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Predicting risk of late age-related macular degeneration using
deep learning
Yifan Peng 1,3, Tiarnan D. Keenan 2,3, Qingyu Chen1, Elvira Agrón2, Alexis Allot1, Wai T. Wong2, Emily Y. Chew 2✉ and
Zhiyong Lu1✉

By 2040, age-related macular degeneration (AMD) will affect ~288 million people worldwide. Identifying individuals at high risk of
progression to late AMD, the sight-threatening stage, is critical for clinical actions, including medical interventions and timely
monitoring. Although deep learning has shown promise in diagnosing/screening AMD using color fundus photographs, it remains
difficult to predict individuals’ risks of late AMD accurately. For both tasks, these initial deep learning attempts have remained
largely unvalidated in independent cohorts. Here, we demonstrate how deep learning and survival analysis can predict the
probability of progression to late AMD using 3298 participants (over 80,000 images) from the Age-Related Eye Disease Studies
AREDS and AREDS2, the largest longitudinal clinical trials in AMD. When validated against an independent test data set of 601
participants, our model achieved high prognostic accuracy (5-year C-statistic 86.4 (95% confidence interval 86.2–86.6)) that
substantially exceeded that of retinal specialists using two existing clinical standards (81.3 (81.1–81.5) and 82.0 (81.8–82.3),
respectively). Interestingly, our approach offers additional strengths over the existing clinical standards in AMD prognosis (e.g., risk
ascertainment above 50%) and is likely to be highly generalizable, given the breadth of training data from 82 US retinal specialty
clinics. Indeed, during external validation through training on AREDS and testing on AREDS2 as an independent cohort, our model
retained substantially higher prognostic accuracy than existing clinical standards. These results highlight the potential of deep
learning systems to enhance clinical decision-making in AMD patients.
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INTRODUCTION
Age-related macular degeneration (AMD) is the leading cause of
legal blindness in developed countries1. Through global demo-
graphic changes, the number of people with AMD worldwide is
projected to reach 288 million by 20402. The disease is classified
into early, intermediate, and late stages3. Late AMD, the stage
associated with severe visual loss, occurs in two forms, geographic
atrophy (GA) and neovascular AMD (NV). Making accurate time-
based predictions of progression to late AMD is clinically critical.
This would enable improved decision-making regarding: (i)
medical treatments, especially oral supplements known to
decrease progression risk, (ii) lifestyle interventions, particularly
smoking cessation and dietary changes, and (iii) intensity of
patient monitoring, e.g., frequent reimaging in clinic and/or
tailored home monitoring programs4–8. It would also aid the
design of future clinical trials, which could be enriched for
participants with a high risk of progression events9.
Color fundus photography (CFP) is the most widespread and

accessible retinal imaging modality used worldwide; it is the most
highly validated imaging modality for AMD classification and
prediction of progression to late disease10,11. Currently, two
existing standards are available clinically for using CFP to predict
the risk of progression. However, both of these were developed
using data from the AREDS only; now, an expanded data set with
more progression events is available following the completion of
the AREDS25. Of the two existing standards, the most commonly
used is the five-step Simplified Severity Scale (SSS)10. This is a
points-based system whereby an examining physician scores the
presence of two AMD features (macular drusen and pigmentary

abnormalities) in both eyes of an individual. From the total score
of 0–4, a 5-year risk of late AMD is then estimated. The other
standard is an online risk calculator12. Like the SSS, its inputs
include the presence of macular drusen and pigmentary
abnormalities; however, it can also receive the individual’s age,
smoking status, and basic genotype information consisting of two
SNPs (when available). Unlike the SSS system, the online risk
calculator predicts the risk of progression to late AMD, GA, and NV
at 1–10 years.
Both existing clinical standards face limitations. First, the

ascertainment of the SSS features from CFP or clinical examination
requires significant clinical expertise, typical in retinal specialists,
but remains time-consuming and error-prone13, even when
performed by expert graders in a reading center11. Second, the
SSS relies on two hand-crafted features and cannot receive other
potentially risk-determining features. Recent work applying deep
learning (DL)14 has shown promise in the automated diagnosis
and triage of conditions including cardiac, pediatric, dermatolo-
gical, and retinal diseases13,15–26, but not in predicting the risk of
AMD progression on a large scale or at the patient level27.
Specifically, Burlina et al. reported on the use of DL for estimating
the AREDS 9-step severity grades of individual eyes, based on CFP
in the AREDS data set27–29. However, this approach relied on
previously published 5-year risk estimates at the severity class
level30, rather than using the ground truth of actual progression/
non-progression at the level of individual eyes, or the timing and
subtype of any progression events. In addition, no external
validation using an independent data set was performed in that
study. Babenko et al.28 proposed a model to predict risk of
progression to neovascular AMD only (i.e., not late AMD or GA).
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Importantly, the model was designed to predict 1-year risks only,
i.e., at one fixed and very short interval only. Schmidt-Erfurth
et al.29 proposed to use OCT images to predict progression to late
AMD. Specifically, they used a data set (495 eyes, containing only
159 eyes that progressed to late AMD) with follow-up of 2 years.
Their data set was annotated by two retinal specialists (rather than
unified grading by reading center experts using a published
protocol).
Here, we developed a DL architecture to predict progression

with improved accuracy and transparency in two steps: image
classification followed by survival analysis (Fig. 1). The model is
developed and clinically validated on two data sets from the Age-
Related Eye Disease Studies (AREDS31 and AREDS232), the largest
longitudinal clinical trials in AMD (Fig. 2). The framework and data
sets are described in detail in the “Methods” section.
Our framework has several important strengths. First, it

performs progression predictions directly from CFP over a wide
time interval (1–12 years). Second, training and testing were based

on the ground truth of reading center-graded progression
events at the level of individuals. Both training and testing
benefitted from an expanded data set with many more
progression events, achieved by using data from the AREDS2
alongside AREDS, for the first time in DL studies. Third, our
framework can predict the risk not only of late AMD, but also of
GA and NV separately. This is important since treatment
approaches for the two subtypes of late AMD are very different:
NV needs to be diagnosed extremely promptly, since delay in
access to intravitreal anti-VEGF injections is usually associated with
very poor visual outcomes33, while various therapeutic options to
slow GA enlargement are under investigation34,35. Finally, the two-
step approach has important advantages. By separating the DL
extraction of retinal features from the survival analysis, the final
predictions are more explainable and biologically plausible, and
error analysis is possible. By contrast, end-to-end ‘black-box’ DL
approaches are less transparent and may be more susceptible
to failure36.

Color fundus photographs 
from both eyes 

Over 80,000 manually annotated 
images in AREDS/AREDS2
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a

b

Classifica�on network
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3,298 par�cipants with demographics and 
genotypic informa�on.

Survival model
…

… … …c

1. Deep features
2. Deep learning grading scores of drusen 

and pigmentary abnormali�es of both 
eyes

Fig. 1 The two-step architecture of the framework. a Raw color fundus photographs (CFP; field 2, i.e., 30° imaging field centered at the
fovea). b Deep classification network, trained with CFP (all manually graded by reading center human experts). c Resulting deep features or
deep learning grading. d Survival model, trained with imaging data, and participant demographic information, with/without genotype
information: ARMS2 rs10490924, CFH rs1061170, and 52-SNP Genetic Risk Score. e Late age-related macular degeneration survival probability.

4,203 potentially eligible participants

AREDS

8,960 potentially eligible participants

Excluded
1. late AMD in either eye at baseline 
2. genotype not available 
3. not fully graded by reading center / retinal specialists

3,298 eligible participants
AREDS:   2,177 participants
AREDS2: 1,121 participants

2,364 participants
AREDS:   1,580 participants
AREDS2:    784 participants

AREDS2

4,757 potentially eligible participants

333 participants
AREDS:   221 participants
AREDS2: 112 participants

601 participants
AREDS:   376 participants
AREDS2: 225 participants
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Fig. 2 Creation of the study data sets. To avoid ‘cross-contamination’ between the training and test data sets, no participant was in more
than one group.
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RESULTS
Deep learning models trained on the combined AREDS/AREDS2
training sets and validated on the combined AREDS/AREDS2 test
sets
The characteristics of the participants are shown in Table 1. The
characteristics of the images are shown in Supplementary Table 1.
The overall framework of our method is shown in Fig. 1 and
described in detail in the “Methods” section. In short, first, a deep
convolutional neural network (CNN) was adapted to (i) extract
multiple highly discriminative deep features, or (ii) estimate
grades for drusen and pigmentary abnormalities (Fig. 1b, c).
Second, a Cox proportional hazards model was used to predict
probability of progression to late AMD (and GA/NV, separately),
based on the deep features (deep features/survival) or the DL
grading (DL grading/survival) (Fig. 1d, e). In this step, additional
participant information could be added, such as age, smoking
status, and genetics. Separately, all of the baseline images in the
test set were graded by 88 (AREDS) and 192 (AREDS2) retinal
specialists. By using these grades as input to either the SSS or the
online calculator, we computed the prediction results of the two
existing standards: ‘retinal specialists/SSS’ and ‘retinal specialists/
calculator’.
The prediction accuracy of the approaches was compared using

the 5-year C-statistic as the primary outcome measure. The 5-year
C-statistic of the two DL approaches met and substantially
exceeded that of both existing standards (Table 2). For predictions
of progression to late AMD, the 5-year C-statistic was 86.4 (95%
confidence interval 86.2–86.6) for deep features/survival, 85.1
(85.0–85.3) for DL grading/survival, 82.0 (81.8–82.3) for retinal
specialists/calculator, and 81.3 (81.1–81.5) for retinal specialists/
SSS. For predictions of progression to GA, the equivalent results
were 89.6 (89.4–89.8), 87.8 (87.6–88.0), and 82.6 (82.3–82.9),
respectively; these are not available for retinal specialists/SSS,
since the SSS does not make separate predictions for GA or NV.
For predictions of progression to NV, the equivalent results

were 81.1 (80.8–81.4), 80.2 (79.8–80.5), and 80.0 (79.7–80.4),
respectively.
Similarly, for predictions at 1–4 years, the C-statistic was higher

in all cases for the two DL approaches than the retinal specialists/
calculator approach. Of the two DL approaches, the C-statistics of
deep features/survival were higher in most cases than those of DL
grading/survival. Predictions at these time intervals were not
available for retinal specialists/SSS, since the SSS does not make
predictions at any interval other than 5 years. Regarding the
separate predictions of progression to GA and NV, deep features/
survival also provided the most accurate predictions at most time
intervals. Overall, DL-based image analysis provided more
accurate predictions than those from retinal specialist grading
using the two existing standards. For deep feature extraction, this
may reflect the fact that DL is unconstrained by current medical
knowledge and not limited to two hand-crafted features.
In addition, the prediction calibrations were compared using

the Brier score (Fig. 3). For 5-year predictions of late AMD, the Brier
score was lowest (i.e., optimal) for deep features/survival. We also
split the data into five groups based on the AREDS SSS at baseline.
We compared calibration plots for deep features/survival, DL
grading/survival, and retinal specialist/survival with the actual
progression data for the five groups (Supplement Fig. 1). The
actual progression data for the five groups are shown in lines
(Kaplan–Meier curves) and the predictions of our models are
shown in lines with markers. The figure shows that the predictions
of the deep features/survival model correspond better to the
actual progression data than those of the other two models.

Deep learning models trained separately on individual cohorts
(either AREDS or AREDS2) and validated on the combined AREDS/
AREDS2 test sets
Models trained on the combined AREDS/AREDS2 cohort (Table 2)
were substantially more accurate than those trained on either
individual cohort (Table 3), with the additional advantage of
improved generalizability. Indeed, one challenge of DL has been
that generalizability to populations outside the training set can be
variable. In this instance, the widely distributed sites and diverse
clinical settings of AREDS/AREDS2 participants, together with the
variety of CFP cameras used, help provide some assurance of
broader generalizability.

Deep learning models trained on AREDS and externally validated
on AREDS2 as an independent cohort
In separate experiments, to externally validate the models on an
independent data set, we trained the models on AREDS (2177
participants) and tested them on AREDS2 (1121 participants).
Table 4 shows that deep features/survival demonstrated the
highest accuracy of 5-year predictions in all scenarios, and DL
grading/survival also had higher accuracy than retinal specialists/
calculator.

Survival models with additional input of genotype
For all approaches possible, the predictions were tested with the
additional input of genotype (Table 5). Interestingly, adding the
genotype data, even the 52 SNP-based Genetic Risk Score (GRS;
see “Methods” section) available only in rare research contexts37,
did not improve the accuracy for deep features/survival or DL
grading/survival; by contrast, adding just two SNPs (the maximum
handled by the calculator) did improve the accuracy modestly for
the retinal specialists/calculator approach. Multivariate analysis
(Supplementary Table 2) demonstrated that deep features/DL
grading, age, and AMD GRS contributed significantly to the
survival models. The non-reliance of the DL approaches on
genotype information favors their accessibility, as genotype data
are typically unavailable for patients currently seen in clinical

Table 1. Characteristics of AREDS and AREDS2 participants.

Characteristics AREDS AREDS2

Participants characteristics

Number of participants 2177 1121

Age, mean (SD), y 68.4 (4.8) 70.9 (7.9)

Smoking history (never,
former, current), %

49.6/45.6/4.8 45.9/48.5/5.5

CFH rs1061170 (TT/CT/CC), % 33.3/46.4/20.3 17.8/41.7/40.5

ARMS2 rs10490924
(GG/GT/TT), %

55.2/36.5/8.3 40.5/42.8/16.7

AMD Genetic Risk Score,
mean (SD)

14.2 (1.4) 15.2 (1.3)

Follow-up, median (IQR), y 10.0 (3.0) 5.0 (2.0)

Progression to late AMD (classified by Reading Center)

Late AMD: % of participants at
year 1/2/3/4/5/all years

1.5/3.9/6.68/8.6/
10.7/18.5

9.1/16.2/23.8/
32.6/38.1/38.8

GA: % of participants at year
1/2/3/4/5/all years

0.6/1.5/2.8/4.0/
5.1/10.1

4.8/9.0/13.0/17.8/
20.8/21.0

NV: % of participants at year
1/2/3/4/5/all years

0.9/2.4/4.0/4.6/
5.5/8.4

4.3/7.2/10.8/14.7/
17.3/17.8

The AREDS contained a wide spectrum of baseline disease severity, from
no age-related macular degeneration (AMD) to high-risk intermediate
AMD. The AREDS2 contained a high level of baseline disease severity, i.e.,
high proportion of eyes at high risk of progression to late AMD.
SD standard deviation, y year, IQR interquartile range, AMD age-related
macular degeneration.
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practice. It suggests that adding genotype information may
partially compensate for the inferior accuracy obtained from
human gradings, but contributes little to the accuracy of DL
approaches, particularly deep feature extraction.

Research software prototype for AMD progression prediction
To demonstrate how these algorithms could be used in practice,
we developed a software prototype that allows researchers to test
our model with their own data. The application (shown in Fig. 4)
receives bilateral CFP and performs autonomous AMD classifica-
tion and risk prediction. For transparency, the researcher is given
(i) grading of drusen and pigmentary abnormalities, (ii) predicted
SSS, and (iii) estimated risks of late AMD, GA, and NV, over 1–12
years. This approach allows improved transparency and flexibility:
users may inspect the automated gradings, manually adjust these
if necessary, and recalculate the progression risks. Following

further validation, this software tool may potentially augment
human research and clinical practice.

DISCUSSION
We developed, trained, and validated a framework for predicting
individual risk of late AMD by combining DL and survival analysis.
This approach delivers autonomous predictions of a higher
accuracy than those from retinal specialists using two existing
clinical standards. Hence, the predictions are closer to the ground
truth of actual time-based progression to late AMD than when
retinal specialists are grading the same bilateral CFP and entering
these grades into the SSS or the online calculator. In addition,
deep feature extraction generally achieved slightly higher
accuracy than DL grading of traditional hand-crafted features.
Table 4 shows that the C-statistic values were lower for AREDS2,

as expected, since the majority of its participants were at higher

Table 2. The C-statistic (95% confidence interval) of the survival models in predicting risk of progression to late age-related macular degeneration on
the combined AREDS/AREDS2 test sets (601 participants).

Models 1 2 3 4 5 All years

Late AMD

Deep features/survival 87.8 (87.5,88.1) 85.8 (85.4,86.2) 86.3 (86.1,86.6) 86.7 (86.5,86.9) 86.4 (86.2,86.6) 86.7 (86.5,86.8)

DL grading/survival 84.9 (84.6,85.3) 84.1 (83.8,84.4) 84.8 (84.5,85.0) 84.8 (84.6,85.0) 85.1 (85.0,85.3) 84.9 (84.6,85.3)

Retinal specialists/calculator – 78.3 (77.9,78.8) 81.8 (81.5,82.1) 82.7 (82.4,82.9) 82.0 (81.8,82.3) –

Retinal specialists/SSSa – – – – 81.3 (81.1,81.5) –

Geographic atrophy

Deep features/survival 89.2 (88.9,89.6) 91.0 (90.7,91.2) 88.7 (88.4,88.9) 89.1 (88.9,89.3) 89.6 (89.4,89.8) 89.2 (89.1,89.4)

DL grading/survival 88.6 (88.3,88.9) 86.6 (86.4,86.9) 87.6 (87.4,87.9) 88.1 (87.9,88.3) 87.8 (87.6,88.0) 88.6 (88.3,88.9)

Retinal specialists/calculator – 77.5 (76.9,78.0) 81.2 (80.8,81.6) 82.0 (81.6,82.3) 82.6 (82.3,82.9) –

Retinal specialists/SSSa – – – – – –

Neovascular AMD

Deep features/survival 85.4 (84.9,85.9) 77.9 (77.3,78.5) 81.7 (81.3,82.1) 81.7 (81.4,82.1) 81.1 (80.8,81.4) 82.1 (81.8,82.4)

DL grading/survival 78.0 (77.4,78.6) 78.4 (77.9,78.9) 79.2 (78.8,79.6) 79.0 (78.7,79.4) 80.2 (79.8,80.5) 78.0 (77.4,78.6)

Retinal specialists/calculator – 75.5 (74.8,76.2) 81.7 (81.2,82.1) 81.4 (81.0,81.8) 80.0 (79.7,80.4) –

Retinal specialists/SSSa – – – – – –

AMD age-related macular degeneration, DL deep learning, SSS Simplified Severity Scale.
aRetinal specialists/SSS—makes predictions at one fixed interval of 5 years and for late AMD only (i.e., not by disease subtype); unlike all other models, for SSS,
late AMD is defined as NV or central GA (instead of NV or any GA); please refer to the Supplementary Table 2 for results using genotype information, and
Supplementary Table 3 for multivariate analysis.

Fig. 3 Prediction error curves. Prediction error curves of the survival models in predicting risk of progression to late age-related macular
degeneration on the combined AREDS/AREDS2 test sets (601 participants), using the Brier score (95% confidence interval).
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risk of progression38; though more difficult, predicting progression
for AREDS2 participants is more representative of a clinically
meaningful task. When compared to the results in Table 2, the
accuracy of our models decreased less than retinal specialists/
calculator and retinal specialists/SSS. This demonstrates the
relative generalizability of our models. Furthermore, this suggests
the ability of deep features/survival to differentiate individuals
with relatively similar SSS more accurately than existing clinical
standards (since nearly all AREDS2 participants had SSS ≥ 2 at
baseline). It is also worth noting that it was possible to improve
further the performance of our models on the AREDS2 data set, if
the models had been modified to accommodate the unique
characteristics of the AREDS2. Since the AREDS is enriched for
participants with milder baseline AMD severity, it may be possible
to improve the performance of our models on the AREDS2 data
set by either training the models on progressors only or
decreasing the prevalence of non-progressors. However, for fair

comparisons to other results in this study, we kept our models
unchanged.
In addition, unlike the SSS, whose 5-year risk prediction

becomes saturated at 50%10, the DL models enable ascertainment
of risk above 50%. This may be helpful in justifying medical and
lifestyle interventions4,5,8, vigilant home monitoring6,7, and
frequent reimaging39, and in planning shorter but highly powered
clinical trials9. For example, the AREDS-style oral supplements
decrease the risk of developing late AMD by ~25%, but only in
individuals at higher risk of disease progression4,5. Similarly, if
subthreshold nanosecond laser treatment is approved to slow
progression to late AMD8, accurate risk predictions may be very
helpful for identifying eyes that may benefit most.
Considering that the DL grading model is better at detecting

drusen and pigmentary changes, we also took the grades from the
DL grading model and used these as input to the SSS and the
Casey calculator, to generate predictions (Supplementary Table 3).
We found that the accuracy of the predictions was higher when
using the grades from the DL grading than from the retinal
specialists. Hence, it is the combination of the DL grading and
the survival approach that provides accurate and automated
predictions.
In addition, we compared C-statistic results on three DL models:

nnet-survival40, DeepSurv41, and CoxPH (Supplementary Table 4).
CoxPH had the best calibration performance using either the deep
features or DL grading, though the differences were fairly small.
For all approaches, the accuracy was substantially higher for

predictions of GA than NV. The DL-based approaches improved
accuracy for both subtypes, but, for NV, insufficiently to reach that
obtained for GA. Potential explanations include the partially
stochastic nature of NV and/or higher suitability of predicting GA
from en face imaging.
Error analysis (i.e., examining the reasons behind inaccurate

predictions) was facilitated more easily by our two-step architec-
ture, unlike in end-to-end, ‘black-box’ DL approaches. This
revealed that the survival model accounted for most errors, since
(i) classification network accuracy was relatively high (Supplemen-
tary Fig. 2), and (ii) when perfect classification results (i.e., taken
from the ground truth) were used as input to the survival model,
the 5-year C-statistic of DL grading/survival on late AMD improved
only slightly, from 85.1 (85.0,85.3) to 85.8 (85.6–86.0). Supplemen-
tary Figure 3 demonstrates two example cases of progression. In
the first case, both participants were the same age (73 years) and
had the same smoking history (current), and AREDS SSS scores (4)
at baseline. The retinal specialist graded the SSS correctly.
However, participant 1 progressed to late AMD at year 2 (any
GA at right eye), but participant 2 progressed to late AMD at year 5
(any GA at left eye). Hence, both the retinal specialist/calculator
and retinal specialist/SSS approaches incorrectly assigned the
same risk of progression to both participants (0.413). However, the
deep feature/survival approach correctly assigned a higher risk of
progression to participant 1 (0.751) and a lower risk to participant
2 (0.591). In the second case, both participants were the same age
(73 years) and had the same smoking history (former). Their
AREDS SSS scores at baseline were 3 and 4, respectively. The
retinal specialist graded the SSS correctly. However, participant 3
progressed to late AMD at year 2 (NV at right eye), while
participant 4 had still not progressed to late AMD by final follow-
up at year 11. Hence, both the retinal specialist/calculator and
retinal specialist/SSS approaches incorrectly assigned a lower risk
of progression to participant 3 (0.259) and a higher risk to
participant 4 (0.413). However, the deep feature/survival approach
correctly assigned a higher risk of progression to participant 4 and
a lower risk to participant 3 (0.569 vs 0.528).
The strengths of the study include the application of combining

DL image analysis and deep feature extraction with survival
analysis to retinal disease. Survival analysis has been used widely
in AMD progression research4,38; in this study, it made best use of

Table 3. The 5-year C-statistic (95% CI) results of models trained on
only AREDS or only AREDS2, and validated on the combined AREDS/
AREDS2 test sets (601 participants), without using genotype
information.

Models Trained on AREDS Trained on AREDS2

Late AMD

Deep features/survival 85.7 (85.5,85.9) 83.9 (83.7,84.1)

DL grading/survival 84.7 (84.5,84.9) 82.1 (81.8,82.3)

Geographic atrophy

Deep features/survival 89.3 (89.1,89.5) 84.7 (84.4,85.0)

DL grading/survival 90.2 (90.0,90.4) 85.2 (84.9,85.5)

Neovascular AMD

Deep features/survival 79.6 (79.3,80.0) 74.0 (73.6,74.5)

DL grading/survival 76.6 (76.2,76.9) 75.5 (75.1,75.9)

Table 4. The 5-year C-statistic (95% CI) results of models trained on
the entire AREDS and tested on the entire AREDS2 (1121 participants),
without using genotype information.

Models Tested on the entire AREDS2

Late AMD

Deep features/survival 71.0 (70.2,71.7)

DL grading/survival 69.7 (68.9,70.5)

Retinal specialists/calculator 63.9 (63.2,64.6)

Retinal specialists/SSSa 62.5 (62.3,62.7)

Geographic atrophy

Deep features/survival 75.3 (74.5,76.0)

DL grading/survival 75.0 (74.0,76.0)

Retinal specialists/calculator 64.4 (63.6,65.2)

Retinal specialists/SSSa –

Neovascular AMD

Deep features/survival 62.8 (61.9,63.8)

DL grading/survival 61.8 (61.0,62.7)

Retinal specialists/calculator 61.8 (60.8,62.9)

Retinal specialists/SSSa –

aRetinal specialists/SSS—makes predictions at one fixed interval of 5 years
and for late AMD only (i.e., not by disease subtype); unlike all other models,
for SSS, late AMD is defined as NV or central GA (instead of NV or any GA).
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the data, specifically the timing and nature of any progression
events at the individual level. Deep feature extraction has the
advantages that the model is unconstrained by current medical
knowledge and not limited to two features. It allows the model to
learn de novo what features are most highly predictive of time-
based progression events, and to develop multiple (e.g., 5, 10, or
more) predictive features. Unlike shallow features that appear
early in CNNs, deep features are potentially complex and high-
order features, and might even be relatively invisible to the
human eye. However, one limitation of deep feature extraction is
that predictions based on these features may be less explainable
and biologically plausible, and less amenable to error analysis,
than those based on DL grading of traditional risk features36.
Additional strengths include the use of two well-characterized
cohorts, with detailed time-based knowledge of progression
events at the reading center standard. By pooling AREDS and
AREDS2 (which has not been used previously in DL studies), we
were able to construct a cohort that had a wide spectrum of AMD
severity but was enriched for cases of higher baseline severity. In
addition, in other experiments, keeping the data sets separate
enabled us to perform external validation using AREDS2 as an
independent cohort.
In terms of limitations, as in the two existing clinical standards,

AREDS/AREDS2 treatment assignment was not considered in this
analysis10,12. Since most AREDS/AREDS2 participants were
assigned to oral supplements that decreased risk of late AMD,
the risk estimates obtained are closer to those for individuals
receiving supplements. However, this seems appropriate, given
that AREDS-style supplements are considered the standard of care
for patients with intermediate AMD39. Another limitation is that

this work relates to CFP only. DL approaches to optical coherence
tomography (OCT) data sets hold promise for AMD diagnosis42,43,
but no highly validated OCT-based tools exist for risk prediction. In
the future, we plan to apply our framework to multi-modal
imaging, including fundus autofluorescence and OCT data.
In conclusion, combining DL feature extraction of CFP with

survival analysis achieved high prognostic accuracy in predictions
of progression to late AMD, and its subtypes, over a wide time
interval (1–12 years). Not only did its accuracy meet and surpass
existing clinical standards, but additional strengths in clinical
settings include risk ascertainment above 50% and without
genotype data.

METHODS
Data sets
For model development and clinical validation, two data sets were used:
the AREDS31 and the AREDS232 (Fig. 2). The AREDS was a 12-year multi-
center prospective cohort study of the clinical course, prognosis, and risk
factors of AMD, as well as a phase III randomized clinical trial (RCT) to
assess the effects of nutritional supplements on AMD progression31. In
short, 4757 participants aged 55–80 years were recruited between 1992
and 1998 at 11 retinal specialty clinics in the United States. The inclusion
criteria were wide, from no AMD in either eye to late AMD in one eye. The
participants were randomly assigned to placebo, antioxidants, zinc, or the
combination of antioxidants and zinc. The AREDS data set is publicly
accessible to researchers by request at dbGAP (https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1).
Similarly, the AREDS2 was a multi-center phase III RCT that analyzed the

effects of different nutritional supplements on the course of AMD32. 4203
participants aged 50–85 years were recruited between 2006 and 2008 at
82 retinal specialty clinics in the United States. The inclusion criteria were

Table 5. The accuracy (C-statistic, 95% confidence interval) of the three different approaches in predicting risk of progression to late AMD on the
combined AREDS/AREDS2 test sets (601 participants), with the inclusion of accompanying genotype information.

(a) Models 1 2 3 4 5 All years

Late AMD

Deep features/survival 88.8 (88.0,89.7) 85.4 (84.4,86.4) 86.1 (85.2,86.9) 86.9 (86.1,87.6) 86.6 (85.8,87.4) 86.8 (86.1,87.6)

DL grading/survival 89.4 (88.2,90.6) 83.8 (82.4,85.1) 84.0 (83.0,85.1) 85.0 (84.2,85.8) 84.9 (84.2,85.6) 85.5 (84.9,86.2)

Retinal specialists/calculator – 78.7 (78.3,79.1) 82.4 (82.1,82.7) 83.6 (83.3,83.8) 83.1 (82.8,83.3) –

Geographic atrophy

Deep features/survival 89.5 (88.4,90.5) 90.7 (89.9,91.5) 88.6 (87.3,89.8) 89.0 (88.0,89.9) 89.5 (88.7,90.3) 89.4 (88.7,90.2)

DL grading/survival 87.0 (86.0,88.0) 86.5 (85.6,87.5) 85.9 (85.0,86.8) 87.0 (86.3,87.7) 87.6 (87.0,88.2) 87.5 (87.0,88.0)

Retinal specialists/calculator – 77.6 (77.1,78.1) 81.8 (81.5,82.2) 83.0 (82.7,83.3) 83.2 (83.0,83.5) –

Neovascular AMD

Deep features/survival 85.8 (84.6,87.0) 79.1 (77.0,81.2) 81.9 (80.6,83.3) 82.4 (81.2,83.6) 81.7 (80.7,82.7) 82.6 (81.7,83.5)

DL grading/survival 87.3 (86.3,88.3) 77.3 (75.1,79.5) 77.3 (75.6,79.0) 78.7 (77.1,80.2) 78.8 (77.4,80.1) 80.0 (78.8,81.3)

Retinal specialists/calculator – 77.3 (76.6,77.9) 82.0 (81.5,82.4) 82.4 (82.1,82.8) 80.9 (80.6,81.3) –

(b) Models 1 2 3 4 5 All years

Late AMD

Deep features/survival 87.9 (87.6,88.2) 84.8 (84.4,85.2) 85.9 (85.6,86.2) 86.2 (86.0,86.4) 86.0 (85.8,86.2) 86.4 (86.2,86.6)

DL grading/survival 84.2 (83.8,84.6) 84.3 (84.0,84.6) 84.9 (84.7,85.2) 84.9 (84.7,85.1) 85.4 (85.2,85.6) 84.2 (83.8,84.6)

Geographic atrophy

Deep features/survival 89.9 (89.6,90.1) 90.1 (89.8,90.4) 88.5 (88.2,88.8) 88.5 (88.2,88.7) 89.0 (88.8,89.2) 88.7 (88.5,88.9)

DL grading/survival 87.0 (86.6,87.3) 86.2 (85.9,86.5) 86.7 (86.5,87.0) 87.1 (86.9,87.3) 87.0 (86.8,87.2) 87.0 (86.6,87.3)

Neovascular AMD

Deep features/survival 83.7 (83.2,84.2) 77.6 (77.0,78.3) 81.5 (81.0,81.9) 81.9 (81.6,82.3) 81.3 (80.9,81.6) 82.3 (82.1,82.6)

DL grading/survival 77.6 (77.0,78.3) 78.7 (78.2,79.2) 79.9 (79.5,80.3) 79.9 (79.5,80.2) 81.0 (80.7,81.4) 77.6 (77.0,78.3)

(a) Use of CFH rs1061170 and ARMS2 rs10490924 status only. (b) Use of CFH/ARMS2 and the 52 SNP-based AMD Genetic Risk Score. The AMD online calculator
is able to receive only CFH rs1061170 and ARMS2 rs10490924 status, not the 52 SNP-based AMD Genetic Risk Score.
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Fig. 4 A screenshot of our research prototype system for AMD risk prediction. a Screenshot of late AMD risk prediction. 1, Upload bilateral
color fundus photographs. 2, Based on the uploaded images, the following information is automatically generated separately for each eye:
drusen size status, pigmentary abnormality presence/absence, late AMD presence/absence, and the Simplified Severity Scale score. 3, Enter
the demographic and (if available) genotype information, and the time point for prediction. 4, The probability of progression to late AMD (in
either eye) is automatically calculated, along with separate probabilities of geographic atrophy and neovascular AMD. b Four selected color
fundus photographs with highlighted areas used by the deep learning classification network (DeepSeeNet). Saliency maps were used to
represent the visually dominant location (drusen or pigmentary changes) in the image by back-projecting the last layer of neural network.
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the presence of either bilateral large drusen or late AMD in one eye and
large drusen in the fellow eye. The participants were randomly assigned to
placebo, lutein/zeaxanthin, docosahexaenoic acid (DHA) plus eicosapen-
taenoic acid (EPA), or the combination of lutein/zeaxanthin and DHA plus
EPA. AREDS supplements were also administered to all AREDS2
participants, because they were by then considered the standard of
care39. We will make the AREDS2 data set publicly accessible upon
publication.
In both studies, the primary outcome measure was the development of

late AMD, defined as neovascular AMD or central GA. Institutional review
board approval was obtained at each clinical site and written informed
consent for the research was obtained from all study participants. The
research was conducted under the Declaration of Helsinki and, for the
AREDS2, complied with the Health Insurance Portability and Accessibility
Act. For both studies, at baseline and annual study visits, comprehensive
eye examinations were performed by certified study personnel using a
standardized protocol, and CFP (field 2, i.e., 30° imaging field centered at
the fovea) were captured by certified technicians using a standardized
imaging protocol. Progression to late AMD was defined by the study
protocol based on the grading of CFP31,32, as described below.
As part of the studies, 2889 (AREDS) and 1826 (AREDS2) participants

consented to genotype analysis. SNPs were analyzed using a custom
Illumina HumanCoreExome array37. For the current analysis, two SNPs (CFH
rs1061170 and ARMS2 rs10490924, at the two loci with the highest
attributable risk of late AMD), were selected, as these are the two SNPs
available as input for the existing online calculator system. In addition, the
AMD GRS was calculated for each participant according to methods
described previously37. The GRS is a weighted risk score based on 52
independent variants at 34 loci identified in a large genome-wide
association study37 as having significant associations with risk of late
AMD. The online calculator cannot receive this detailed information.
The eligibility criteria for participant inclusion in the current analysis

were: (i) absence of late AMD (defined as NV or any GA) at study baseline in
either eye, since the predictions were made at the participant level, and (ii)
presence of genetic information (in order to compare model performance
with and without genetic information on exactly the same cohort of
participants). Accordingly, the images used for the predictions were those
from the study baselines only.
In the AREDS data set of CFPs, information on image laterality (i.e., left or

right eye) and field status (field 1, 2, or 3) were available from the Reading
Center. However, these were not available in the AREDS2 data set of CFPs.
We therefore trained two Inception-v3 models, one for classifying laterality
and the other for identifying field 2 images. Both models were first trained
on the gold standard images from the AREDS and fine-tuned on a newly
created gold standard AREDS2 set manually graded by a retinal specialist
(TK). The AREDS2 gold standard consisted of 40 participants with 5164
images (4097 for training and 1067 for validation). The models achieved
100% accuracy for laterality classification and 97.9% accuracy (F1-score
0.971, precision 0.968, recall 0.973) for field 2 classification.

Gold standard grading
The ground truth labels used for both training and testing were the grades
previously assigned to each CFP by expert human graders at the University
of Wisconsin Fundus Photograph Reading Center. The reading center
workflow has been described previously30. In brief, a senior grader
performed initial grading of each photograph for AMD severity using a 4-
step scale and a junior grader performed detailed grading for multiple
AMD-specific features. All photographs were graded independently and
without access to the clinical information. A rigorous process of grading
quality control was performed at the reading center, including assessment
for inter-grader and intra-grader agreement30. The reading center grading
features relevant to the current study, aside from late AMD, were: (i)
macular drusen status (none/small, medium (diameter ≥ 63 µm and
<125 µm), and large (≥125 µm)), and (ii) macular pigmentary abnormalities
related to AMD (present or absent).
In addition to undergoing reading center grading, the images at the

study baseline were also assessed (separately and independently) by 88
retinal specialists in AREDS and 196 retinal specialists in AREDS2. The
responses of the retinal specialists were used not as the ground truth, but
for comparisons between human grading as performed in routine clinical
practice and DL-based grading. By applying these retinal specialist grades
as input to the two existing clinical standards for predicting progression to
late AMD, it was possible to compare the current clinical standard of
human predictions with those predictions achievable by DL.

Development of the algorithm
The overall framework of our method is shown in Fig. 1. First, a CNN was
adapted to (i) extract multiple highly discriminative deep features, or (ii)
estimate grades for drusen and pigmentary abnormalities (Fig. 1a–c).
Second, a Cox proportional hazards model was used to predict probability
of progression to late AMD (and GA/NV, separately), based on the deep
features (deep features/survival) or the DL grading (DL grading/survival)
(Fig. 1d, e). In this step, additional participant information could be added,
such as age, smoking status, and genetics.
As the first stage in the workflow, the DL-based image analysis was

performed using two different adaptations of ‘DeepSeeNet’13. DeepSeeNet
is a CNN framework that was created for AMD severity classification. It has
achieved state-of-the-art performance for the automated diagnosis and
classification of AMD severity from CFP; this includes the grading of
macular drusen, pigmentary abnormalities, the SSS13, and the AREDS 9-
step severity scale44. In particular, using reading center grades as the
ground truth, we have recently demonstrated that DeepSeeNet performs
grading with accuracy that was superior to that of human retinal specialists
(Supplementary Fig. 1). The two different adaptations are described here:

Deep features. The first adaptation was named ‘deep features’. This
approach involved using DL to derive and weight predictive image
features, including high-dimensional ‘hidden’ features45. Deep features
were extracted from the second to last fully-connected layer of
DeepSeeNet (the highlighted part in the classification network in Fig. 1).
In total, 512 deep features could be extracted for each participant in this
way, comprising 128 deep features for each of the two models (drusen and
pigmentary abnormalities) in each of the two images (left and right eyes).
After feature extraction, all 512 deep features were normalized as
standard-scores. Feature selection was required at this point, to avoid
overfitting and to improve the generalizability, because of the multi-
dimensional nature of the features. Hence, we performed feature selection
to group correlated features and pick one feature for each group46.
Features with non-zero coefficients were selected and applied as input to
the survival models described below.

Deep learning grading. The second adaptation of DeepSeeNet was named
‘DL grading’, i.e., referring to the grading of drusen and pigmentary
abnormalities, the two macular features considered by humans most able
to predict progression to late AMD. In this adaptation, the two predicted
risk factors were used directly. In brief, one CNN was previously trained and
validated to estimate drusen status in a single CFP, according to three
levels (none/small, medium, or large), using reading center grades as the
ground truth13. A second CNN was previously trained and validated to
predict the presence or absence of pigmentary abnormalities in a
single CFP.

Survival model. The second stage of our workflow comprised a Cox
proportional hazards model47 to estimate time to late AMD (Fig. 1d, e). The
Cox model is used to evaluate simultaneously the effect of several factors
on the probability of the event, i.e., participant progression to late AMD in
either eye. Separate Cox proportional hazards models were created to
analyze time to late AMD and time to subtype of late AMD (i.e., GA and
NV). In addition to the image-based information, the survival models could
receive three additional inputs: (i) participant age; (ii) smoking status
(current/former/never), and (iii) participant AMD genotype (CFH rs1061170,
ARMS2 rs10490924, and the AMD GRS).

Experimental design
In both of the DeepSeeNet adaptations described, the DL CNNs used
Inception-v3 architecture48, which is a state-of-the-art CNN for image
classification; it contains 317 layers, comprising a total of over 21 million
weights that are subject to training. Training was performed using two
commonly used libraries: Keras (https://keras.io) and TensorFlow49. All
images were cropped to generate a square image field encompassing the
macula and resized to 512 × 512 pixels. The hyperparameters were
learning rate 0.0001 and batch size 32. The training was stopped after 5
epochs once the accuracy on the development set no longer increased. All
experiments were conducted on a server with 32 Intel Xeon CPUs, using a
NVIDIA GeForce GTX 1080 Ti 11 Gb GPU for training and testing, with
512 Gb available in RAM memory. We fitted the Cox proportional hazard
model using the deep features as covariates. Specifically, we selected the
16 features with the highest weights (i.e., the features found to be most
predictive of progression to late AMD, with their inclusion as covariates in
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the Cox model). We performed feature selection using the ‘glmnet’
package46 in R version 3.5.2 statistical software.

Training and testing
For training and testing our framework, we used both the AREDS and
AREDS2 data sets. In the primary set of experiments, eligible participants
from both studies were pooled to create one broad cohort of 3298
individuals that combined a wide spectrum of baseline disease severity
with a high number of progression events. The combined data set was split
at the participant level in the ratio 70%/10%/20% to create three sets: 2364
participants (training set), 333 participants (development set), and 601
participants (hold-out test set).
Separately, all of the baseline images in the test set were graded by 88

(AREDS) and 192 (AREDS2) retinal specialists. By using these grades as
input to either the SSS or the online calculator, we computed the
prediction results of the two existing standards: ‘retinal specialists/SSS’ and
‘retinal specialists/calculator’.
For three of the four approaches (deep features/survival, DL grading/

survival, and retinal specialists/calculator), the input was bilateral CFP,
participant age, and smoking status; separate experiments were conducted
with and without the additional input of genotype data. For the other
approach (retinal specialists/SSS), the input was bilateral CFP only.
In addition to the primary set of experiments where eligible participants

from the AREDS and AREDS2 were combined to form one data set,
separate experiments were conducted where the DL models were: (i)
trained separately on the AREDS training set only, or the AREDS2 training
set only, and tested on the combined AREDS/AREDS2 test set, and (ii)
trained on the AREDS training set only and externally validated by testing
on the AREDS2 test set only.

Statistical analysis
As the primary outcome measure, the performance of the risk prediction
models was assessed by the C-statistic50 at 5 years from study baseline.
Five years from study baseline was chosen as the interval for the primary
outcome measure since this is the only interval where comparison can be
made with the SSS, and the longest interval where predictions can be
tested using the AREDS2 data.
For binary outcomes such as progression to late AMD, the C-statistic

represents the area under the receiver operating characteristic curve
(AUC). The C-statistic is computed as follows: all possible pairs of
participants are considered where one participant progressed to late
AMD and the other participant in the pair progressed later or not at all; out
of all these pairs, the C-statistic represents the proportion of pairs where
the participant who had been assigned the higher risk score was the one
who did progress or progressed earlier. A C-statistic of 0.5 indicates
random predictions, while 1.0 indicates perfectly accurate predictions. We
used 200 bootstrap samples to obtain a distribution of the C-statistic and
reported 95% confidence intervals. For each bootstrap iteration, we
sampled n patients with replacement from the test set of n patients.
As a secondary outcome measure of performance, we calculated the

Brier score from prediction error curves, following the work of Klein et al.12.
The Brier score is defined as the squared distances between the model’s
predicted probability and actual late AMD, GA, or NV status, where a score
of 0.0 indicates a perfect match. The Wald test was used to assess the
statistical significance of each factor in the survival models51. It
corresponds to the ratio of each regression coefficient to its standard
error. The ‘survival’ package in R version 3.5.2 was used for Cox
proportional hazards model evaluation. Finally, saliency maps were
generated to represent the image locations that contributed most to
decision-making by the DL models (for drusen or pigmentary abnormal-
ities). This was done by back-projecting the last layer of the neural
network. The Python package ‘keras-vis’ was used to generate the saliency
map52.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The AREDS data set (NCT00000145) generated during and/or analyzed during the
current study is available in the dbGAP repository, https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1. The AREDS2 data set
generated during and/or analyzed during the current study has been deposited in
dbGAP, accession number phs002015.v1.p1. However, due to an ongoing IRB review
of the AREDS2 data set, the data will not be available in dbGAP for ~3 months post-
publication. While the AREDS2 data set is being reviewed by the IRB, it is available
from the corresponding author on reasonable request.
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