ex.Inh and DSA.Ex.Inh.Filt, Neuron

is the sum of these two subsets. If DSA is robust, introducing extra cell sub-types shouldn’t alter the proportion estimates of other cell-types.

https://doi.org/10.1371/journal.pcbi.1008120.g004
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that span multiple marker sets are filtered out (S12 Fig; supplementary methods). Second, we

compared the neuronal sub-type proportions with the overall proportion of neurons, and

found that the relative proportion of excitatory to inhibitory neurons is consistent with prior

reports[9], and the summation of these two sub-types yields proportions similar to that of neu-

rons (Fig 4B). Overall, these results suggest that estimation of excitatory and inhibitory neu-

rons is feasible from bulk-tissue RNA-seq. However, the availability of robust markers with

cell-type specific expression is critical for accurate inference.

Using inferred cell-type proportions in association analyses

To assess the relevance of the estimated cell-type proportions in disease studies, we re-analyzed

the ROSMAP dataset to identify genes whose expression levels are associated with Alzheimer’s

disease (AD) and its related neuropathology, namely amyloid beta and tau proteins. By includ-

ing the estimated proportions as confounding factors, we observed substantial reduction in the

number of genes associated with amyloid beta (Fig 5A), suggesting that the genes found without

adjusting for cellular heterogeneity are likely false positives since their variance can be signifi-

cantly explained away by variability in cell-type proportions. Supporting this, we observed sig-

nificant correlations between amyloid levels and proportions of oligodendrocytes and neurons

(Fig 5B). Similar trend, but to a lesser degree, was observed for association with clinical AD.

In addition to using the estimated cell-type proportions to correct for cellular heterogeneity

in disease studies, another important application of these estimates is the discovery of cell-type

specific genetic regulation of gene expression. Recent blood-based studies have shown the fea-

sibility of inferring cell-type specific eQTLs from bulk-tissue gene expression data, so long as

accurate estimates of cell-type proportions are available. To demonstrate the feasibility of this

approach for brain, we performed cell-type-specific eQTL analysis[21] with the estimated cell-

type proportions. We hypothesized that deconvolution algorithms that use multi-gene marker

sets should yield more accurate estimates of cell-type proportions, and hence increases the

Fig 5. Utility of inferred proportions in association analysis. (A) A scatter plot shows the signed p-value for association between each gene’s expression level and

amyloid aggregation, as assessed on the ROSMAP dataset (N = 508). x-axis shows the association strength before adjusting for cellular heterogeneity, and y-axis show the

association strength after adjusting for cellular heterogeneity. The dashed green lines mark the Bonferroni corrected p-value threshold based on this signed log p-value

representation. The purple dots represent genes that are found to be significant in both adjusted and not-adjusted data; the red dots are genes that are only significant in

not-adjusted data. (B) A bar plot shows the signed log10 p-values for association between inferred proportions and three AD related phenotypes. Predictions from DSA

across 508 samples were used. (C) Figure shows the number of associations for several p-value thresholds. We tested ~34 x 106 eQTLs in total across cell-types, so the most

stringent threshold based on Bonferroni correction is in the 10−9 range. We opted to clip the plot at a relaxed range of p< 10−6 to better display the differences in

performance between using single gene marker sets and multiple gene marker sets. The p-values displayed are raw p-values without multiple testing correction. Number of

associations found based on the DSA estimates are shown in blue, and those based on single cell marker genes are shown in yellow.

https://doi.org/10.1371/journal.pcbi.1008120.g005
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statistical power for detecting cell-type specific eQTLs compared to using single gene markers,

which indeed is the case (Fig 5C).

Discussion

Here we addressed the apprehension surrounding interpretation of gene expression measure-

ments from post-mortem brain tissue by demonstrating that existing deconvolution algo-

rithms can be used for estimating cell-type proportions in the brain. The application of these

algorithms enable better utilization of the large number of existing well-annotated bulk post-

mortem RNA-seq datasets to study brain-related disease and gene regulation.

The benchmark dataset that we produced provides a resource that can be used to further

optimize cell-type deconvolution algorithms for use in brain tissue. Cell-type deconvolution

algorithms have predominately been developed and evaluated in whole blood, PBMC and

tumors[6], where samples are easily obtained and already in suspension. Brain tissue is com-

plex, needs to be dissociated and is typically obtained post-mortem which can also affect the

measurement of gene expression[22]. As such, our report of the performance of deconvolution

algorithms is encouraging, demonstrating that they can be used and providing a lower bound

for the strength of associations likely to be observed. However, this manuscript does not pro-

vide a comprehensive comparison of methods and completely ignores a whole class of refer-

ence free algorithms[23]. Comparing state-of-the-art deconvolution algorithms with this

resource indicated that DSA tend to outperform NNLS, CIBERSORT, and dtangle. This sug-

gests that approaches that use reference expression profiles from constitutive cell-types might

not be ideal, most likely because a reference dataset suffers from various sample-specific and

technical artefacts. In contrast, DSA relies only on the identity of cell-type specific genes, yield-

ing more robust predictions. In the case of the reference datasets used here (mainly derived

from single cell data), this variability is likely introduced in the process of isolating cells or

measuring gene expression profiles in only the nuclei.

Our results indicate that cell-type deconvolution algorithms can be used to make inferences

about cell-type composition at the sample and population level. For the ROSMAP cohort spe-

cifically, this provides support of the inferences that have been made associating proportion of

cell-types in the prefrontal cortex of subjects with pathological burden or cognition[3]. We

note however that the cell-type proportions derived from IHC and RNA-seq in our study are

not from the same tissue section. In fact, the IHC and RNA-seq data have been generated from

opposite hemispheres of the same donor and so their comparison will capture differences in

this location. Reassuringly, the significant correlations between the IHC and deconvolution

estimates suggest that the inter-subject variability is still observable despite of the variability

introduced by differences in the tissue location. However, even though the associations

between cell-type proportion estimates from IHC and RNA-seq are statistically significant, the

correlations are modest in magnitude, and thus our reported correlations are important for

providing the context needed to interpret conclusions from these bulk RNA-Seq experiments

using post-mortem human brain tissue.

Unfortunately, single-nuclei sequencing data did not appear informative for inferring

cell-type proportions. It is well accepted that single-cell sequencing technologies have

varying levels of cell-type recovery for different cell-types with substantial optimization

often required to detect cell-types of interest[24]. Imaging assays are often considered loss-

less relative to suspension assays[25] and this potentially offers an explanation for why the

IHC cell-type proportions were more correlated with the deconvolution estimates than the

proportion calculated by counting cells in the snRNA-seq data. We also saw that MuSiC

and BSEQ-sc, methods designed to use single-cell sequencing data to deconvolute bulk

PLOS COMPUTATIONAL BIOLOGY Deconvolving the contributions of cell-type heterogeneity on cortical gene expression

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008120 August 17, 2020 10 / 17

https://doi.org/10.1371/journal.pcbi.1008120


expression, did not perform well using the snRNA-seq data as a reference. As both meth-

ods performed poorly, we believe this is indicative of the appropriateness of the snRNA-

seq data or that more optimization was needed to select appropriate cell-type markers.

Regardless, this study indicates that caution should be applied when using either snRNA-

seq data to directly calculate cell-type proportions or as a reference set for deconvolution

in brain experiments.

Finally, we demonstrated the practical benefits of estimating cell-type proportions in

the brain. Alzheimer’s disease and other neurodegenerative diseases have a substantial

impact on brain structure and so observations of changes in gene expression in bulk corti-

cal tissue are likely to be masked by changes in cell-type composition. We showed that

including cell-type proportion estimates as confounding factors is imperative for reducing

false association between gene expression and disease phenotypes. Further, we demon-

strated that accounting for this confounding using estimates from cell-type deconvolution

algorithms produced significant improvements in cell-type specific eQTL detection by

using more accurate marker sets based on multiple genes. These results emphasize that

estimates of cell-type proportions generated by deconvolution algorithms have the poten-

tial to increase the power, stability and interpretability of gene expression studies using

brain tissue.

Methods and materials

Sample dissection

During the dissection, one hemisphere is cut into coronal slabs and frozen in a −80˚C freezer.

The other hemisphere is placed in 4% paraformaldehyde. The frozen middle frontal gyrus

(MF) has been used for RNA-seq while the paraffin-embedded fixed tissue from the exact

same region, but other hemisphere has been dedicated for immunohistochemistry (IHC). The

white matter has been removed from the grey matter of the frozen sample. For both RNA-seq

and IHC, only the grey matter has been analyzed.

IHC image acquisition

Six μm sections of formalin-fixed paraffin embedded tissue have been stained for NeuN (Milli-

pore), GFAP (Dako), Iba1 (Wako), Olig2 (Sigma) and PECAM-1 (Novus biologicals) using

antigen retrieval Buffer (Citrate Buffer pH 6.0) for each marker. Sections have been blocked

with blocking medium containing 3% BSA and incubated with primary antibodies for over-

night at 4oC. Sections have been washed three times with PBS before incubation with Fluoro-

phore-conjugated secondary antibody (Thermofisher) for one hour and coverslipped with

anti-fading reagent containing Dapi (P36931, Life technology). Using fluorescence upright

microscope (Zeiss Axio), 30 images have been captured in grey matter for each section at mag-

nification x20 with a set exposure time in a systematic zigzag pattern to ensure that all layers of

the cortex have been included in quantification.

IHC image analysis

EBImage[26] was used for all image analysis including background correction, thresholding

and segmentation. Automated image analysis was used to identify cell nuclei by DAPI staining

and the cells that were positive for a particular cell-type marker. For each participant, propor-

tions were estimated as the average proportion of cell marker positive nuclei across the repli-

cate images. R scripts with the parameters used for estimating the proportions are located on

https://github.com/ellispatrick/CortexCellDeconv as well as the corresponding IHC images.
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Defining cell-type markers

Three datasets were used to define marker genes and cell-type reference profiles. Cell-specific

reference profiles were collected from single-cell RNA sequencing data (Darmanis)[7] and

RNA-seq profiles of purified populations of cells (Zhang)[10] and a set of curated markers

from Neuroexpresso[12]. For Darmanis and Zhang, samples were TMM normalized and then

voom[27] was used to define marker genes. The markers were selected as the 100 genes with

largest fold-change after filtering for genes with false discovery rate less than 0.05. (Perfor-

mance with respect to varying marker set size is shown in S5 Fig)

ROSMAP gene expression data

The deconvolution algorithms in this study were applied to the 508 RNA-seq samples from

ROSMAP cohort, processed as previously described[3]. Briefly RNA-seq data was adjusted for

known technical and biological factors, including age, sex, PMI, PH, and batch by removing

the contributions of the factors while maintaining the average expression of each gene. In sec-

ondary analysis, we also assessed the deconvolution algorithms on “raw” data with no correc-

tion for these confounding factors.

Description of the deconvolution algorithms

In total, six cell-type deconvolution algorithms were applied to the data; CIBERSORT[15],

dtangle[5], DSA[16], NNLS[14], MuSiC[19] and BSEQ-sc[20]. For each of the deconvolution

algorithms tested, we used the package provided as part of the primary paper and glmnet [28]

was used for NNLS. CIBERSORT, dtangle and NNLS each require both cell-type reference

profiles and marker genes while DSA just requires marker genes. For assessing correlations

between gene expression and IHC, speakeasy clustering[29], an unsupervised approach, was

also evaluated using a set of predefined gene coexpression modules[3] as well as the individual

marker genes used in the IHC. As CD31 wasn’t expressed in the gene expression data, CD34
was used as the gene marker for endothelial cells instead. See above for the details of the

marker set selection approach and https://github.com/ellispatrick/ CortexCellDeconv for R

scripts.

Artificial mixture analysis

To assess the robustness and magnitude of correlations observed in our study, we compared

these to an artificial mixture analysis. A single nucleus sequencing dataset from the Allen

Brain Atlas[17] was downloaded with 1576 annotated cells from the human lateral geniculate

nucleus. Seventy pseudo-bulk expression samples were generated by sampling from these 1576

cells with replacement and averaging the gene expression values of these cells. To imitate the

technical and biological noise in a typical sequencing experiment, a dispersion parameter was

estimated from the ROSMAP cohort and then this was used to resample read counts from a

negative binomial distribution for each pseudo bulk sample. The average profiles of cell-types

from the original single nucleus sequencing dataset are then used to deconvolve the new

pseudo-bulk dataset and the results are compared to the known proportions.

Neuronal sub-type analysis

We obtained markers for 7 neuronal sub-types, 2 excitatory and 5 inhibitory, from Darmanis

dataset[7]. To assess the robustness of these markers, we compared their magnitude of expres-

sion across five major cell-types using Zhang dataset (S10 Fig). Given the small number of

markers that were truly cell-type specific, we decided to combine markers to two sets:
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excitatory and inhibitory. Using the DSA algorithm, we estimated the proportion of 4 major

cell-types as well as excitatory and inhibitory neurons simultaneously.

Disease association analysis

We assessed the correlation between gene expression levels and each phenotype in two ways: a

univariate model that associates gene expression and a single phenotype, and a multivariate

model that includes additional covariates to adjust for cellular heterogeneity. The covariates are

the predicted proportions of five major cell-types from the DSA algorithm with Zhang markers.

The gene expression data was already adjusted for technical and biological confounding factors as

previously described[3]. The scatter plot in Fig 4B reports the p-values for the association between

phenotype and expression levels of each gene with the univariate and the multivariate models.

Cell-type specific eQTL analysis

We used the approach described by Westra and colleagues[21] to identify cell-type specific

eQTLs. This approach tests for the statistical significance of a linear interaction model as follows:

y ¼ ag þ bcþ gðg � cÞ

where y is a vector of gene expression levels, g is the genotype for the test SNP, c is the proportion

of test cell-type, and g x c is the interaction term between genotype and the proportion of cell-

type. The statistical significance of the interaction term, modeled by γ, implies the existing of a

cell-type-by-genotype effect. As suggested by Westra and colleagues[21], to reduce the burden of

multiple testing, only cis-SNPs previously found to be a cis xQTL (main effect)[30] using a larger

set of ROSMAP samples (N = 508), with a window of 1Mb around TSS, where tested. The cell-

type estimates from the DSA algorithm where used. Global false discovery rate (FDR) threshold

of 0.1 (correcting for all SNP-gene pairs and cell-types tested) was used to identify significant cell-

type-by-genotype eQTLs. The number of cell-type specific eQTLs found here is ~0.02% of the

number of eQTLs found previously from the ROSMAP samples[30].

Ethics statement

All participants signed an informed consent approved by the Institutional Review Board of

RUSH University.

Supporting information

S1 Table. Table presents the demographic information of the subjects for whom IHC data

was generated.

(XLSX)

S1 Fig. Association between cell-type proportions and Alzheimer’s disease. Cell-type pro-

portions calculated from IHC data are compared between individuals with and without Alz-

heimer’s Disease (AD).

(TIF)

S2 Fig. Correlation between IHC estimates and expression level of gene modules. Each dot

depicts an individual. Our previous study defined a set of modules with gene members that

were enriched for each of the five cell-types examined (Mostafavi and Gaiteri et al., Nat Neur

2018): the average expression of each of these modules (across genes) represents a relative

score for each individuals that can serve as a proxy for proportion of the corresponding cell-

type. The module average expression is shown on the x-axis and the IHC-based proportions
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are shown on the y-axis.

(TIF)

S3 Fig. Correlation between predicted and estimated proportions. Scatter plots show the

inferred and measured proportions for five cell-types across four different methods.

(TIF)

S4 Fig. Correlation of different deconvolution methods. Plots show the pairwise correlation

between pairs of deconvolution methods using the Zhang markers, assessed based on 508 sam-

ples.

(TIF)

S5 Fig. Assessing varied sources of marker gene sets. Figure shows the performance of (A)

DSA and (B) dtangle methods, based on different sources for marker gene set selection:

scRNA-seq based markers (Darmanis), human cell sorted (Zhang) and mouse microarray and

ISH (NeuroExpresso). Y-axis shows the correlation between the prediction and IHC across 70

ROSMAP samples. (C) Figure shows the correlation between all 4 methods and single gene

markers, as inferred using “Darmanis” markers, with measured IHC data.

(TIF)

S6 Fig. Accuracy of deconvolution on raw vs adjusted data. For data from post-mortem

brain, in addition to RNA integrity number (RIN), other technical factors such as PH and

post-mortem interval (PMI) are known to have a major impact on the estimated gene expres-

sion levels. To assess whether correction for these variables impacts the accuracy of cell-type

proportions, we applied deconvolution algorithms on “raw” and “adjusted” data (see Meth-

ods). Figure shows the correlation between cell-type proportions inferred from four different

deconvolution algorithms and the measured IHC proportions.

(TIF)

S7 Fig. Quantifying the upper bound of correlation coefficient using artificial mixtures.

Figure shows the achievable range of correlation coefficient on the simulated experiment. Arti-

ficial bulk gene expression data was created for deconvolution by sampling with replacement

from a population of 1576 annotated cells from the human lateral geniculate nucleus and aver-

aging. After a dispersion parameter was estimated from the ROSMAP cohort, these average

profiles were resampled from a negative binomial distribution to emulate technical and biolog-

ical noise. These pseudo-bulk profiles were then deconvolved using the original single nucleus

sequencing data and the estimated proportions were compared to the truth.

(TIF)

S8 Fig. Accuracy of predicted proportions with variable marker gene set size. (A) Popula-

tion-level range of prediction of absolute proportions with variable size of marker gene sets

based on Darmanis markers. (B) Correlation between prediction of cell-type proportions with

variable sizes of marker gene sets. Differential expression analysis using single cell data was

used to define marker gene sets.

(TIF)

S9 Fig. Proportion of nuclei assigned to various cell-types according to Dronc-Seq single-

cell data from cortex and hippocampus. Figure summarizes the proportion of nuclei assigned

to various cell-types (Habib et al., Nature Methods 2017). A: astrocytes; E: endothelial cells; M:

microglia; N1,N2,N3,N4: different neuronal populations; O: oligodendrocyte; OP: oligoden-

drocyte progenitor cells.

(TIF)
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S10 Fig. Quantifying accuracy of inferred absolute proportions across individuals. Mean

squared error (MSE) quantified across 70 individuals, using (A) Zhang and (B) Darmanis

markers as input to deconvolution algorithms. STD refers to the standard deviation of the IHC

measurements for each cell-types. (C-D) Figures show the significance (log10 pvalues) for the

estimated MSE, as assessed by permutation tests using 10000 permutations, where Zhang (C)

and Darmanis (D) markers are used.

(TIF)

S11 Fig. Correlation of MuSiC and BSEQ-sc proportions with IHC proportions. The Spear-

man correlation coefficient between IHC derived cell-type proportions and six deconvolution

algorithms. Included here are two methods, MuSic and BSEQ-sc. Both of these methods are

designed to use single-cell sequencing data as a reference set to deconvolute bulk expression.

Here they are using the ROSMAP snRNA-seq data as a reference to deconvolute the ROSMAP

bulk gene expression data.

(TIF)

S12 Fig. Heatmaps of cell-type markers from the Darmanis dataset. In order to assess the

performance of deconvolution of cell-type subsets we obtained markers of excitatory and

inhibitory, neurons from reported by Darmanis et al. These sub-type markers were not specific

to neurons (A) and so they were filtered to those that were specifically highly expressed in neu-

rons in the Darmanis data (B).

(TIF)
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