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Abstract
Extravillous trophoblast remodeling of the uterine spiral arteries is essential for promoting blood flow to the placenta and fetal
development, but little is known about the regulation of this process. A defect in spiral artery remodeling underpins adverse
conditions of human pregnancy, notably early-onset preeclampsia and fetal growth restriction, which result in maternal and fetal
morbidity and mortality. Many in vitro studies have been conducted to determine the ability of growth and other factors to
stimulate trophoblast cells to migrate across a synthetic membrane. Clinical studies have investigated whether the maternal levels
of various factors are altered during abnormal human pregnancy. Animal models have been established to assess the ability of
various factors to recapitulate the pathophysiological symptoms of preeclampsia. This review analyzes the results of the in vitro,
clinical, and animal studies and describes a nonhuman primate experimental paradigm of defective uterine artery remodeling to
study the regulation of vessel remodeling.
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Introduction

During early human pregnancy, extravillous trophoblast
(EVT) migrates to, invades, and replaces the vascular smooth
muscle cells (VSMC), endothelial cells, and elastic lamina
within, thereby remodeling the uterine spiral arteries [1–4].
Consequently, these arteries change from high-resistance/
low-capacity to low-resistance/high-capacity vessels, and
thus, uterine artery blood flow increases with advancing ges-
tation to enhance placental perfusion and promote fetal devel-
opment. Defective uterine artery remodeling (UAR) under-
pins the etiology of certain pregnancy disorders that comprise
the syndrome of placental ischemia [5, 6], notably early-onset
preeclampsia, defined as premature delivery prior to week 34

of gestation and associated with a high rate of fetal growth
restriction [7–13]. The term preeclampsia is used throughout
this review to refer to early onset since in contrast to late-onset
preeclampsia, i.e., delivery after 34 weeks, it is underpinned
by defective UAR. Preeclampsia is associated with maternal
systemic vascular endothelial inflammation-activation-dys-
function, hypertension, renal glomerular endotheliosis, and
proteinuria, as well as maternal and neonatal morbidity/
mortality [14–20]. It has been proposed that as a consequence
of impaired UAR and placental perfusion, the placenta ex-
hibits oxidative stress and the release of anti-angiogenic fac-
tors, cytokines, and/or syncytial extracellular vesicles which,
along with predisposing maternal factors such as obesity and
hypertension, elicit the pathophysiological manifestations of
preeclampsia (reviewed in [16, 20]). Excessive trophoblast
invasion and UAR are also deleterious because they result in
impaired uterine artery vasomotor tone and hemorrhaging af-
ter delivery, a pregnancy complication known as placenta
accreta [21, 22]. Despite the fundamental importance of
UAR to successful pregnancy and fetal development, relative-
ly little is known about the regulation of this process primarily
because the majority of studies have focused on the patho-
physiological consequences of adverse conditions of pregnan-
cy and not on UAR. The present review describes the results
of the in vitro and in vivo studies and a nonhuman primate
model to study the regulation of UAR.
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In Vitro Studies

Numerous in vitro studies have been conducted to investigate
the ability of primary or immortalized trophoblasts cultured in
two or three dimensions to pass across a synthetic permeable
membrane coated with matrigel or decellularized extracellular
matrix or to form endothelial-like tubes as indices of cell mi-
gration and invasion. Collectively, these studies have shown
that several factors known to be produced by the placenta and/
or decidua, including vascular endothelial growth factor-A
(VEGF), placental growth factor (PlGF), insulin-like growth
factor (IGF), epidermal growth factor (EGF), heparin-binding
EGF (HB-EGF), activin, and human chorionic gonadotrophin
(hCG), stimulated HTR-8/SV neo, trophoblast, or choriocar-
cinoma JEG-3 cell migration or endothelial-like tube forma-
tion [23–33]. Moreover, transcription and cell signaling mol-
ecules, including the Rac1 member of the Rho family of
GTPases, the elastin-derived matrikine VGVAPG, the
ephrin-B2 ligand of the Eph receptor, and Notch-2, also in-
creased trophoblast migratory capacity in vitro [34–38].
However, in other in vitro studies, several of these factors
did not alter EVTmigration [39–41]. In contrast, transforming
growth factor (TGFβ)-1, TGFβ-2, and TGFβ-3 and endo-
crine gland VEGF (EG-VEGF), as well as microRNA-93
and microRNA-135 which decrease CXCL12 gene expres-
sion, inhibited migration/invasive capacity of trophoblasts
[42–47], while inhibition of TGFβ3 restored invasive capac-
ity of trophoblasts obtained in late gestation from placentas of
women with preeclampsia [48]. Additional in vitro studies
using placental explants showed that elastin-derived peptides
increased and endothelin-1 decreased trophoblast overgrowth
[35, 49]. The underlying causes of the divergent effects of
these factors on trophoblast migration are unclear, although
use of different culture conditions, including oxygen and
hypoxia-inducible factor levels and transformed versus prima-
ry trophoblasts, may be involved.

The presence of uterine natural killer (uNK) cells and mac-
rophages, which are sources of VEGF-A and VEGF-C,
angiopoietins, interleukins, and matrix metalloproteinases
(MMPs) [50], was associated with VSMC and endothelial cell
disruption in decidual tissue obtained in early human pregnan-
cy [51], while the addition of uNK cell-conditioned medium
to cultures of human term chorionic plate arteries caused
VSMC and extracellular matrix breakdown [52]. The addition
of EVT-conditioned medium to cultures of vascular endothe-
lial cells increased expression of the chemokines CCL14 and
CXCL6, which induced chemotaxis of decidual NK cells and
macrophages, and the authors proposed that there was
crosstalk between EVT, endothelial cells, and decidual im-
mune cells in spiral artery remodeling [53]. NK cells also
enhanced migration of and tube formation by primary tropho-
blast cells from placental villous tips, an effect that was
prevented in cultures containing NK cells pretreated with

sphingosine FTY720 to suppress NK cell function and
VEGF production [54]. Moreover, recent studies suggest that
additional processes, including invasion of uterine veins and
lymph vessels by endo-venous and endo-lymphatic tropho-
blast cells, respectively, may also be involved in uterine artery
remodeling [55, 56]. Based on these studies, it has been pro-
posed that the immune system plays a role in uterine vessel
transformation, although it has been suggested that the role of
the immune system is more established in mouse than in hu-
man pregnancy (reviewed in [57–59]).

Clearly, the in vitro studies are significant in showing that a
multitude of factors have the capacity to alter migratory and
invasive capacity of trophoblast cells. However, considering
the highly complex interplay of different cell types, molecular
events, and spatio-temporal cell interactions that occur in vivo
during spiral artery transformation, it is unclear whether tro-
phoblast migration and endothelial tube formation as assessed
in vitro validly mirror the process of UAR as it occurs in vivo.
Thus, in vivo animal studies are needed to ascertain the appli-
cability and physiological role of the candidate factors shown
in vitro either operating alone or in conjunction with each
other in regulating UAR.

Clinical Studies

Human clinical studies have shown that placental expression
and/or maternal serum levels of many growth factors, includ-
ing VEGF, IGF-I, EGF, HB-EGF, TGFβ, soluble endoglin,
and other peptides, as well as Notch-2, endothelial colony-
forming cells, tyrosine kinase-like orphan receptor, and
microRNA-93, are either elevated, decreased, or unaltered in
mid to late gestation inwomenwho develop preeclampsia [23,
26, 60–70]. Additional studies have shown that maternal se-
rum levels of PlGF are decreased, and the levels of the sFlt-1
soluble truncated VEGF receptor that binds to and suppresses
VEGF bioavailability and endoglin were increased, preceding
or coinciding with onset of the complications, e.g., maternal
vascular dysfunction, of preeclampsia [71–78]. Consequently,
it has been suggested that an imbalance in the levels of anti-
angiogenic and angiogenic proteins and other factors may
serve as biomarkers that are predictive for early detection of
preeclampsia (reviewed in [19, 79, 80]).

Studies have also shown either an increase, no change, or a
decrease in maternal serum estradiol levels at mid to late ges-
tation in women exhibiting preeclampsia [81–87]. However,
the role of estradiol in early human pregnancy with respect to
UAR and onset of the pathophysiological conditions associ-
ated with preeclampsia has not been investigated.

Clinical studies have also shown that the number of im-
mune cells, notably uNK cells, macrophages, and dendritic
cells is either increased [88–94], decreased [95–97], or not
altered [98–100] in decidua/placental bed obtained in late
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gestation before (e.g., biopsies) or after parturition in patients
with preeclampsia. Studies also indicate that women with pre-
eclampsia primarily express the inhibitory and not the stimu-
latory KIR receptors for uNK cells and that women with a
KIR AA genotype, i.e., predictive of expression of the inhib-
itory KIRs KIR2DL-1, KIR2DL-2, KIR2DL-3, and KIR2DL-
5, are at increased risk for developing preeclampsia [101].
Macrophages are also differently activated in preeclampsia
[102–106], which may reflect a decrease in M2 macrophages
and a concomitant increase in M1 macrophages [92] in the
placental bed of preeclamptic women. Such a change would
be consistent with increased placental production of pro-
inflammatory cytokines [107] and decreased formation of
anti-inflammatory cytokines [108, 109] that occur in pre-
eclampsia. Interestingly the levels of mRNAs for immune-
associated genes, notably IL-6 and macrophages, as well as
markers for expression of M2 macrophages [110] are greater
in biopsies of decidua from women in early gestation who
subsequently developed pregnancy-induced hypertension
compared with those who remained normotensive.

The human studies have been important in correlating the
levels of the various factors with the pathophysiological fea-
tures of preeclampsia. However, it is difficult to test cause and
effect and the alterations in the various factors at mid-late
gestation in preeclampsia patients may result from and not
underpin the pathophysiological conditions elicited by pre-
eclampsia. Importantly, since UAR was not simultaneously
examined in these clinical studies, the regulatory role of these
factors on UAR has not been established in normal or adverse
human pregnancy.

Animal Studies

As presented in recent reviews [16, 19, 20, 111], early-onset
preeclampsia is considered a two-stage disorder, stage 1
reflecting reduced placental perfusion and dysfunction due
to impaired UAR and stage 2 the maternal syndrome induced
by inadequate placental perfusion and deportation into the
maternal blood of placental factors and syncytial particles
produced in response to placental hypoxia and oxidative stress
(Fig. 1). Although the maternal disorder including organ sys-
tem involvement can vary greatly in complexity and severity
[16, 111], maternal systemic vascular dysfunction and hyper-
tension are hallmark features of preeclampsia. These manifes-
tations appear to result from vascular endothelial inflamma-
tion, oxidative stress and dysfunction, notably impaired ability
to produce the vasodilators nitric oxide (NO) and prostacyclin
I2, increased production of vasoconstrictors such as
endothelin, and hyper-sensitivity of VSMC to vasoconstric-
tors within the vascular bed (Fig. 2) [12, 14, 16–18, 20,
112–121].

It is well established that VEGF plays a pivotal role in
promoting vascular endothelial cell integrity, stability, and
function, including NO production [122–124]. Therefore, it
has been hypothesized [19, 75, 117] that in preeclampsia the
placental ischemia induced by defective UAR causes an in-
crease in placental expression and maternal serum levels of
sFlt-1, which decreases VEGF bioavailability and elicits ma-
ternal vascular dysfunction (Fig. 2). Accordingly, animal
models have been developed to examine this hypothesis and
ascertain the possibility of achieving a therapeutic approach to
overcome or prevent the vascular dysfunction elicited by de-
creased bioavailability of VEGF. Thus, key manifestations of
preeclampsia, i.e., maternal hypertension, fetal growth restric-
tion, and/or maternal vascular endothelial dysfunction, were
induced in mice or rats in which levels of sFlt1 and/or
endoglin were elevated by systemic adenoviral delivery of
these proteins [74, 125–131]. Systemic administration to mice
of an antibody which neutralized both Flt-1 and sFlt-1 de-
creased uterine artery length as an index of arterial transfor-
mation in this species [132]. The clinical manifestations of
preeclampsia elicited in several of these animal models were
prevented by adenoviral delivery of VEGF121 [133–138].
Symptoms of preeclampsia were also overcome in lentiviral
sFlt1-treated mice by concomitant administration of the drug
pravastatin [139] and in BPH/5 mice by injection of the drug
celecoxib at the time of embryo implantation, which apparent-
ly acted by restoring the levels of Cox 2, VEGF, and related
angiogenic factors [140]. Mice defective for PlGF, a member
of the VEGF family, also exhibit preeclampsia-like symp-
toms, notably maternal endothelial dysfunction, as well as
cognitive function of the offspring [141, 142]. Moreover, an
experimental increase in sFlt-1 levels or decrease in VEGF
and PlGF levels induced in rats and sheep by aortic or uterine
artery ligation to elicit placental ischemia caused maternal
hypertension, proteinurea, and vascular dysfunction, effects
reversed by VEGF or PlGF administration [135, 138,
143–145]. Uterine spiral arteriole remodeling and MMP-2
and MMP-9 were decreased in the rat reduced uterine perfu-
sion pressure model [146].

Inhibition of NO synthase [147], as well as adminis-
tration of tumor necrosis factor-α [143] or interleukin
[148], also induced preeclampsia-like symptoms in mice
and rats. Interestingly, uterine artery diameter and length
were reduced in endothelial NO synthase-null mice
[149], whereas nanoparticle-mediated delivery of the
NO donor SE175 to mice at mid-late gestation increased
spiral artery diameter [150]. Roles for the Notch signal-
ing pathway and the storkhead box 1 (STOX 1) tran-
scription factor have also been suggested since Notch
2-null mice exhibited a decrease in spiral artery diameter
and placental perfusion [151], while overexpression of
STOX 1 in mice led to a preeclampsia phenotype of
hypertension [152].
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The role of immune cells in the process of vessel transfor-
mation has been proposed. Thus, studies in uNK cell-
immunodeficient mice indicate that uNK cells, via the forma-
tion of interferon gamma, promote modification (i.e., luminal
area) of spiral arteries [153–156]. Moreover, T lymphocyte
regulatory cell (Tregs)-deficient mice show impaired uterine
artery remodeling and flow [157, 158], suggesting that Tregs
impair inflammatory responses that cause a defect in uterine
vessel transformation [159].

Evidence for involvement of the renin-angiotensin (AT)-
aldosterone system in preeclampsia has also emerged from
rodent models. Thus, administration of antibodies to AT1 be-
ginning at midgestation to mice or rats elicited hypertension,

proteinuria, glomerular endotheliosis, and placental abnormal-
ities [160, 161]. Moreover, AT1-deficient mice exhibited im-
paired placentation [162], and angiotensinogen transgenic
mice exhibited deeper endovascular trophoblast invasion and
spiral artery remodeling [163]. Upregulation of VSMC AT1

expression elicited hypertension, proteinuria, increased sFlt-1
expression, and decreased placental labyrinth growth in mice,
effects prevented by administration of β-arrestin, a G protein
that causes AT1 receptor desensitization [164].

The rodent models have been valuable in recapitulating the
clinical symptoms of pregnancy disorders such as preeclamp-
sia. However, in most instances, UAR was not examined,
experimental interventions used to induce preeclampsia-like

Fig. 2 Hypothetical scheme
depicting how abnormal
trophoblast invasion and spiral
artery remodeling result in
placental ischemia, endothelial
dysfunction, and hypertension in
preeclampsia. Reprinted from
Palei et al. [17]

Fig. 1 The two-stage placental
model of preeclampsia in which it
has been proposed [111] that
impaired remodeling of uterine
spiral arteries (“poor
placentation”) is the pathway to
stage 1 preeclampsia (placental
dysfunction) and the preclinical
stage before development of the
maternal clinical syndrome (stage
2). Reprinted from Staff [20]
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symptoms were often applied after the time of placentation,
and many of the clinical features of preeclampsia were also
induced in nonpregnant rodents, and thus, these models were
not specific for pregnancy. Moreover, there are significant
differences in placental morphology and development, the
process and impact of spiral artery remodeling, uterine and
placental vascular anatomy, and the maternal-placenta-fetal
endocrine inter-relationships between rodents and humans
[58, 59, 165–171]. For example, in the mouse and rat, tropho-
blast invasion is temporally restricted to late gestation [58,
172] and the role of UAR on maternal vascular function
may be equivocal. Thus, although NK-defective mice exhibit
impaired UAR, maternal resting blood pressure remains nor-
mal throughout gestation and maternal proteinuria does not
develop [155], while trophoblast arterial invasion is more ex-
tensive and uterine artery resistance lower in the rat BHP/5
model of preeclampsia [163]. Collectively, these differences

between rodents and humans make translation of findings on
UAR in the rodent to the human uncertain.

Although rodents have been extensively used to recapitu-
late the pathophysiological features of preeclampsia, relatively
few studies have employed nonhuman primates in this area of
perinatal biology. Placental morphology, the process of uter-
ine spiral artery transformation, uterine and placental vascular
anatomy, and maternal-placental-fetal endocrine inter-
relationships are similar in human and baboon pregnancy
[58, 165, 173]. Although remodeling of the spiral arteries in
the baboon does not extend into the inner myometrium, as in
human pregnancy, the qualitative nature of placentation and
UAR are alike [58, 174]. In addition to these important con-
siderations, humans and baboons exhibit similar anatomy,
physiology, and ontogeny of the fetal-placental unit [165]
and share > 96% DNA/genetic homology [175, 176], and
thus, the baboon provides an excellent nonhuman primate
model for the study of human placental and fetal development.

As in the rodent studies, uterine artery ligation has been
employed as an experimental paradigm in pregnant baboons.
Uteroplacental ischemia elicited by uterine artery ligation in
the second half of baboon pregnancy resulted in hypertension,
proteinuria, and renal endotheliosis, effects reversed by ad-
ministration of sFlt-1 siRNA or PlGF [177–180]. Thus, the
latter primate studies focused on recapitulating the symptoms
of adverse human pregnancy but not on UAR.

In contrast to the latter approach, the authors have pub-
lished a series of studies in which they have established an
experimental paradigm of prematurely elevating estradiol
levels in the first trimester of baboon pregnancy to study the
regulation of UAR [181–183]. Slightly elevating maternal es-
tradiol levels resulted in a 3-fold increase in placental expres-
sion and maternal serum levels of sFlt-1 and decrease in
extravillous trophoblast expression of VEGF in early pregnan-
cy (Fig. 3). The increase in sFlt-1/decrease in VEGF was
associated with a 75% reduction in the level of UAR, quanti-
fied as the percent of uterine spiral arteries invaded and

Fig. 3 (a) sFlt-1 levels in uterine
vein and (b) VEGF protein
quantified by proximity ligation
assay (signals/nuclear area × 104)
in the anchoring villi on day 60 in
untreated and estradiol (E2)-
treated baboons. *P < 0.05

Fig. 4 Percent remodeling of uterine spiral arteries (i.e., number of
vessels exhibiting trophoblast invasion divided by total number of
vessels counted) on day 60 of gestation in baboons untreated, treated
with estradiol (E2), or treated with E2 plus VEGF DNA. *Different
(P < 0.01) from values in other two groups
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remodeled by extravillous trophoblasts, at the end of the first
trimester (Fig. 4). Concomitant administration of estradiol and
delivery of the VEGF gene selectively to the maternal aspect
of the placenta, but not the fetus, by contrast-enhanced
ultrasonography/microbubble technology restored VEGF pro-
tein levels and prevented the decrease in UAR (Fig. 4, [184]).

The decline in extravillous trophoblast VEGF expression
in estradiol-treated baboons was associated with a decrease in
expression of the α1β1 and α5β1 integrins [182] that promote
trophoblast migration and remodeling and are increased by
VEGF in vitro [185–187]. This suggests that these integrins
may mediate the stimulatory effect of VEGF on UAR during
early baboon pregnancy. Coinciding with the decrease in
UAR, uterine artery blood flow was reduced by 30% and
maternal blood pressure increased by 25% near term, suggest-
ing an impairment of maternal systemic vascular function
[183]. Although it has been suggested that the alteration in
expression of pro- and anti-angiogenic growth factors is sim-
ply the result and not the cause of placental dysfunction in
preeclampsia [20], the prevention of the decrease in UAR by
VEGF delivery in early baboon pregnancy is consistent with
VEGF having a pivotal role in promoting UAR.

Summary

UAR is vital to successful pregnancy; however, the regulation
of this fundamentally important process has not been
established. The in vitro studies are important in having iden-
tified a multitude of factors that have the ability to alter migra-
tory and invasive capacity of trophoblast cells. However, it is
unclear whether trophoblast migration and endothelial tube
formation as assessed in vitro validly mirror the process of
UAR as it occurs in vivo. The clinical studies have been sig-
nificant in showing thatmaternal serum levels of certain factors
are altered, particularly sFlt-1 which is increased and PlGF
which is decreased, preceding or coinciding with onset of the
complications, e.g., maternal vascular dysfunction, emanating
from preeclampsia. However, it is difficult to test cause and
effect in human pregnancy studies, and thus, the alteration in
circulating levels of the various factors may be a consequence
of and not underpin the pathophysiological conditions elicited
by adverse pregnancy. The rodent and a few primate studies
have been valuable in recapitulating, and showing the ability of
certain growth factors to mitigate, the clinical manifestations of
pregnancy disorders such as preeclampsia, but have not fo-
cused on UAR. This review has described the results of
in vitro, clinical, and rodent studies and also a novel experi-
mental model of defective UAR in a nonhuman primate that
allows study of the regulation of spiral artery transformation
and the potential to develop therapeutic modalities to manage
or prevent the maternal pathophysiological consequences of
adverse pregnancy arising from defective UAR.
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