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ABSTRACT: By combining metal nodes with organic linkers we can potentially synthesize millions of
possible metal−organic frameworks (MOFs). The fact that we have so many materials opens many
exciting avenues but also create new challenges. We simply have too many materials to be processed
using conventional, brute force, methods. In this review, we show that having so many materials allows
us to use big-data methods as a powerful technique to study these materials and to discover complex
correlations. The first part of the review gives an introduction to the principles of big-data science. We
show how to select appropriate training sets, survey approaches that are used to represent these
materials in feature space, and review different learning architectures, as well as evaluation and
interpretation strategies. In the second part, we review how the different approaches of machine learning
have been applied to porous materials. In particular, we discuss applications in the field of gas storage
and separation, the stability of these materials, their electronic properties, and their synthesis. Given the increasing interest of the
scientific community in machine learning, we expect this list to rapidly expand in the coming years.
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1. INTRODUCTION

One of the fascinating aspects of metal−organic frameworks
(MOFs) is that by combining linkers and metal nodes we can
synthesize millions of different materials.1 Over the past

decade, over 10,000 porous2,3 and 80,000 nonporous MOFs
have been synthesized.4 In addition, one also has covalent
organic frameworks (COFs), porous polymer networks
(PPNs), zeolites, and related porous materials. Because of
their potential in many applications, ranging from gas
separation and storage, sensing, catalysis, etc., these materials
have attracted a lot of attention. From a scientific point of view,
these materials are interesting as their chemical tunability
allows us to tailor-make materials with exactly the right
properties. As one can only synthesize a tiny fraction of all
possible materials, these experimental efforts are often
combined with computational approaches, often referred to
as materials genomics,5 to generate libraries of predicted or
hypothetical MOFs, COFs, and other related porous materials.
These libraries are subsequently computationally screened to
identify the most promising material for a given application.
That we now have of the order of ten thousand synthesized

porous crystals and over a hundred thousand predicted
materials does create new challenges; we simply have too
many structures and too much data. Issues related to having so
many structures can be simple questions on how to manage so
much data but also more profound on how to use the data to
discover new science. Therefore, a logical next step in materials
genomics is to apply the tools of big-data science and to exploit
“the unreasonable effectiveness of data”.6 In this review, we
discuss how machine learning (ML) has been applied to
porous materials and review some aspects of the underlying
techniques in each step. Before discussing the specific
applications of ML to porous materials, we give an overview
over the ML landscape to introduce some terminologies and
also give a short overview over the technical terms we will use
throughout this review in Table 1.
In this review, we focus on applications of ML in materials

science and chemistry with a particular focus on porous
materials. For a more general discussion on ML, we refer the
reader to some excellent reviews.7,8

2. MACHINE LEARNING LANDSCAPE
Nowadays it is difficult, if not impossible, to avoid ML in
science. Because of recent developments in technology, we
now routinely store and analyze large amounts of data. The
underlying idea of big-data science is that if one has large
amounts of data, one might be able to discover statistically
significant patterns that are correlated to some specific
properties or events. Arthur Samuel was among the first to
use the term “machine learning” for the algorithms he
developed in 1959 to teach a computer to play the game of
checkers.9 His ML algorithm let the computer look ahead a
few moves. Initially, each possible move had the same weight
and hence probability of being executed. By collecting more
and more data from actual games, the computer could learn
which move for a given board configuration would develop a
winning strategy. One of the reasons why Arthur Samuel
looked at checkers was that in the practical sense the game of
checkers is not deterministic; there is no known algorithm that
leads to winning the game and the complete evaluation of all
1040 possible moves is beyond the capacity of any computer.
There are some similarities between the game checkers and

the science of discovering new materials. Making a new
material is in practice equally nondeterministic. The number of
possible ways we can combine atoms is simply too large to
evaluate all possible materials. For a long time, materials
discovery has been based on empirical knowledge. Significant
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advances were made, once some of this empirical knowledge
was generalized in the form of theoretical frameworks.
Combined with supercomputers these theoretical frameworks
resulted in accurate predictions of the properties of materials.
Yet, the number of atoms and possible materials is simply too
large to predict all properties of all possible materials. Hence,
there will be large parts of our material space that are, in
practical terms, out of reach of the conventional paradigms of
science. Some phenomena are simply too complex to be
explicitly described with theory. Teaching the computer the
concepts using big data might be an interesting route to study
some of these problems. The emergence of off-the-shelf
machine learning methods that can be used by domain
experts10not only specialized data scientistsin combina-
tion with big data is thought to spark the “fourth industrial
revolution” and the “fourth paradigm of science” (cf. Figure
1).11,12 In this context, big data can add a new dimension to
material discovery. One needs to realize that even though ML
might appear as “black box” engineering in some instances,
good predictions from a black box are indefinitely better than
no prediction at all. This is to some extent similar to an
engineer that can make things work without understanding all
the underlying physics. And, as we will discuss below, there are
many techniques to investigate the reliability and domain of
applicability of a ML model as well as techniques that can help
in understanding the predictions made by the model.
Material science and chemistry may not be the most obvious

topics for big-data science. Experiments are labor-intensive and
the amount of data about materials that have been collected in
the last centuries is minute compared to what Google and the
likes collect every single second. However, recently the field of
materials genomics has changed the landscape.13 High-
throughput density-functional theory (DFT) calculations14

and molecular simulations15 have become routine tools to
study the properties of real and even hypothetical materials. In
these studies, ML is becoming more popular and widely used
as a filter in the computational funnel of high-throughput
screenings16 but also to assist and guide simulations17−20 or
experiments,21 or to even replace them,22,23 and to design new
high-performing materials.24

Another important factor is the prominent role patterns
played in chemistry. The most famous example is Mendeleev’s
periodic table, but also Pauling’s rules,25 Pettifor’s maps,26 and
many other structure−property relationships were guided by a
combination of empirical knowledge and chemical intuition.
What we hope to show in this review is that ML holds the
promise to discover much more complex relationships from
(big) data.
We continue this section with a broad overview of the main

principles of ML. This section will be followed with a more
detailed and technical discussion on the different subtopics
introduced in this section.

2.1. Machine Learning Pipeline

2.1.1. Machine Learning Workflow. ML is no different
from any other method in science. There are questions for
which ML is an extremely powerful method to find an answer,
but if one sees ML as the modern solution to any ill-posed
problem, one is bound to be disappointed. In section 9, we will
discuss the type of questions that have been successfully
addressed using ML in the contexts of synthesis and
applications of porous materials.

Independent of the learning algorithm or goal, the ML
workflow from materials’ data to prediction and interpretation
can be divided into the following blueprint of a workflow,
which also this review follows:

1. Understanding the problem: An understanding of the
phenomena that need to be described is important. For
example, if we are interested in methane storage in
porous media, the key performance parameter is the
deliverable capacity, which can be obtained directly for
the experimental adsorption isotherms at a given
temperature. In more general terms, an understanding
of the phenomena helps us to guide the generation and
transformation of the data (discussed in more detail in
the next step).
In the case of the deliverable capacity we have a

continuous variable and hence a regression problem,
which can be more difficult to learn compared to
classification problems (e.g., whether the channels in our
porous material form a 1, 2, or 3-dimensional network or
classify the deliverable capacity as “high” or “low”).
Importantly, the problem definition guides the choice

of the strategies for model evaluation, selection, and
interpretation (cf. section 7): In some classification
cases, such as in a part of the high-throughput funnel, in
which we are interested in finding the top-performing
materials by down selecting materials, missing the
highest-performing material is worse than doing an
additional simulation for a mediocre materialthis is
something one should realize before building the model.

2. Generating and exploring data: Machine learning
needs data to learn from. In particular, one needs to
ensure that we have suitable training data. Suitable, in
the sense that the data are reliable and provide sufficient
coverage of the design space we would like to explore.
Sometimes, suitable training data must be generated or
augmented. The process of exploring a suitable data set
(known as exploratory data analysis (EDA)27) and its
subsequent featurization can help to understand the
problem better and inform the modeling process.
Once we have collected a data set, the next steps

involve:
(a) Data selection: If the goal is to predict materials

properties, which is the focus of this review, it is
crucial to ensure that the available labels y, i.e., the
targets we want to predict, are consistent, and
special care has to be taken when data from
different sources are used. We discuss this step in
more detail in section 3 and the outlook.

(b) Featurization is the process in which the structures
or raw data are mapped into feature (or design)
matrices X, where one row in this matrix
characterizes one material. Domain knowledge in
the context of the problem we are addressing can
be particularly useful in this step, for example, to
select the relevant length scales (atomistic, coarse-
grained, or global) or properties (electronic,
geometric, or involved experimental properties).
We give an overview of this process in section 4.

(c) Sampling: Often, training data are randomly
selected from a large database of training points.
But this is not necessarily the best choice as most
likely the materials are not uniformly distributed
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for all possible labels we are potentially interested
in. For example, one class (often the low-
performing structures) might constitute the
majority of the training set and the algorithm
will have problems in making predictions for the
minority class (which are often the most
interesting cases). Special methods, e.g., farthest
point sampling (FPS), have been developed to
sample the design space more uniformly. In
section 3.2 we discuss ways to mitigate this
problem and approaches to deal with little data.

3. Learning and Prediction: In section 5 we examine
several ways in which one can learn from data, and what
one should consider when choosing a particular
algorithm. We then describe different methods with
which one can improve predictive performance and
avoid overfitting (cf. section 6).
To guide the modeling and model selection, methods

for performance evaluation are needed. In section 7 we
describe best practices for model evaluation and
comparison.

4. Interpretation: Often it is interesting to understand
what and how the model learnede.g., to better grasp
structure−property relationships or to debug ML
models. ML is often seen as a black-box approach to
predict numerical values with zero understanding
defeating the goal of science to understand and explain
phenomena. Therefore, the need for causal models is
seen as a step toward machines “that learn and think like
people” (learning as model building instead of mere
pattern recognition).28 In section 8 we present different
approaches to look into black-box models, or how to
avoid them in the first place.

It is important to remember that model development is an
iterative process; the understanding gained from the first
model evaluations can help to understand the model better and
help in refining the data, the featurization, and the model
architecture. For this, interpretable models can be particularly
valuable.29

The scope of this review is to provide guidance along this
path and to highlight the caveats, but also to point to more

detailed resources and useful Python packages that can be used
to implement a specific step.
An excellent general overview that digs deeper into the

mathematical background than this review is the “High-Bias,
Low Variance Introduction to Machine Learning for
Physicists” by Mehta et al.;7 recent applications of ML to
materials science are covered by Schmidt et al.30 But also many
textbooks cover the fundamentals of machine learning; e.g.,
Tibshirani and Friedman,31 Shalev-Shwartz and Ben-David,32

as well as Bishop (from a more Bayesian point of view)33 focus
more on the theoretical background of statistical learning,
whereas Geŕon provides a “how-to” for the actual implemen-
tation, also of neural network (NN) architectures, using
popular Python frameworks,34 which were recently reviewed
by Rascka et al.35

2.1.2. Machine Learning Algorithms. Step three of the
workflow described in the previous section, learning and
predictions, usually receives the most attention. Broadly, there
are three classes, though with fuzzy boundaries, for this step,
namely supervised, unsupervised, and reinforcement learning.
We will focus only on supervised learning in this review, and
only briefly describe possible applications of the other
categories and highlight good starting points to help the
reader orient in the field.

2.1.2.1. Supervised Learning: Feature Matrix and Labels
Are Given. The most widely used flavor, which is also the focus
of this review, is supervised learning. Here, one has access to
features that describe a material and the corresponding labels
(the property one wants to predict).
A common use case is to completely replace expensive

calculations with the calculation of features that can be then
fed into a model to make a prediction. A different use case can
be to still perform molecular simulationsbut to use ML to
generate better potential energy surface (PES), e.g., using
“machine learned” force fields. Another promising avenue is Δ-
ML in which a model is trained to predict a correction to a
coarser level of theory:36 One example would be to predict the
correction to DFT energies to predict coupled-cluster energies.
Supervised learning can also be used as part of an active

learning loop for self-driving laboratories and to efficiently
optimize reaction conditions. In this review, we do not focus

Figure 1. Different approaches to science that evolved over time, starting from empirical observation, generalizations to theories, and simulation of
different, complex, phenomena. The latest addition is the data-driven discovery (“fourth paradigm of science”). The supercomputer image was
taken from the Oak Ridge National Laboratory.
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on this aspectgood starting points are reports from the
groups around Alań Aspuru-Guzik37−40 and Lee Cronin.41−44

2.1.2.2. Unsupervised Learning: Using Only the Feature
Matrix. Unsupervised learning differs from supervised learning
in the sense that it only uses the feature matrix and not the
labels (which are often unknown when unsupervised learning
is used). Unsupervised learning can help to find patterns in the
data, which in turn might provide chemical insight.
2.1.2.2.1. Dimensionality Reduction and Clustering. The

importance of unsupervised methods becomes clear when
dealing with high-dimensional data which are notoriously
difficult to visualize and understand (cf. section 4.1.0.1). And
in fact some of the earliest applications of these techniques
were to analyze45−47 and then speed up molecular
simulations.48,49 The challenge with molecular simulations is
that we explore a 3N dimensional space, where N is the
number of particles. For large N, as it is, for example, the case
for the simulation of protein dynamics, it can be hard to
identify low energy states.48 To accelerate the sampling, one
can apply biasing potentials that help the simulation to move
over barriers between metastable states. Typically, such
potentials are constructed in terms of a small number of
variables, known as collective variablesbut it can be a
challenge to identify what a good choice of the collective
variables is when the dimensionality of the system is high. In
this context, ML has been employed to lower the
dimensionality of the system (cf. Figure 2 for an example of
such a dimensionality reduction) and to express the collective
variables in this low-dimensional space.

Dimensionality reduction techniques, like principal compo-
nent analysis (PCA), ISOMAP, t-distributed stochastic
neighbor embedding (t-SNE), self-organizing maps,50,51

growing cell structures,52 or sketchmap,53,54 can be used to
do so.48 But they can also be used for “materials
cartography”,55 i.e., to present the high-dimensional space of
material properties in two dimensions to help identify patterns
in big and high-dimensional data.56 A book chapter by

Samudrala et al.57 and a perspective by Ceriotti58 give an
overview of applications in materials science.
Recently, unsupervised learningin the form of word-

embeddings, which are vectors in the multidimensional
“vocabulary space” that are usually used for natural language
processing (NLP)has also been used to discover chemistry
in form of structure−property relationships in chemical
literature. This technique could also be used to make
recommendations based on the distance of a word-embedding
of a compound, to the vector of a concept such as
thermoelectricity in the word-embedding space.59

2.1.2.2.2. Generative Models. One ultimate goal of ML is to
design new materials (which recently has also been popularized
as “inverse design”). Generative models, like generative
adverserial networks (GANs) or variational autoencoderss
(VAEs) hold the promise to do this.60 GANs and VAEs can
create new molecules,61 or probability distributions,62 with the
desired properties on the computer.18 One example for the
success of generative techniques (in combination with
reinforcement learning) is the discovery of inhibitors for a
kinase target implicated in fibrosis, that were discovered in 21
days on the computer and also showed promising results in
experiments.63 An excellent outline of the promises of
generative models and their use for the design of new
compounds is given by Sanchez24 and Elton.64

The interface between unsupervised and supervised learning
is known as semisupervised learning. In this setting, only some
labels are known, which is often the case when labeling is
expensive. This was also the case in a recent study of the group
around Ceder,65 where they attempted to classify synthesis
descriptions in papers according to different categories like
hydrothermal or solid-state synthesis. The initial labeling for a
small subset was performed manually, but they could then use
semisupervised techniques to leverage the full data sets, i.e.,
also the unlabeled parts.

2.1.2.3. Reinforcement Learning: Agents Maximizing
Rewards. In reinforcement learning67 agents try to figure out
the optimal sequence of actions (which is known as policy) in
some environment to maximize a reward. An interesting
application of this subfield of ML in chemistry is to find the
optimal reaction conditions to maximize the yield or to create
structures with desired properties (cf. Figure 3).66,68 Reinforce-
ment learning has also been in the news for the superhuman
performance achieved on some video games.69,70 Still, it tends
to require a lot of training. AlphaGo Zero, for example, needed
nearly 5 million matches, requiring millions of dollars of
investment in hardware and computational time.71

2.2. Theory-Guided Data Science

We are at an age in which some argue that “the end of theory”
is near,72 but throughout this review we will find that many
successful ML models are guided by physics and physical
insights.73−75 We will see that the symmetry of the systems
guides the design of the descriptors and can guide the design of
the models (e.g., by decomposing the problems into
subproblems) or the choice of constraints. Sometimes, we
will also encounter hybrid approaches where one component
of the problem (often the local part, as locality is often an
assumption for the ML models, cf. section 4.1.0.2) is solved
using ML and that for example the electrostatic, long-range
interaction, is added using well-known theory.
Generally, the decomposition of the problem can help to

debug the model and make the model more interpretable and

Figure 2. (A) Three-dimensional energy landscape and (B) its two-
dimensional projection using sketchmap, which is a dimensionality
reduction technique. The biasing potentials can now be represented
in terms of sketchmap coordinates. Figure reproduced from ref 48.
Copyright 2012 National Academy of Sciences.
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physical.76 For example, physics-guided breakdown of the
target proved to be useful in the creation of a model for the
equation of state of fluid methane.77

Physical insight can also be introduced using sparsity78 or
physics-based functional forms.79 Constraints, introduced for
example via Euler−Lagrange constrained minimization or
coordinate scaling (stretching the coordinates should also
stretch the density), have also proven to be successful in the
development of ML learned density functionals.80,81

That physical insight can guide model development has been
shown by Chmiele et al., who built a model of potential energy
surfaces using forces instead of energies to respect energy
conservation (also, the force is a quantity that is well-defined
for atoms, whereas the energy is only defined for the full
system).82,83

This paradigm of incorporating domain knowledge into the
ML workflow is also known as theory-guided data science.84,85

Theory-guided data science can help to get the right answers
for the right reasons, and we will revisit it in every chapter of
this review.

2.3. Scientific Method in Machine Learning: Strong
Inference and Multiple Models

Throughout this review we will encounter the method of
strong inference,86,87 i.e., the need for alternative hypotheses,
or more generally the integral role of critical thinking, at

different placesmostly in the later stages of the ML pipeline
when one analyzes a model. The idea here is to always pursue
multiple alternative hypotheses that could explain the perform-
ance of a model: Is the improved performance really because of
a more complex architecture or rather due to better
hyperparameter optimization (cf. ablation testing in section
7.8.1) or does the model really learn sensible chemical
relationships or could we achieve similar performance with
random labels (cf. randomization tests as discussed in section
7.988,89)?
ML comes with many opportunities but also many pitfalls.

In the following, we review the details of the supervised ML
workflow to aid the use of ML for the progress of our field.

3. SELECTING THE DATA: DEALING WITH LITTLE,
IMBALANCED, AND NONREPRESENTATIVE DATA

The first, but most important step in ML is to generate good
training data.90 This is also captured in the “garbage in garbage
out” saying among ML practitioners. Data matters more than
algorithms.6,91 In this section, we will mostly focus on the rows
of the feature matrix, X, and discuss the columns of it, the
descriptors, in the next section.
That the selection of suitable data can be far from trivial is

illustrated with Anscombe’s quartet (cf. Figure 4).92 In this
archetypal example four different distributions, with distinct
graphs, have the same statistics, e.g., due to single high-leverage

Table 1. Common Technical Terms Used in ML and Their Meanings

technical term explanation

bagging acronym for bootstrap aggregating, ensemble technique in which models are fitted on bootstrapped samples from the data and then
averaged

bias error that remains for infinite number of training examples, e.g., due to limited expressivity
boosting ensemble technique in which weak learners are iteratively combined to build a stronger learner
bootstrapping calculate statistics by randomly drawing samples with replacement
classification process of assigning examples to a particular class
confidence interval interval of confidence around predicted mean response
feature vector with numeric encoding of a description of a material that the ML uses for learning
fidelity measure of how close a model represents the real case
fitting estimating parameters of some models with high accuracy
gradient descent optimization by following the gradient, stochastic gradient descent approximates the gradient using a mini-batch of the available data
hyperparameters tuning parameters of the learner (like learning rate, regularization strength) which, in contrast to model parameters, are not learned

during training and have to be specified before training
instance based learning learning by heart, query data are compared to training examples to make a prediction
irreducible error error that cannot be reduced (e.g., due to noise in the data), i.e., that is also there for a perfect model. Also known as Bayes error rate
label (target) the property one wants to predict
objective function (cost
function)

the function that a ML algorithm tries to minimize

one-hot encoding method to represent categorical variables by creating a feature column for each category and using value of one to encode the presence
and zero to encode the absence

overfitting the gap between training and test error is large, i.e., the model solely “remembers” the training data but fails to predict on unseen
examples

predicting making predictions for future samples with high accuracy
prediction interval interval of confidence around predicted sample response, always wider than confidence interval
regression process of estimating the continuous relationship between a dependent variable and one or more independent variables
regularization describes techniques that add terms or information to the model to avoid overfitting
stratification data is divided in homogeneous subgroups (strata) such that sampling will not disturb the class distributions
structured data data that is organized in tables with rows and columns, i.e., data that resides in relational databases
test set collection of labels and feature vectors that is used for model evaluation and which must not overlap with the training set
training set collection of labels and feature vectors that is used for training
transfer use knowledge gained on one distribution to perform inference on another distribution
unstructured data e.g., image, video, audio, text. i.e., data that is not organized in a tabular form
validation set also known as development set, collection of labels and feature vectors that is used for hyperparameter tuning and which must not

overlap with the test and training sets
variance part of the error that is due to finite-size effects (e.g., fluctuations due to random split in training and test set)
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points. This example emphasizes the notion in ML that
statistics can be deceiving, and why in ML so much emphasis is
placed on the visualization of the data sets.
3.1. Limitations of Hypothetical Databases

Hypothetical databases of COFs, MOFs, and zeolites have
become popular and are frequently used as a training set for
ML modelsmostly because they are the largest self-
consistent data sources that are available in this field. But
due to the way in which the databases are constructed they can
only cover a limited part of the design space (as one uses a
finite, small, number of linkers and nodes)which is also not
necessarily representative of the “real world”.
The problem of idealized models and hypothetical structures

is even more pronounced for materials with unconventional
electronic properties. Many features that favor topological
materials, which are materials with special shape of their
electronic bands due to the symmetries of the atom positions,
work against stability. For example, creating a topological
insulator (which is insulating in the bulk, but conductive on

the surface) involves moving electrons into antibonding
orbitals, which weakens the lattice.93 Also, in the real world
one often has to deal with defects and kinetic phenomena
real materials are often nonequilibrium structures93,94while
most databases assume ideal crystal structures.

3.2. Sampling to Improve Predictive Performance

A widespread technique in ML is to randomly split all the
available data into a training and a test set. But this is not
necessarily the best approach as random sampling might not
sample some sparsely populated regions of the chemical space.
A more reasonable sampling approach would cover as much of
the chemical space as feasible to construct a maximally
informed training set. This is especially important when one
wants to minimize the number of training points. Limiting the
number of training points can be reasonable or even essential
when the featurization or labeling is expensive, e.g. when it
involves experiment or ab initio calculations. But it can also be
necessary for computational reasons as in the case of kernel
methods (cf. section 5.2.2), for which the data needs to be kept
in memory and for which the computational cost scales
cubically with the number of training points.

3.2.1. Diverse Set Selection. 3.2.1.1. (Greedy) Farthest
Point Sampling. Instead of randomly selecting training points,
one can try to create a maximally diverse data set to ensure a
more uniform sampling of the design space and to avoid
redundancy. Creating such as data set, in which the distances
between the chosen data points are maximized, is known as the
maximum diversity problem (MDP).95 Unfortunately, the
MDP is of factorial computational cost and hence becomes
computationally prohibitive for large data sets.96−98 Therefore,
in practice, one usually uses a greedy algorithm to perform
FPS. Those algorithms add points for which the minimum
distance to the already chosen points is maximal (i.e., using the
max-min criterion, this sampling approach is also known as
Kennard−Stone sampling, cf. pseudocode in Chart 1).
This FPS is also a key to the work by Moosavi et al.,21 in

which they use a diverse set of initial reaction conditions, most
of which will yield to failed reactions, to build their model for
reaction condition prediction.

3.2.1.2. Design of Experiments. The efficient exploration is
also the main goal of most design of experiment (DoE)
methods,99,100 which in chemistry have been widely used for
reaction condition or process optimization,101−104 where the
task is to understand the relationship between input variables
(temperature, reaction time, ...) and the reaction outcome in
the least time and effort possible. But they also have been used
in computer science to generate good initial guesses for
computer codes.105,106

If our goal is to perform reaction condition prediction, the
use of DoE techniques can be a good starting point to get an
initial training set that covers the design space. Similarly, they
can also be a good starting point if we want to build a model
that correlates polymer building blocks with the properties of
the polymer: since also in this case, we want to make sure that
we sample all relevant combinations of building blocks
efficiently. The most trivial approach in DoE is to use a full-
factorial design in which the combination of all factors in all
possible levels (e.g., all relevant temperatures and reaction
times) is tested. But this can easily lead to a combinatorial
problem. As we discussed in section 3.2.1.1, one could cover
the design space using FPS. But the greedy FPS also has some
properties that might not be desirable in all cases.107 For

Figure 3. Reinforcement learning scheme illustrated based on the
approach chosen by Popova et al.66 for drug design. They use a
recurrent neural network (RNN) (cf. section 5.1.1.5) for the
generation of simplified molecular input line entry system (SMILES)
strings and a deep NN for property prediction. In a first stage, both
models are trained separately, and then they are used jointly to bias,
using the target properties as the reward, the generation of new
molecules. This example also nicely shows that the boundary between
the different “flavors” of ML is fuzzy and that they are often used
together.

Figure 4. Anscombe’s quartet shows the importance of visual-
ization.92 The four data sets have the same mean (7.50), standard
deviation (1.94), and regression line, but still look completely
different.
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instance, it tends to preferentially select points that lie at the
boundaries of design space. Also, one might prefer that the
samples are equally spaced along the different dimensions.
Different classical DoE techniques can help to overcome

these issues.107 In latin hypercube sampling (LHS) the range
of each variable is binned in equally spaced intervals and the
data is randomly sampled from each of these intervalsbut in
this way, some regions of space might remain unexplored. For
this reason, the max-min-LHS has been developed in which
evenly spread samples are selected from LHS samples using the
max-min criterion.
3.2.1.3. Alternative Techniques. An alternative for the

selection of a good set of training points can be the use of
special matrix decompositions. CUR is a low-rank matrix
decomposition into matrices of actual columns (C) and rows
(R) of the original matrix, whose main advantage over other
matrix decompositions, such as PCA, is that the decomposition
is much more interpretable due to use of actual columns and
rows of the original matrix.108 In the case of PCA, which builds
linear combinations of features, one would have to analyze the
loadings of the principal components to get an understanding.
In contrast, the CUR algorithm selects the columns (features)
and rows (structures) which have the highest influence on the
low-rank fit of the matrix. And selecting structures with high
statistical leverage is what we aim for in diverse set selection.
Bernstein et al. found that the use of CUR to select the most
relevant structures was the key for their self-guided learning of
PES, in which a ML force-field is built in an automated
fashion.109

Further, also D-optimal design algorithms have been put to
use, in which samples are selected that maximize the ∥XTX∥
matrix, where X is the information matrix (in some references
it is also called dispersion matrix) which contains the model
coefficients in the columns and the different examples in the
rows.110−112 Since it requires the model coefficients, it was
mostly used with multivariate linear regression models in
cheminformatics.
Moreover, other unsupervised learning approaches such as

self-organizing maps,50 k nearest neighbor (kNN),113 sphere
exclusion,114 or hierarchical clustering115,116 have been used,
though mostly for cheminformatics applications.117

3.2.1.4. Sampling Configurations. For fitting of models for
potential energy surfaces, nonequilibrium configurations are
needed. Here, it can be practical to avoid arbitrarily sampling
from trajectories of molecular simulations as consecutive
frames are usually highly correlated. To avoid this, normal
mode sampling, where the atomic positions are displaced along
randomly scaled normal modes, has been suggested to generate
out-of-equilibrium chemical environments and has been
successfully applied in the training of the ANI-1 potential.118

Similarly, binning procedures, where e.g. the amplitude of the
force in images of a trajectory is binned, have been proposed.
When generating the training data, one can then sample from
all bins (like in LHS).83

Still, one needs to remember that the usage of rational
sampling techniques does not necessarily improve the
predictive performance on a brand-new data set which might
have a different underlying distribution.119 For example,
hypothetical databases of COFs contain mainly large pore
structures, which are not as frequent in experimental
structures. Training a model on a diverse set of hypothetical
COFs will hence not guarantee that our model can predict
properties of experimental structures, which might be largely
nonporous.
An alternative to rationally chosen (e.g., using DoE

techniques or FPS), and hence static, data sets is to let the
model (actively) decide which data to use. We discuss this
active learning technique next.

3.3. Active Learning

An alternative to using static training sets, which are assembled
before training, is to let the machine decide which data are
most effective to improve the model at its current state.120 This
is known as active learning.121 And it is especially valuable in
cases where the generation of training data is expensive, such
as for experimental data or high-accuracy quantum chemical
calculations where a simple “Edisonian” approach, in which we
create a large library of reference data by brute force, might not
be feasible.
Similar ideas, like adding quantum-mechanical data to a

force field when needed, have already been used in molecular

Chart 1. Pseudocode for the Greedy Implementation of a FPS Schemea

aThe initialization could also be to choose a point that is maximally distant from the center or using the two most separated points, as in the
original Kennard−Stone framework.
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dynamics simulations before they became widespread among
the ML practitioners in materials science and chemistry.122,123

One of the ways to determine where the current model is
ambiguous, i.e., to decide when new data is useful, is to use an
ensemble of models (which is also known as “query by
committee”).124,125 The idea here is to train an ensemble of
models, which are slightly different and hence will likely give
different, wrong, answers if the model is used outside its
domain of applicability (cf. section 7.6); but the answers will
tend to agree mostly when the model is used within the
domain of applicability.
Another form of uncertainty sampling is to use a model that

can directly output a probability estimatelike the width of
the posterior (target) distribution of a Gaussian process (cf.
section 5.2.3 for more details). One can then add training
points to the space where the distribution is wide and the
model is uncertain.126

Botu and Ramprasad reported a simpler strategy, which is
related to the concept of the domain of applicability, which we
will discuss below (cf. section 7.6). The decision if a
configuration needs new training data is not made based on
an uncertainty measure but merely by using the distance of the
fingerprints to the already observed ones.127 Active learning is
closely linked to Bayesian hyperparameter optimization (cf.
section 6.1) and self-driving laboratories, as they have the goal
to choose experiments in the most efficient way, where active
learning tries to choose data in the most efficient way.128,129

3.4. Dealing with Little Data

Often, one can use tricks to artificially enlarge the data set to
improve model performance. But these tricks generally require
some domain knowledge to decide which transformations are
applicable to the problem, i.e. which invariances exist. For
example, if we train a force field for a porous crystal, one can
use the symmetry of the crystal to generate configurations with
equivalent energies (which would be a redundant operation
when one uses descriptors that already respect this symmetry).
For image data, like steel microstructures130 or 2D diffraction
patterns,131 several techniques have been developed, which
include to randomly rotate, flip, or mirror the image which is,
for example, implemented in the ImageDataGenerator module
of the keras Python package. Notably, there is also effort to
automate the augmentation process, and promising results
have been reported for images.132 However, data augmentation
always relies on assumptions about the equivariances and
invariances of the data, wherefore it is difficult to develop
general rules for any type of data set.
Still, the addition of Gaussian noise is a method that can be

applied on most data sets.133 This works effectively as data
augmentation if the data is presented multiple times to the
model (e.g., in NNs where one has multiple forward and
backward passes of the data through the network). By the
addition of random noise, the model will then see a slightly
different example upon each pass of the data. The addition of
noise also acts as “smoother”, which we will explore in more
detail when we discuss regularization in section 6.2.1.
Oviedo et al. reported the impact data augmentation can

have in materials science. Thin-film X-ray diffraction (XRD)
patterns are often distorted and shifted due to strain or lattice
contraction or expansion. Also, the orientations of the grains
are not randomized, as they are in a powder, and some reflexes
will have an increased intensity depending on the orientation
of the film. For this reason, conventional simulations cannot be

used to form a training set for a ML model to predict the space
group based on the diffraction pattern. To combat the data
scarcity problem, the authors expanded the training set,
generated by simulating diffraction patterns from a crystal
structure database, by taking data from the training set and by
scaling, deleting, or shifting of reflexes in the patterns. In this
way, the authors generated new training data that correspond
to the typically experimental distortions.134 A similar approach
was also chosen by Wang et al., who built a convolutional
neural network (CNN) to identify MOFs based on their X-ray
powder diffraction (XRPD) patterns. Wang et al. predicted the
patterns for MOFs in the Cambridge Structure Database
(CSD) and then augmented their data set by creating new
patterns by merging the main peaks of the predicted patterns
with (shuffled) noise from pattern they measured in their own
lab.135

Sometimes, data augmentation techniques have also been
used to address nonuniqueness or invariance problems. The
Chemception model is a CNN, inspired by models for image
recognition, that is trained to predict chemical properties based
on images of molecular drawings.136 The prediction should, of
course, not depend on the relative orientation of the molecule
in the drawing. For this reason, the authors introduced
augmentation methods such as rotation. Interestingly, many
image augmentation techniques also use cropping. However,
the local information density in drawings of molecules is higher
than in usual images and hence losing a part of the image
would be a more significant problem.
Another issue is that not all data sets are unique. For

example, if one uses (noncanonical) SMILES strings to
describe molecules, one has to realize that they are not
unique. Therefore, Bjerrum trained this model on all possible
SMILES strings for a molecule and obtained a data set that was
130 times bigger than the original data set.137 This idea was
also used for the Coulomb matrix, a popular descriptor that
encodes the structure by capturing all pairwise Coulomb terms,
based on the nuclear charges, in a matrix (cf. section 4.2.2.3).
Without additional steps, this representation is not permuta-
tion invariant (swapping rows or columns does not change the
molecule but would change the representation). Montavon
used an augmented data set in which they mapped each
molecule to a set of randomly sorted Coulomb matrices and
could improve upon other techniques of enforcing permuta-
tion symmetrylikely due to the increased data set size.138

But also simple physical heuristics can help if there is only
little data to learn from. Rhone et al. used ML to predict the
outcome of reactions in heterogeneous catalysis, where only
little curated data is available.139 Hence, they aided their model
with a reaction tree and chose the prediction of the model that
is closest to a point in the reaction tree (and hence a
chemically meaningful reaction). Moreover, they also added
heuristics like conservation rules and penalties for some
transformations (e.g., based on the difference of heavy atoms in
educts and products) to support the model.
Another promising avenue is multitask learning approaches

where a model, like a deep neural networks (DNN), is trained
to predict several properties. The intuition here is to capture
the implicit information in the relationship between the
multimodal variables.140,141 Closely related to this are transfer
learning approaches (cf. section 10.3), which train a model on
a large data set and then “refine” the weights of the model
using a smaller data set.142 Again, this approach is a well-
established practice in the “mainstream” ML community.
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Given the importance of the data scarcity problem, there is a
lot of ongoing effort in developing alternative solutions to
combat this challenge, many of which build on encoding−
decoding architectures. Generative models like GANs or VAE
can be used to create new examples by learning how to
generate an underlying distribution of the data.143

Some problems may also be suitable for so-called one-shot
learning approaches.76,144,145 In the field of image recognition,
the problem of correctly classifying an image after seeing only
one training example for this class (e.g., correctly assigning
names to images of persons after having seen only one image
for each person) has received a lot of interest, supposedly
because this is what humans are able to dobut machines are
not, at least not in the “usual” classification setting.28

One- or few-shot learning is based on learning a so-called
attention mechanism.146 Upon inference, the attention
mechanism, which is distance measured to the memory, can
be exploited to compare the new example to all training points
and express the prediction as a linear combination of all labels
in the support set.147 One approach to do this is Siamese
learning, using an NN that takes two inputs and then learns an
attention mechanism. This has also been used, in a refined
formulation, by Pande and co-workers to classify the activity of
small molecules on different assays for pharmaceutical
activity.148 Such techniques are especially appealing for
problems where only little data is available.
Still, one always should remember that there is no absolute

number that defines what “little data” is. This number depends
on the problem, the model, and the featurization. But it can be
estimated using learning curves, in which one plots the error of
the model against the number of training points (cf. section 7).

3.5. Dealing with Imbalanced Data Labels

Often, data is imbalanced, meaning that different classes which
we attempt to predict (e.g., “stable” and “unstable” or “low
performing” and “high performing”) do not have the same
number of examples in our training set. Balachandran et al.
faced this challenge when they tried to predict compounds that
break spatial inversion symmetry and hence could be
interesting for e.g. their piezoelectric properties.149 They
found that one symmetry group was misclassified to 100%
due to imbalanced data. To remedy this problem, they used an
oversampling technique, which we will briefly discuss next.
Oversampling, which means adding points to the under-

represented class, is one of the most widely used approaches to
deal with imbalanced data. The opposite approach is
undersampling, in which instances of the majority class are
removed. Since random oversampling can cause overfitting
(due to replication of training points) and undersampling can
lead to poorer predictive performance (as training points are
eliminated), both strategies have been refined by means of
interpolative procedures.150

The synthetic minority oversampling technique (SMOTE)
for example, creates new (synthetic) data for the minority class
by randomly selecting a point on the vector connecting a data
point from the minority class with one of its nearest neighbors.
In SMOTE, each point in the minority class is treated
equallywhich might not be ideal since one would expect that
examples close to class boundaries are more likely to be
misclassified. Borderline-SMOTE and (ADASYN) try to
improve on this point. In a similar vein, it can also be easier
to learn clear classification rules when so-called Tomek links151

are deleted. Tomek links are pairs of two points from different

classes for which the distance to the example from the
alternative class is smaller than to any other example from their
class.
Still, care needs to be taken in the case of very imbalanced

data in which algorithms can have difficulties to recognize class
structures. In this case over- or undersampling can even
deteriorate the performance.152

A useful Python package to address data imbalance problems
is imbalanced-learn, which implements all the methods we
mentioned and which are analyzed in more detail in a review
by He and Garcia.150 There they also discuss cost-sensitive
techniques. In these approaches, a cost matrix is used to
describe a higher penalty for misclassifying examples from a
certain classwhich can be an alternative strategy to deal with
imbalanced data.150 Importantly, oversampling techniques
should only be appliedas all data transformationsafter
the split into training and test sets.
In any case, it is also advisible to use stratified sampling

which ensures that the class proportions in the training set are
equal to the ones in the test set. An example of the influence of
stratified sampling is shown in Figure 5 where we contrast the
random with the stratified splitting of structures from the
database of Boyd et al.13

4. WHAT TO LEARN FROM: TRANSLATING
STRUCTURES INTO FEATURE VECTORS

After having reviewed the rows of the feature matrix, we now
focus on the columns and discuss ways to generate those
columns (descriptors) and how to select the best ones (as
more is not always better in the case of feature columns). The
possibilities for structural descriptors are so vast that it is
impossible to give a comprehensive overview, especially since
there is no silver bullet and the performance of descriptors
depends on the problem and the learning setting. In some
cases, local fingerprints based on symmetry functions might be
more appropriate, e.g., for potential energy surfaces, whereas in
other cases, where structure−property insights are needed,
higher-level features such as pore shapes and sizes can be more
instructive.
An important distinction of NNs compared to classical ML

models, like kernel methods (cf. section 5.2.2), is that NNs can
perform representation learning; that is, the need for highly
engineered structural descriptors is less pronounced than for
“classical” learners as NN can learn their own features from
unstructured data. Therefore, one will find NN models that
directly use the positions and the atomic charges whereas such

Figure 5. Example for the importance of stratification. For this
example, we use a threshold of 2.5 mmol CO2/g to group structures
in low and high performing materials, which is slightly higher than the
threshold chosen by Boyd et al.13 Then, we randomly draw 100
structures and can observe that the class distribution gets distorted
sometimes we do not have any high performing materials in our
sample. Stratification can be used to remedy this effect.
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an approach is deemed to fail with classical ML models, like
kernel ridge regression (KRR), that rely on structured data.
The representation learning of NNs can potentially leverage
regularities in the data that cannot be described with classical
descriptorsbut it only works with large amounts of data. We
will discuss this in more detail when we revisit special NN
architectures in section 5.1.1.2.
The quest for good structural descriptors is not new.

Cheminformatics researchers tried to devise strategies to
describe structures, e.g., to determine whether a compound has
already been deposited on the chemical abstract services
(CAS) database, which led to the development of Morgan
fingerprints.153 Also the demand for a quantitative structure
activity relationship (QSAR) in drug development led to the
development of a range of descriptors that are often highly
optimized for a specific application (also because simple linear
models have been used) as well as heuristics (e.g., Lipinkski’s
rule of five154). But also fingerprints (e.g., Daylight finger-
prints)i.e., representations of the molecular graphs have
been developed. We will not discuss them in detail in this
review as most of them are not directly applicable to solid-state
systems.155,156 Still, one needs to note that for the description
of MOFs one needs to combine information about organic
molecules (linkers), metal centers, and the framework

topologies wherefore not all standard featurization approaches
are ideally suited for MOFs. Therefore, molecular fingerprints
can still be interesting to encode the chemistry of the linkers in
MOFs, which can be important for electronic properties or
more complex gas adsorption phenomena (e.g., involving CO2,
H2O).
A decomposition of MOFs into the building blocks and

encoding of the linker using SMILES was proposed in the
MOFid scheme from Bucior et al. (cf. Figure 6).157 This
scheme is especially interesting to generate unique names for
MOFs and in this way to simplify data-mining efforts. For
example, Park et al. had to use a six-step process to identify
whether a string represents the name of a MOF in their text-
mining effort,158 and then one still has to cope with
nonuniqueness problems (e.g., Cu-BTC vs HKUST-1). One
main problem of such fingerprinting approaches for MOFs is
that they require the assignment of bonds and bond orders,
which is not trivial for solid structures,159 and especially for
experimental structures that might contain disorder or
incorrect protonation.
The most popular fingerprints for molecular systems are

implemented and documented in libraries like RDKit,160

PaDEL,161 or Mordred.162 For a more detailed introduction
into descriptors for molecules we can recommend a review by

Figure 6. Building principle of the MOFid and MOFkey identifiers for HKUST-1. Bucior et al. use a SMILES derived format in the MOFid and
whereas the MOFkey is inspired by the InChIkey format, which is a hashed version of the InChi fingerprint, which is more standardized than
SMILES. Figure adopted from Bucior et al.157

Figure 7. Illustration of transformations of crystal structures to which an ideal descriptor should be invariant. Structures drawn with iRASPA.167
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Warr163 and the Deep Learning for the Life Sciences book,164

which details how to build ML systems for molecules.

4.1. Descriptors

There are several requirements that an ideal descriptor should
fulfill to be suitable for ML:165,166

A descriptor should be invariant with respect to trans-
formations that preserve the target property (cf. Figure 7).
For crystal structures, this means that the representations

should respect periodicity, translational, rotational, and
permutation symmetry (i.e., the numbering of the atoms in
the fingerprint should not influence the prediction). Similarly,
one would want equivariances to be conserved. Equivariant
functions transform in the same way as their arguments, as is,
for example, the case for the tensorial properties like the force
(negative gradient of energy) or the dipole moment, which
both translate the same way as the positions.168,169

Respecting those symmetries is important from a physics
perspective as (continuous) symmetries are generally linked to
a conserved property (cf. Noether’s theorem, e.g., rotational
invariance corresponds to conservation of angular momen-
tum). Conceptually, this is different from classical force field
design where one usually focuses on correct asymptotic
behavior. In ML, the intuition is to rather use symmetries to
preclude completely nonphysical interactions.
As discussed above, one could in principle also attempt to

include those symmetries using data augmentation techniques,
but it is often more robust and efficient to “hard-code” them
on the level of the descriptor. Notably, the introduction of the
invariances on the descriptor level also removes alignment
problems, when one would like to compare two systems.
A descriptor should be unique (i.e., nondegenerate). This

means that each structure should be characterized by one
unique descriptor and that different structures should not share
the same descriptor. When this is not the case, the model will
produce prediction errors that cannot be removed with the
addition of data.170 Von Lilienfeld et al. nicely illustrate this in
analogy to the proof of the first Hohenberg−Kohn theorem
trough reductio ad absurdum.171 This uniqueness is automati-
cally the case for invertible descriptors.
A descriptor should allow for (cross-element) generalization.

Ideally, one does not want to be limited in system size or
system composition. Fixed vector or matrix descriptors, like the
Coulomb matrix (see section 4.2.2.3), can only represent
systems smaller than or equal to the dimensionality of the
descriptor. Also, one sometimes finds that the linker type172 or
the monomer type is used as a feature. Obviously, such an
approach does not allow for generalization to new linkers or
monomer types.
The cross-element generalization is typically not possible if

different atom types are encoded as being orthogonal (e.g., by
using a separate NN for each atom type in a high-dimensional
neural network potential (HDNNP) or by grouping
interactions by the atomic numbers, e.g., bag of bonds
(BoB), partial radial distribution function (RDF)). To
introduce generalizability across atom types one needs to use
descriptors that allow for a chemically reasonable measure of
similarity between atom types (and trends in the periodic
table). What an appropriate measure of similarity is depends
on the task at hand, but an example for a descriptor that can be
relevant for chemical reactivity or electronic properties is the
electronegativity.

A descriptor should be ef f icient to calculate. The cardinal
reason for using supervised ML is to make simulations more
efficient or to avoid expensive experiments or calculations. If
the descriptors are expensive to compute, ML no longer fulfills
this objective and there is no reason to add a potential error
source.
A descriptor should be continuous: For differentiability,

which is needed to calculate, e.g., forces, and for some
materials design applications61 it is desirable to have
continuous descriptors. If one aims to use the force in the
loss function (force-matching) of a gradient descent algorithm,
at least second order differentiability is needed. This is not
given for many of the descriptors which we will discuss below
(like global features as statistics of elemental properties) and is
one of the main distinctions of the symmetry functions from
the other, often not localized, tabular descriptors which we will
discuss.
Before we discuss some examples in more detail, we will

review some principles that we should keep in mind when
designing the columns of the feature matrix.

4.1.0.1. Curse of Dimensionality. One of the main
paradigms that guide the development of materials descriptors
is the so-called curse of dimensionality, which describes that it is
often hard to find decision boundaries in a high-dimensional
space as the data often no longer covers the space. For
example, in 100 dimensions nearly the full edge length is
needed to capture 10% of the total volume of the 100-
dimensional hypercube (cf. Figure 8). This is also known as

empty space phenomenon and describes that similarity-based
reasoning can fail in high dimensions given that also the
nearest neighbors are no longer close in such high-dimensional
spaces.90 Often, this is also discussed in terms of Occam’s
razor: “Simpler solutions are more likely to be correct than
complex ones.” This not only reflects that learning in high-
dimensional space brings its own problems but also that
simplicity, which might be another way of asking of
explainability, for itself is a value (due to its aesthetics) we
should strive for.173 More formally, this is related to the
minimum descriptor length principle174 which views learning
as a compression process and in which the best model is the
smallest one in terms of itself and the data (this idea is rooted
in Solomonoff’s general theory of inference175).176,177

4.1.0.2. Chemical Locality Assumption. Many descriptors
that we discuss below are based on the assumption of chemical

Figure 8. Illustration of the empty space phenomenon (the curse of
dimensionality). For this illustration we consider the data to be
uniformly distributed in a d dimensional unit cube. The edge length of
a hypercube corresponding to a fraction q of the total volume is q1/d,
which we plotted here for different d. The dotted line in the figure
represents 10% of the volume, for which we would nearly need to
consider the full edge length in 100-dimensional space. This means
that locality is lost in high dimensions, which can be problematic for
algorithms that use the local neighborhood for their reasoning.
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locality, meaning that the total property of a compound can be
decomposed into a sum of contributions of local (atom-
centered) environments:

property(descriptor) model (descriptor)
i

i i

atoms

∑=
(1)

This approximation (cf. eq 1) is often used in models
describing the PES.
The locality approximation is usually justified based on the

nearsightedness principle of electronic matter, which says that
a perturbation at a distance has little influence on the local
density.178 And this “nearsighted” approach also guided the
development of many-body potentials like embedded atom
methods, linear-scaling DFT methods, or other coarse-grained
models in the past (also here the system is divided into
subsystems).179,180

The division into subsystems can also be a feat for training
of ML models, as one can learn on fragments to predict larger
systems, as it has been done for example for a HDNNP for
MOF-5.125 Also, this approach makes it easier to incorporate
size extensivity, i.e., to ensure that the energy of a system
composed of the subsystems A + B is indeed the sum of the
energies of A and B.181

But such an approach might be less suited for cases like gas
adsorption where both the local chemical environment
(especially for chemisorption) but also the pore shape, size,
and accessibility play a rolei.e., one wants pore-centered
descriptors rather than atom-centered descriptors. For this case
global, “farsighted”, descriptors of the pore size and shape, like
pore limiting diameters, accessible surface areas,182−184 or
persistent homology fingerprints,185 can be better suited. This
is important to keep in mind as target similarity, i.e., how good
we can approach the property of interest (e.g., the PES or the
gas adsorption properties), is one of the main contributions to

the error of ML models.186 Also, one should be aware that
typically cutoffs of 6 Å around an atom are used to define the
local chemical environments. In some systems, the physics of
the phenomenon is, however, dominated by long-range
behavior187 that cannot be described within the locality
approximation. Correctly describing such long-range effects is
one of the main challenges of ongoing research.188

Importantly, a model that assumes atom-centered descrip-
tors is invariant to the order of the inputs (permutational
invariance).189 Interestingly, classical force fields do not show
this property. The interactions are defined on a bond graph,
and the exchange of an atom pair can change the energy.168,190

4.2. Overview of the Descriptor Landscape

In Figure 9 we show an overview of the space of material
descriptors. We will make distinct two main classes of
descriptors: local ones, that only describe the local (chemical)
environment, and global ones, which describe the full
structures at once.
Nearly as vast as the descriptor landscape is the choice of

tools that are available to calculate these descriptors. Some
notable developments are the matminer package,191 which is
written in Python, the DSCribe package, which has a Python
interface, but where the computationally expensive routines are
written in C/C++ and AMP, which also has a Python interface
and where the expensive fingerprinting can be performed in
Fortran.192 The von Lilienfeld group is currently also
implementing efficient Fortran routines in their QML
package.193 Other packages like CatLearn,194 which also has
functionalities for surfaces, or QUIP,195 aenet,196 and simple-
nn,197 ai4materials198 also contain functions for fingerprinting
of solid systems. For the calculation of features based on
elemental properties, i.e., statistics based on the chemical
composition, the Magpie package is frequently used.199

Figure 9. Nonexhaustive overview over the landscape of descriptors for solids. In blue, we highlighted descriptors for which we are aware of an
application in the field of porous materials, for which we give an example in green.
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4.2.0.1. General Theme of Local and Global Fingerprints.
In the following, we will also see that many fingerprinting
approaches are just a variation of the same theme, namely
many-body correlation functions, which can be expressed in
Dirac notation as

gr r r( )j
i

ij i
(1) (2)∑χ α⟨ | ⟩ = − | ⟩

(2)

This shows that the abstract atomic configuration |χj
(v)⟩, in

terms of the (v + 1)-body correlation, can be described with a
cross-correlation function (g(2) being equivalent to the radial
distribution function) and information about the elemental
identity of atom i, |αi⟩ (see Figure 10). And it also already
indicates why the term “symmetry functions” is often used for
functions of this type. Descriptors based on eq 2 are said to be
symmetrized, e.g., invariant to translations of the entire
structure (symmetrically equivalent positions will give rise to
the same fingerprint).
Some fingerprints take into account higher orders of

correlations (like triples in the bispectrum) but the idea
behind most of them is the samethey are just projected onto
a different basis (e.g., spherical harmonics, ⟨nlm|, instead of the
Cartesian basis ⟨r|).200,201 Notably, it was recently shown that
also three-body descriptors do not uniquely specify the
environment of an atom, but Pozdnyakov et al. also showed
that in combination with many neighbors, such degeneracies
can often be lifted.202

Different flavors of correlation functions are used for both
local and global descriptors, and the different flavors might
converge differently with respect to the addition of terms in the
many-body expansion (going from two-body to the inclusion
of three-body interactions and so on).203 Local descriptors are
usually derived by multiplying a version (projection onto some
basis) of the many-body correlation function with a smooth
cutoff function such as
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where rcut is the cutoff radius which determines the set of i the
summation in eq 2 runs over.
We will start our discussion with local descriptors that use

such a cutoff function (cf. eq 3) and which are usually
employed when atomic resolution is needed.
In some cases, especially when only the nearest neighbors

should be considered, Voronoi tessellations are used to assign
which atoms from the environment should be included in the
calculation of the fingerprint. This approach is based on the
nearest neighbor assignment method that was put forward by
O’Keeffe.204

4.2.1. Local Descriptors. 4.2.1.1. Instantaneous Corre-
lation Functions via Cutoff Functions. For the training of
models for PES, flavors of instantaneous correlation functions
have become the most popular choices and are often used with
kernel methods (cf. section 5.2.2) or HDNNP (cf. section
5.1.1.1).
The archetypal examples of this type are the atom-centered

symmetry functions suggested by Behler and Parinello, where
the two-body term has the following form

)G r R f rexp ( ( )i
j i

ij s c ij
2

all 2∑ η= [− − ]
≠ (4)

which is a sum of Gaussians, and the number of neighbors that
are taken into account in the summation is determined by the
cutoff function fc (cf. eq 3). Behler and Parinello also suggest a
three-order term, which takes all the internal angles for triplets
of atoms, θijk, into account. This featurization approach has
been the driver of the development of many HDNNPs (cf.
section 5.1.1.1).
One should note that these fingerprints contain a set of

hyperparameters that should be optimized, like the shift Rs or
the width of the Gaussian η, for which usually a set of different
values is used to fingerprint the environment. Also, similar to
molecular simulations, the cutoff rc is a parameter that should
be carefully set to ensure that the results are converged.
Fingerprints of this type (cf. eq 2) are translational invariant,

because they only depend on internal coordinates, and
rotational invariant, because they only depend on internal
angles (in the case of the v = 3 correlation). The permutation
invariance is due to the summation (which does not depend on
the order) over all neighbors i, in eq 4 (and also in the locality
approximation itself, cf. eq 1).
An alternative approach for fingerprinting in terms of

symmetry functions has been put forward by Csańyi and co-
workers.205 They started by proposing the bispectrum
descriptor which is based on expanding the atomic density
distribution (with Dirac delta functions for g in eq 2) in
spherical harmonics. This allows, as advantage over the
Behler−Parinello symmetry functions, for systematic improve-
ments via the addition of spherical harmonics.
This corresponds to a projection of the atomic density onto

a four-dimensional sphere and representing the location in
terms of four-dimensional spherical harmonics.203,206 This
descriptor was improved with the smooth overlap of atomic
positions (SOAP) methodology, which is a smooth similarity
measure of local environments (covariance kernel, which we
will discuss in section 5.2.2) by writing g(r) in eq 2 using atom-
centered Gaussians as expansions with sharp features (Dirac
delta functions in the bispectrum) that are slowly converging.
Given that SOAP is a kernel, this descriptor found the most

application in kernel-based learning (which we will discuss
below in more detail, cf. section 5.2.2), as it directly defines a
similarity measure between environments (overlap between

Figure 10. Illustration of the concept of featurization using symmetry
functions. There are atom centered local environments that we can
represent with abstract kets |χ⟩, expressed in the basis of Cartesian
coordinates ⟨r|. The figure is a modified version of an illustration from
Ceriotti and co-workers.200
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the smooth densities), which has recently extended to tensorial
properties.207 This enabled Wilkins et al. to create models for
the polarizability of molecules.208

4.2.1.2. Voronoi Tessellation Based Assignment of Local
Environments. In some cases the partitioning into Wigner−
Seitz cells using Voronoi tessellation is used instead of a cutoff
function. These Wigner−Seitz cells are regions which are
closer to the central atom than to any other atom. The faces of
these cells can then be used to assign the nearest neighbors and
to determine coordination numbers.204 Ward et al. used this
method of assigning neighbors to construct local descriptions
of the environment that are not sensitive to small changes that
might occur during a geometry relaxation.209 These local
descriptors can be based on comparing elemental properties,
like the electronegativity, of the central atom to its neighbors

A p p

Ap
n n n i

n n
δ =

∑ −

∑ (5)

where An is the surface area of the face of the Wigner−Seitz
cell and pi and pn are the properties of central and neighboring
atoms, respectively.
A similar approach was also used in the construction of

PLMF which were proposed by Isayev et al.210 There, a crystal
graph is constructed based on the nearest-neighbor assignment
from the Voronoi tessellation, where the nodes represent
atoms that are labeled with a variety of different (elemental)
properties. Then, the graph is partitioned into subgraphs and
the descriptors are calculated using differences in properties
between the graph nodes (neighboring atoms) (cf. Figure 11).
The Voronoi decomposition is also used to assign the

environment in the calculation of the orbital field matrix
descriptor, which is the weighted sum of the one-hot encoded
vector of the electron configuration.211 One hot-encoding is a
technique that is frequently used in language processing and
that represents the feature vector of n possibilities with zeros
(feature not present) and ones (feature present). In the
original work, the sum and average of the local descriptors
were used as descriptors for the entire structure and also

suggested to gain insight into the importance of specific
electronic configurations using a decision tree analysis.
Voronoi tesselation is the dual problem of Delaunay

triangulation which attempts to assign points into tetrahedrons
(in three dimensions, in two dimensions into triangles, etc.)
which circumspheres contain no other point in its interiors.
The Delaunay tesselation found use in the analysis of zeolites,
where the geometrical properties of the tetrahedrons, like the
tetrahedrality or the volume, have been used to build models
that can classify zeolite framework types.212,213

Overall, we will see that a common approach to generate
global, fixed length, descriptors is that one calculates statistics
(like the mean, standard deviation, or maximum or minimum)
of base descriptors, that can be based on elemental properties
for each site.

4.2.2. Global Descriptors. 4.2.2.1. Global Correlation
Function. As already indicated, some properties are less
amenable to decomposition into contributions of local
environments and might be better described using the full,
global correlation functions. These approaches can be seen,
completely analogous to the local descriptors, as approxima-
tions to the many-body expansion, for example for the energy

E E E Er r r r r r( ) ( , ) ( , , ) ...
i

N

i
i j

N

i j
i j k

N

i j k
1

(1) (2) (3)∑ ∑ ∑= + + +
= < < <

(6)

As we discussed in the context of the symmetry functions for
local environments, we can choose where we truncate this
expansion (two-body pairwise distance terms, three-body
angular terms, ...) to trade-off computational and data
efficiency (more terms will need more training data) against
uniqueness. Similar to the symmetry functions for local
chemical environments, different projections of the informa-
tion have been developed. For example, the BoB representa-
tion214 bags different off-diagonal elements of the Coulomb
matrix into bags depending on the combination of nuclear
charges and has then been extended to higher-order
interactions in the bond-angles machine learning (BAML)

Figure 11. Schema illustrating the construction of property labeled materials fragments (PLMF). The concept behind this descriptor is that for
crystal structure (a) the nearest neighbors are assigned using Voronoi tessellation (b) and then used to construct a crystal graph that can be colored
with properties, which is then decomposed into subgraphs (d). Figure reprinted from Isayev et al.210
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representation.186 A main motivation behind this approach,
which has been generalized in the many-body tensor
representation (MBTR) framework,215 is to have a more
natural notion of chemical similarity than the Coulomb
repulsion terms. One problem with building bags is that they
are not of fixed length and hence need to be padded with zeros
to make them applicable for most ML algorithms.
An alternative method to record pairwise distances, that is

familiar to chemists from XRD, is the RDF, g(2)(r). Here,
pairwise distances are recorded in a binned fashion in
histograms. This representation inspired Schuett et al. to
build a ML model for the density of states (DOS).216 They use
a matrix of partial RDFs, i.e., a separate RDF for each element
pairsimilar to how the element pairs were recorded in
different bags in the BoB representation and quite similar to
Valle’s crystal fingerprint217 in which modified RDFs for each
element pair are concatenated.
Von Lilienfeld et al. took inspiration in the plane-wave basis

sets of electronic structure calculations, which remove many
problems that local (e.g., Gaussian) basis sets can cause, e.g.,
Pulay forces and basis set superposition errors, and created a
descriptor that is a Fourier series of atomic RDFs. Most
importantly, the Fourier transform removes the translational
variance of local basis setswhich is one of the main
requirements for a good descriptor.171 The Fourier transform
of the RDF also is directly related to the XRD pattern which
has found widespread use in ML models for the classification
of crystal symmetries.131,218,219

For the prediction of gas adsorption properties property
labeled RDFs have been introduced by Fernandez et al.220 The
property labeled RDF is given by

f PP B r RRDF exp ( )
i j

i j ij
P

,

2∑= [− − ]
(7)

where Pi and Pj are elemental properties of atom i and j in a
spherical volume of radius R. B is a smoothing factor, and f is a
scaling factor. It was designed based on the insight that for
some type of adsorption processes, like CO2 adsorption, not
only the geometry but also the chemistry is important. Hence,
they expected that stronger emphasis on e.g. the electro-
negativity might help the ML model.
4.2.2.2. Structure Graphs. Encoding structures in the form

of graphs, instead of using explicit distance information, has the
advantage that the descriptors can also be used without any
precise geometric information, i.e., a geometry optimization is
usually not needed. In structure graphs, the atoms define the
nodes and the bonds define the edges of the graph. The power
of such descriptors was demonstrated by Kulik and co-workers
in their work on transition metal complexes. They introduced
the revised autocorrelation (RAC) functions221 (which is a
local descriptor that correlates some atomic heuristics, like the
atom type, on the structure graph) and used it to predict for
example metal-oxo formation energies,222 or the success of
electronic structure calculations.19 Recently, they also have
been adapted for MOFs.576

For crystals, Xie and Grossmann built a graph-convolutional
NN (GCNN) that directly learns from the crystal structure
graph (cf. section 5.1.1.6) and could predict a variety of
properties such as formation energy or mechanical properties
as the bulk moduli for structures from the Materials
Project.223,224 This architecture also allowed them to identify
chemical environments that are relevant for a particular
prediction.

4.2.2.3. Distance-Matrix Based Descriptors. Another large
family of descriptors is built around different encodings of the
distance matrix. Intuitively, one might think that a
representation such as the z-matrix, which is popular in
quantum chemistry and is written in terms of internal
coordinates, might be suitable as input for a ML model. And
indeed, the z-matrix is translational and rotational invariant
due to the use of internal coordinatesbut it is not
permutational invariant, i.e., the ordering matters. This was
also a problem with the original formulation of the Coulomb
matrix which encodes structures using the Coulomb repulsion
of atomic charges (proton count Z) on the off-diagonal and
rescaled atomic charges on the diagonal:166

x
Z i j

Z Z i jr r

0.5

( )ij
i

i j i j

2.4

ϕ
=

=

− ≠

l
m
ooo

n
ooo (8)

as one structure could have many different Coulomb matrices,
depending on where one starts counting. The Coulomb matrix
shares this problem with the older Weyl matrix,225 which is an
N × N matrix composed of inner products of atomic positions
and in this way also an overcomplete set. To remedy this
problem it was suggested to use sorted Coulomb matrices or
the eigenvalue spectrum (but this violates the uniqueness
criterion as there can be multiple Coulomb matrices with the
same eigenspectrum). Also, to be applicable to periodic
systems, eq 8 needs to be modified.
To deal with electrostatic interactions in molecular

simulations, one usually uses the Ewald-summation technique
which splits one nonconverging infinite sum into two
converging ones. This trick has also been used to deal with
the infinite summations which would occur if one attempted to
use eq 8 for periodic systemsthe corresponding descriptor is
known as the Ewald sum matrix.166 The sine-Coulomb matrix
is a more ad hoc solution to apply the Coulomb matrix to
periodic systems. Here, the off-diagonal terms are calculated
using a modified potential ϕ that introduces periodicity using a
sine over the product of the lattice vectors and the vector
between the two sites i and j.166

4.2.2.4. Point Cloud Based. In object recognition much
success has been achieved by representing objects as point
clouds.226,227 This can also be applied to materials science,
where solids can be represented as point clouds by sampling
the structures with n points. This point cloud can be then
further processed to generate an input for a (supervised) ML
algorithm. Such processing is often needed because most
algorithms cannot deal with irregular data structures, like point
clouds, wherefore the data is often mapped to a grid.

4.2.2.4.1. Topological Data Analysis. A fruitful approach to
generate features from point clouds is to use the persistence
homology analysis rooted in topological data analysis
(TDA).228,229 Here, the underlying topological structures are
extracted using a process called filtration. In a filtration one
uses a sequence of growing spaces, e.g., using balls of growing
radii, to understand how the topological features change as a
function of the radius. A persistence diagram records when a
topological feature is created or destroyed. This is shown in
Figure 12 where at some radius the first circles start to overlap,
which is reflected in the end of a bar in the persistence
diagram. Then, the circles form two holes (c), which is
reflected with the birth of new bars that die with increasing
radius, when the holes disappear (d).
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Using this technique has recently become even easier with
the scikit-tda suite of packages,230 which gives an easy-to-use
Python interface to the C++ Ripser library231 and functions to
plot persistent images232 and diagrams.
Unfortunately, most ML algorithms only accept fixed length

inputs, wherefore the persistent homology barcodes cannot
directly be used as descriptors. To work around this limitation,
Lee and co-workers233 used a strategy that is similar to the
general strategy for creating fix-length global descriptors that
we discussed above, namely by computing statistics of the
persistent homology barcodes (cf. section 9).
Alternative finite-dimensional representations are persistence

images,232 which have recently been employed by Krishnap-
riyan et al. to predict the methane uptakes in zeolites between
1 to 200 bar (cf. Figure 13).234

In persistence images, the birth−death pairs (b, d), which
are shown in persistence diagrams, are transformed into birth−
persistence pairs (b, d − b) which are spread using a Gaussian.
The images are then created by binning the function of (b, d −
b). Krishnapriyan et al. then used RFs to learn from this
descriptor, but it might also be promising to investigate the use
of transformations of the homology information that can be
learned during training (e.g., using NNs, see section
5.1.1.2).235

The capabilities of TDA have been demonstrated in the
high-throughput screening of the nanoporous materials
genome.236,237 Here, the zeo++ code has been used to analyze
the pore structure of zeolites (using Voronoi tessellations),
which then could be sampled to create point clouds that were
used as an input for a persistent homology analysis, which

output was summarized in persistence diagrams (“barcodes”).
The similarity between these persistence diagrams was then
used to rank the materials, i.e., if the persistence diagram of
one structure is similar to a high-performing structure, it is
likely to also perform well. As Moosavi, Xu, et al. recently
showed, the similarity between barcodes can also be used to
build kernels for KRR which then can be used to predict the
performance for methane storage applications.185

4.2.2.4.2. Neural-Network Engineered Features. A promis-
ing alternative to TDA is to use specific NN architectures such
as PointNet that can directly learn from point cloud inputs.227

DeFever et al. used the PointNet for a task similar to object
recognition: the classification of local structures in trajectories
of molecular simulations.238 Interestingly, the authors also
demonstrated that one can use PointNet to create hydro-
philicity maps, e.g., for self-assembled monolayers and proteins.

4.2.2.5. Coarse Tabular Descriptors. Our discussion so far
guided us from atomic-level descriptors to more coarse, global
descriptors. In this section, we will explore some more
examples of such coarse descriptors. Those coarse descriptors
are frequently used in top-down modeling approaches, where a
model is trained on experimental or high-level properties.
Obviously, such coarse, high-level descriptors are not suited to
describe properties with atomic resolution, e.g., to describe a
PES, but they can be efficient to model, for example, gas
adsorption phenomena.

4.2.2.5.1. Based on Elemental Properties. Widely used in
this context are compositional descriptors that encode
information about the chemical elements a compound is
made up of. Typically, one finds that simple statistics such as
sums, differences, minimums, maximums, or covariance of
elemental properties such as electronegativity or covalent radii
are calculated and used as feature vectors. There has been
some success with using such descriptors for perovskites,239,240

half-Heussler compounds,241 analysis of topological transi-
tions,242 the likelihood of substitutions,243,244 as well as the
conductivity of MOFs.245 Generally, one can expect such
descriptors to work if the target property is directly related to
the constituent elements. A prime example of this concept are
perovskites for which there are empirical rules, like the
Goldschmidt tolerance factor, that relate the radii of the ions to
the stability, wherefore it is reasonable to expect that one can
build meaningful ML models for perovskite stability, that
outperform the empirical rules, with ion radii as features.

4.2.2.5.2. Cheap Calculations Crude Estimates of Target
and Experimental Features. Especially for our case-study
problem, gas adsorption in porous materials, tabular
descriptors that are based on cheap calculations (e.g., geometry
analysis, energy grids) are most commonly used. As gas
adsorption requires that the pore properties are “just right” it is

Figure 12. Illustration of the filtration of the distance function of a
cloud of points. For the birth of each point, we create an interval (bar)
in the persistence diagram. As we increase the radius of the points,
some components die (and merge) as the circles start to overlap. The
persistence diagram takes track of this by putting an end to the
interval (b). As the radius of the circle further increases, we form new,
one-dimensional, connected components (the holes, blue in c) and all
the intervals associated with single points come to an end. The only
interval that never dies is due to the union of all points. The figure is a
modified version of the illustration from Chazal and Michel.229

Figure 13. Illustration of the scheme used to predict gas adsorption properties using persistent images. A filtration is used to create a persistence
diagram (as illustrated in Figure 12). This is then transformed into a persistence image that is used to train a random forest (RF) model to predict
the methane uptake. Figure redrawn based on ref 234.
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natural to calculate them and use them as features,246−249

especially, since we know that target similarity governs the
error of ML models.186 Typically, such descriptors as the pore
size distribution (PSD),250 and accessible surface areas or pore
volumes, can be computed with programs such as Zeo++,251

Poreblazer,252 or MOFomics/ZEOMICS.182,183

A cheaper calculation was also used by Bucior et al. to
construct descriptors. On a coarse grid they computed the
interactions between the adsorbate and the framework,
summarized this data in histograms, and then used these
histograms to construct ML models for the adsorption of
H2.

253 This is related to the approach Zhang and Ling put
forward to use ML on small data sets.254 They suggest
including crude estimates of the target property into the
feature set. As an example, they included force-field derived
bulk moduli to predict bulk moduli on DFT level of theory.
This idea is directly related to Δ-ML and cokriging approaches
which we will discuss below in more detail.
Especially when one uses a large collection of tabular

features it can be useful to curate feature dictionaries, which
describe what the feature means and why it is usefulto aid
collaboration and model development.
4.2.2.5.3. Using Building Blocks as Features. For materials

such as MOF, COF, or also polymers that are constructed by
self-assembly of simpler building blocks, one can attempt to
directly use the building blocks as features. Here, one typically
one-hot encodes the presence of building blocks with ones and
the absence with zeros. Therefore, there will be as many
columns in the feature matrix as there are building blocks. Due
to the nature of this encoding, such a model cannot generalize
to new building blocks. This featurization was for example used
by Borboudakis et al., who one-hot encoded linker and metal
node types to learn gas adsorption properties of MOFs from a
small database.172 Recently, Fanourgakis et al. reported a more
general approach in which they use statistics over atom types
(e.g., minimum, maximum, and average of triple bonded
carbon per unit cell), that would usually be used to set up force
field topologies, as descriptors for RF models to predict the
methane adsorption in MOFs.255

4.3. Feature Learning

4.3.1. Feature Engineering. A key insight is that the
“raw” features are often not the best inputs for a ML model.
Therefore, it can be useful to transform the features. This is
also what every chemist or modeler already intuitively knows:
Some phenomena such as the dependence of the activation
energy on the diffusion constant are better visible after a
logarithmic transformation. Sometimes it is also more
meaningful to look at ratios, such as the Goldschmidt tolerance
ratio, rather than at the raw values.

The term feature engineering describes this process where
new features are formed via the combination and/or
mathematical transformation of raw features. And this is one
of the main avenues for domain knowledge to enter into the
modeling process. One approach to automate this process is to
automatically try different mathematical operations and
transformation functions as well as combinations of features.
Unfortunately, this leads to an exponential growth of the
number of features and the modeler now faces the problem to
select the best features to avoid the curse of dimensionality (cf.
section 4.1.0.2), which is not a trivial problem. In fact, the
featurization process is equivalent to finding the optimal basis
set for the description of a physical problem.

4.3.2. Feature Selection. For some phenomena one
would like to develop ML models but it might not be a priori
clear which descriptors one should use to describe the
phenomenon, e.g., because it is a complex multiscale problem.
Intuitively, one might try all possible combinations of
descriptors that one can come up with to find the smallest,
most informative set of features to avoid the curse of
dimensionality. But this approach is deemed to fail as it is a
nondeterministic polynomial-time (NP) hard problem. This
means that a candidate solution for this problem can be
verified in polynomial time, but that the solution itself can
probably not be found in polynomial time. Hence,
approximations or heuristics are needed to allow us to make
the problem computationally tractable. One generally dis-
tinguishes three approaches to tackle this problem: First,
simple filters can be used to filter out features (e.g., based on
correlation with the target). Second, iterations in wrapper
methods (pruning, recursive feature elimination) can be used
to find a good subset, or one can attempt to directly include
the objective of minimizing the dimensionality in the loss
function (Figure 14).221,256−258

4.3.2.1. Filter Heuristics. Given a large set of possible
features one can use some heuristics to compact the feature set.
A simple filter is to use the correlation, mutual information,259

or fitting errors for single features as surrogates and only use
the features that show the highest correlation or mutual
information with the target or the ones for which a simple
model shows the lowest error. Obviously, this approach is
unable to capture interaction effects between variables.
Another heuristic that can be used to eliminate features is to

eliminate those that do not show a lot of variance
(VarianceThreshold in sklearn). The intuition here is that
(nearly) constant features cannot help the model to distinguish
between labels.
This is to some extent similar to PCA based feature

engineering, where one tries to find the linear combinations of
features that describe most of the variance and then only keeps
those principal components. This approach has the drawback

Figure 14. Overview of different feature selection strategies. Figure redrawn based on an illustration by Janet et al.221
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that arbitrary linear combinations are not necessarily physically
meaningful and that explaining the variance does not
necessarily mean being predictive.
4.3.2.2. Wrapper Approaches. Often, one also finds

stagewise feature selection approaches,260 either by weight
pruning, i.e., by fitting the model on all features and then
removing those with low weights, or by recursive feature
elimination (RFE). RFE starts by fitting a model on all features
and then iteratively removes the least important features until a
desired number of features is reached. This iterative procedure
is needed because the feature importance can change after each
elimination, but it is computationally expensive for moderately
sized feature sets. The opposite approach, i.e., the iterative
addition of features is known as recursive feature addition
(RFA) and is often used in conjunction with RF feature
importance, which is used to decide which features should be
included. This approach was for example used in a work by
Kulik and co-workers in which they built models to predict
metal-oxo formation energies, which are relevant for catalysis.
In doing so, they found that they can reduce the size feature set
from ca. 150 to 22 features using RF-RFA which led to
reduction of the mean absolute error (MAE) on the test set
from 9.5 to 5.5 kcal/mol.222

4.3.2.3. Direct Approximations: LASSO/Compressed Sens-
ing. As an alternative to iterative approaches, there are efforts
to use objective functions that directly describe both modeling
goals: first, to find a model that minimizes the error and,
second, to find a model that minimizes the number of variables
(following Occam’s razor, cf. section 4.1.0.1). In theory, this
can be achieved by adding a regularization term

ww ( )p
i
n

i
p p

1
1/= ∑ = to the loss function and attempting to

find the coefficients w that minimize this loss function. In the
limit p = 0, there is nothing won as it is the NP hard problem
of minimizing the number of variables, we mentioned
above.261 Hence, the l1 norm (also known as Taxicab or
Manhattan norm), i.e., the case p = 1, is often used as an
approximation (to relax the l0 condition).262 This has the
advantage that the optimization is now convex and that the
edges of the regularization region tend to favor sparsity (cf.
Figure 30 and accompanying discussion for more details). The
minimization of the l1 is known in statistics as the least

absolute shrinkage and selection operator (LASSO) and widely
used to avoid overfitting (regularization), by penalizing high
weights (cf. section 6.2.1).262 Compressed sensing263 uses this
idea to recover a signal with only a few sensors while giving
conditions on the design matrix (with materials in the rows
and the descriptors in the columns) for which the l0 and the
LASSO solution will likely coincide. An in-depth discussion of
the formalism of feature learning using compressed sensing is
given by Ghiringhelli et al.261 This approach works well in
materials science as many physical problems are sparse, and it
also works well with noise, which is also common to physical
problems.263 Ghiringhelli et al. applied this idea to materials
science but also highlighted that a procedure based only on the
LASSO has difficulties in selecting between correlated features
and dealing with large feature spaces.165 With sure
independence screening and sparsifying operator (SISSO)
Ouyang et al. add a sure independence (si) layer before the
LASSO.264 This si layer preselects a subspace of features that
show the highest correlation with the target and that can then
be further compressed using the LASSO. This approach, for
which open-source code was published,265 allowed Scheffler
and co-workers to construct massive sets of 109 descriptors
using combinations of algebraic functions applied to primary
features, such as the atomic radii, and to discover new
tolerance factors for the stability of perovskites240 or to predict
new quantum spin-Hall insulators using interpretable descrip-
tors.242

Another approach to the feature selection problem uses
projected gradient descent to locally approximate the
minimization of the l0 norm.266 It is efficient as it uses the
gradient and it achieves sparsity by, stepwise, setting the
smallest components of the weights vector w to be zero (cf.
Chart 2 for pseudocode).267,268

A modified version was also used by Pankajakshan et
al.269,270 They combined this feature selection method with
clustering (to combine correlated features) and created a
representative feature for each cluster, which they then used in
the projected gradient algorithm to compress the feature set.
Additionally, they also employed the bootstrap technique to
make their selection more stable.
The bootstrapping step is also the key to another method

known as stability selection. Here, the selection algorithm (e.g.,

Chart 2. Pseudocode for Iterative Hard Thresholding (Also Known as Projected Gradient Descent)
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the LASSO) is run on different bootstrapped samples of the
data set and only those features that are important in every
bootstrap are selected, which can help to counter chance
correlation.271 This is currently being implemented as
randomized LASSO in the sklearn Python framework.
4.3.3. Data Transformations. An additional problem with

features is that their distribution or the scale on which they are
on (e.g., due to the choice of units) might not be appropriate
for ML. One of the most important reasons to transform data
is to improve interpretability. Some features are more natural
to think about on a logarithmic scale (e.g., the concentration of
protons is known as pH = −lg10 H3O

+ in chemistry and also
the Henry coefficient is naturally represented on logarithmic
scale), or reciprocal scale (e.g., temperature in the case of
Arrhenius activation energy analysis). In other cases, the
underlying algorithm will profit from transformations, e.g., if it
assumes a particular distribution for the data (e.g., the
archetypal linear regression assumes a normal distribution of
the residuals). The most widely used transformations are
power transformations like the Box−Cox (defined as (xλ − 1)/
λ for λ > 0, ln x for λ = 0, where λ can be used to tune the
skew),272 the inverse hyperbolic sine,273,274 or the Yeo−
Johnson transformation which all aim to make the data more
normally distributed. The Box−Cox transformation, or a
simple logarithmic transformation (lg x), is the most popular
technique, but the inverse hyperbolic sine and the Yeo−
Johnson transformation have the advantage that they can also
be used on negative values.
4.3.3.1. Normalization and Standardization. In the

following, we will show that many algorithms perform
interference by calculating distances between examples. But
in the physical world, our features might have different scales,
e.g., due to the arbitrary choice of units. Surface areas might be
recorded as numbers in the order of 103 and void fractions as
numbers on the order of 10−3. For ML one wants to remove
such influences from the model, as illustrated in Figure 15.

Also, optimization algorithms will have problems if different
directions in feature space have different scales. This is
intuitive if we look at the gradient descent update step, where
the values of the features, xi, are directly involved and for which
reason some weights might update faster than others (using a
fixed learning rate η).
The most popular choices to remedy these problems are

min-max scaling and standard scaling (z-score normalization).

Min-max scaling transforms features to a range between zero
and one (by subtracting the minimum and dividing by the
range), and in this way minimizes the effect of outliers. In
contrast to that, the standard scaling transforms feature
distributions to distributions centered around zero and unity
variance by subtracting the mean and dividing by the standard
deviation. Note that by using this transformation we do not
bind the range of features, which can be important for some
analyses such as PCA, which work on the variance of the data.
In case there are many outliers or strong skew, it might be

more reasonable to scale data based on robust estimators of
centrality and spread, like subtracting the median and dividing
by the interquartile range (this is implemented as RobustScaler
in sklearn).
It is important that those transformations need to be applied

to training and test databut using the distribution
parameters “learned” from the training set. If we computed
those parameters also on the test set we would risk data
leakage, i.e., provide information about the test data to the
model.

4.3.3.2. Decorrelation. Often, one finds oneself in a position
where the initial feature set contains multiple variables that are
highly correlated with each other, like gravimetric and
volumetric pore volumes or surface areas. Usually, it is better
to remove those correlations. The reasoning behind this is that
multicolinearity usually means that there is data redundancy,
which violates the minimum description length principle we
discussed above (cf. section 4.1.0.1). In particular severe cases,
it can make the predictions unstable (and also the feature
selection as we discussed above) and in general it undermines
causal interference as it is not clear which of the correlated
variables is the reason for a particular prediction.275,276

Widespread ways to estimate the severity of multicolinearity
are to use pair-correlation matrices or the variance inflation
factor (VIF), which estimates how much of the variance is
inflated by colinearity with other features.277,278 It does this by
predicting all the features using the remaining features VIF =
1/(1 − Ri

2), where Ri is the coefficient of determination for the
prediction of feature i. A VIF of ten would mean that the
variance is ten times larger than it would be for fully
orthogonal features.

5. HOW TO LEARN: CHOOSING A LEARNING
ALGORITHM

After data selection (cf. section 3 and featurization (cf. section
4) one can proceed to training a ML model. But also here,
there are a lot of choices one can make. In Figure 16 we give a
nonexhaustive overview of the learning algorithm landscape.
In the following, we discuss some rules of thumb that can

help to choose the appropriate algorithm for a given problem
and discuss the principles of the most popular ones. Typically,
we will not distinguish between classification and regression as
many algorithms can be formulated both for regression and
classification problems.

5.0.0.1. Principles of Learning. One of the main principles
of statistical learning theory is the bias-variance decomposition
(cf. eq 9), which describes that the total error can be described
as the sum of squared bias, variance, and an irreducible error
(Bayes error)

error bias variance Bayes error2= + + (9)

Figure 15. Influence of scaling, here standard scaling (z-scaling), of
features on the dimensionality reduction using PCA. For this example
we used the data from Boyd et al. and performed the PCA on the
feature matrix of pore properties descriptors and plot the data in
terms of the first two principal components (PC1 and PC2). We then
color code the structures with above-median CO2 uptake (red)
different from those with below-median CO2 uptake (blue) and plot
the points in random order. It is observable that the separation after
scaling is clearer.
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and can easily be derived by rewriting of the cost function for
the mean square error.7 The variance of a model describes the
error due to finite training size effects, i.e., how much the
estimation fluctuates due to the fact that we need to use a finite
number of data points for training and testing (cf. Figure 17).

The bias is the difference between the prediction and the
expectation value; it is the error we would obtain for an infinite
number of training points (cf. Figure 17). In this case, the bias
represents the limit of expressivity for our model, e.g., that the
order of the polynomial is not high enough to describe the
problem that should be modeled. But this error could in
principle be removed by choosing a better model. All the
remaining error, which cannot be removed by building a better
model, is for example due to noise in the training data. For this
reason, this term is called irreducible error (also known as
Bayes error).
This trade-off between bias and variance is directly linked to

model flexibility. A highly flexible model, which is also often

less interpretable, like a high-order polynomial, tends to have a
high variance whereas a simple model, such as a regularized
linear regression, tends to have a high bias (cf. Figure 18). In

practice, it is often useful to first create a model that overfits,
and hence has close to zero training error, and in this way
ensure that the expressivity is high enough to model the
phenomenon. Then, one can use techniques which we will
describe in section 6 to reduce overfitting.279

The classical bias variance-trade-off curve (cf. Figure 18)
suggests that there is a “sweetspot” (dotted line) in which the
test error is minimal. One current research question in deep
learning (DL) is why one still can achieve good testing error

Figure 16. Overview of the supervised ML algorithm landscape. We do not distinguish between classification and regression as many of the
algorithms can be formulated both for regression and classification problems.

Figure 17. Train and test error as a function of the number of training
points and the definition of bias and variance, with bias being the
error that remains on the training set for an infinite number of
training points and variance the error due to the finite size of the
training set.

Figure 18. Bias, variance, training, and test error as well as Bayes error
(irreducible error) as a function of the model flexibility.
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with highly overparameterized models, i.e., models for which
the number of parameters is larger than the number of training
points.280,281 Belkin et al. suggest that “modern”, over-
parametrized, models do not work in the regime described
by the bias-variance trade off curve in Figure 18. Rather, they
suggest a double descent curve where following a jamming
transition, when we reach approximately zero train error (the
interpolation threshold), the error decreases with the number
of parameters.282 Belkin et al. hypothesize that this is due to
the larger function space that is accessible to more complex
models which might allow them to find interpolating functions
that are simpler (and hence better approximations according to
Occam’s razor, cf. section 4.1.0.1).
In the following, we give an overview of the most popular

learning techniques. We see NNs mostly suited for large,
unstructured, data sets, data sources, e.g. images or spectra, or
feature sets which are not yet highly preprocessed (e.g., directly
using the coordinates and atom identities)as NNs can also
be used to create features (representation learning), which in
the chemical science is often used in a “message passing”
approach (cf. section 5.1.1.2).283

5.1. Lots of (Unstructured) Data (Tall Data)

In (computational) materials science a large array of data is
created every day and some of it is even deposited in a curated
form on repositories. Still, most of it does not contain highly
engineered features. To learn from such large amounts of data,
NNs are one of the most promising approaches. The field of
deep learning (DL), which describes the use of deep NNs, is
too wide to be comprehensively reviewed, wherefore we just
give an overview of the basic building principles of the most
popular building blocks.
5.1.1. Neural Networks. Classical, feed-forward, NNs

approximate a function f using a chain of matrix evaluations

f g g gX W W W X( ) ( ( ( )))L L( ) ( ) (2) (2) (1) (1)= ··· (10)

where X is the input vector, g are activation functions
nonlinear functions such as sigmoid functions or the rectified
linear unit (ReLU)and the W are the weight matrices the
neural network learns using the data. L is here the number of
layers, and the most popular and promising case is when there

are multiple nonlinear layers. This is known as deep learning
(DL). The multiplication with the weight matrix is a linear
transformation of the data, the bias corresponds to a
translation, and the activation function enables us to introduce
nonlinearities.
One of the most frequently cited theorems in the deep

learning (DL) community is the universal approximator
theorem which states that, under given constraints, a single
hidden layer of finite width is able to approximate any
continuous function (on a set of ). What is perhaps more
surprising is that those models work, that we can train them on
random labels without any convergence problems,284 and that
they still generalizethese questions are active areas of
research in computer science.
One of the strengths of neural networks is that they scale

really well since training them does not involve an expensive
matrix inversion (which scales with n( )3 ) and since they can
be trained efficiently in batch mode with stochastic gradient
descent, where only a small part of the complete data needs to
be loaded into memory. The large expressivity of deep
networks combined with the benign scaling makes them the
preferred choice for massive (unstructured) data sets, whereas
classical statistical learning methods might be the preferred
choice for small data sets of structured data.285

5.1.1.1. High-Dimensional Neural Network Potential. One
of the cases where neural networks shine in the field of
chemistry is high-dimensional neural networks that can be
used to “machine learn” potential energy surfacesas has
recently been done for MOF-5 (cf. section 9),286 and which
can be used to access time or length scales that are not
accessible with ab initio techniques at accuracies that are not
accessible with force fields. One prime example is the ANI-1X
potential, which is a general-purpose potential that approaches
coupled-cluster theory accuracy on benchmark sets.118,287 And
due to the nature of molecular simulation in which there is a
lot of correlations between the properties at different time
steps, and hence data redundancy, they are an ideal application
for ML.288

NN models for potential energy surfaces have already been
proposed more than two decades ago. But due to the
architecture of those models, it was difficult to scale them to

Figure 19. Schematic representation of the architecture of a HDNNP (Behler−Parinello scheme) at the example of methanol. The local
environment around each atom is described with symmetry functions (pink, Gaussians). Each symmetry function can probe different length scales
and will return one value. The values can then be concatenated into one fingerprint vector. This fingerprint vector can then be fed into a NN
corresponding to one particular element, i.e., we will feed the four fingerprints for the four hydrogens into the same neural network but will receive
different outputs due to the different fingerprints. The predictions can then be added up to calculate the energy of the entire system.
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larger systems, and the models did not incorporate
fundamental invariances of the potential.289 This has been
overcome with the so-called HDNNP (also known as the
Behler−Parinello scheme, cf. Figure 19). Each atom of the
structure will be represented by a fingerprint vector (using
symmetry functions) that describes its chemical environment
within a cutoff radius (cf. chemical locality approximation in
section 4.1.0.2). For each element, a separate NN is trained (cf.
Figure 19) and each atomic fingerprint vector is fed into its
corresponding NN that predicts an energy. The total energy is
then the sum of all atomic contributions (cf. eq 1). This
additive approach is scalable by construction (nearly linear
with system size), and the invariances with respect to rotation
and translation are introduced on the level of the symmetry
functions. Also, the weight sharing (one NN for many
environments of a particular element) makes this approach
efficient and allows for generalization (similar to the sharing of
filters in CNN which we will discuss in section 5.1.1.3). One
additional advantage of such models is that they are not only
efficient and accurate, but they are also reactive (again due to
the locality assumption combined with the fact that no
functional form is assumed)which most classical force fields
are not. For more technical details, we recommend reviews
from Behler.124,290

5.1.1.2. Message-Passing Neural Networks/Representa-
tion Learning. In message-passing neural networks, the input
can be nuclear charges and positions, which are also the
variables of the Schrödinger equation. A DNN then constructs
descriptors that are relevant for the problem at hand
(representation learning). The idea behind this approach is
to build descriptors χ by recursively adding interactions v with
more and more complex neighboring environments at a
distance dij (cf. Figure 20)

dv( , )i
t

i
t

j i
j

t
ij

( 1) ( ) ( )∑χ χ χ= ++

< (11)

This approach is for example used in deep tensor neural
network (DTNN),291 SchNet,292 SchNOrb,293 hierarchically
interacting particle (HIP)-NN,294 and PhysNet.295 A detailed
discussion of this architecture type is provided by Gilmer et
al.283

5.1.1.3. Images or Spectra. For learning from images or
patterns, CNN are particularly powerful. They are inspired by
the concept of receptive fields in biological processes, where
each neuron responds only to activation in a specific region of
the visual field.
CNNs work by sliding a filter matrix over the input to

extract higher-level features (cf. Figure 21). An example of how
such filters work is the set of the Sobel filter matrices, which
can be used as edge detectors:

G
1 0 1
2 0 2
1 0 1

x =
−
−
−

i

k

jjjjjjjjj

y

{

zzzzzzzzz (12)

The middle column, which is centered on the cell (pixel) on
which the filter is used, is filled with zeros and the column left
and right to it have opposite signs. In case there is no edge, the
values on the left and the right of the pixel will be equal. But in
case there is an edge, this is no longer the case and the matrix
multiplication will give a result that highlights the edge. By
sliding the Gx matrix horizontally over an image one can hence
highlight horizontal edges. A collection of different filter layers
are used to learn the different correlations between
(neighboring) elements. CNNs apply, on each layer, a set of
different filters that share weights (similar to the way in which
different atoms of the same element share weights in
HDNNP). Usually, convolutions are used together with
pooling layers that compress the matrix by, again, sliding a
filter matrix, which for example takes the maximum or the
average in a 2 × 2 block of the matrix, over the matrix (cf.
Figure 21). This leads to approximate translational invariance

Figure 20. Schematic illustration of the idea behind the message-passing architecture. Following the initial embedding of the molecule, each
environment χ represents one atom. Successive interactions in the message passing architecture refine the local chemical environments χ by taking
into consideration the interaction between the neighboring environments.

Figure 21. Example of the use of a CNN. One slides convolution layers (red) over an image, which for example can be a two-dimensional
diffraction pattern.131 Usually, one then uses a pooling layer to compress the matrices after convolution. After flattening, the output can be used for
conventional hidden NN layers.
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as the maximum pixel after the convolution will still be
extracted by a maximum pooling layer if the translation was
not too large (since the pooling effectively filters out small
translations).
CNNs tend to generalize well and are computationally

efficient due to the weight sharing between the different filter
layers for each convolutional layer. Not surprisingly, ample
works attempted to use CNNs to analyze spectra. Ziletti et al.
used this approach to classify crystal structures based on two-
dimensional diffraction patterns.131 Others used them to
perform classification based on steel microstructures,130 or a
representation based on the periodic table, where the positions
of the elements of full-Heussler compounds were encoded and
the authors hoped to implicitly leverage the information
encoded in the structure in the periodic table using the
CNN.296

5.1.1.4. Case Study: Predicting the Methane Uptake in
COFs Using a Dilated CNN. For this case study, we use the
XRD pattern as a geometric fingerprint of the structure as it
fulfills many of the criteria for an ideal descriptor: it is cheap
and invariant to symmetry operations like an expansion of the
unit cell. But the way in which information is encoded in the
fingerprint makes it not suitable for all learners: one could try
using it in kernel machines to do similarity-based reasoning
similar to what von Lilienfeld and co-workers have done with
radial distribution functions.171 However, one could also try to
create a “pattern recognition” modelthis is where CNNs are
powerful. Importantly, the patterns do not only span a small
range, like neighboring reflexes, but are composed of both
nearby and far-apart reflexes (due to the symmetry selection
rules). For this reason, conventional convolution layers might
be not ideal. We use dilated convolutions to exponentially
increase the receptive field: Dilated convolutions are basically

convolutions with holes and in our model for which we
increase the hole size from layer to layer. To avoid overfitting,
we use spatial dropout, which is especially well suited for
convolutional layers (cf. section 5.1.1.3) and which randomly
deactivates some neurons. From Figure 22 we see that such a
model is indeed able to predict the deliverable capacity for
methane in COFs based on the XRD pattern.

5.1.1.5. Sequences. RNNs are frequently used for the
modeling of time-series data as they, in contrast to classical
feed-forward models, have a feedback loop that gives the
network a “memory” which it can use to recognize information
that is encoded in the sequence itself (cf. Figure 23). This
fitness for temporal data was for example used by van

Figure 22. Using a dilated CNN to predict the methane uptake of COFs assembled by Mercado et al.297 For this example, we use dilated
convolutions to extract correlations from the XRPD pattern (a). We can then pass the output to some hidden layers to predict the methane uptake
(b). We overfit to the training set, but can also get decent performance on the test set without major tuning of the model. MAPE is an acronym for
the mean absolute percentage error.

Figure 23. Schematic illustration of the building principle of an RNN.
An NN A, uses some input x, like a peak of an XRPD pattern, to
produce some output h. Importantly, some information is passed from
one NN to the next.
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Nieuwenburg to classify phases of matter based on their
dynamics, which in their case was a sequence of magnet-
izations.298 Similarly, Pfeiffenberger and Bates used an RNN to
find improved protein conformations in molecular dynamics
(MD) trajectories for protein structure prediction.299

Another approach to model sequences is to use autore-
gressive models, which also incorporate reference to p prior
sequence points

X X X Xt t t p t p t1 1 2 2ϕ ϕ ϕ− − − ··· − = ϵ− − − (13)

where ϕp are the parameters of the model and ϵ is white noise.
This approach has for example been used by Long et al. to
model the degradation of lithium-ion batteries based on their
capacity as a function of the number of charge/discharge
cycles.300

5.1.1.6. Graphs. As indicated above (cf. section 4.2.2.2),
graphs are promising descriptors of molecules and crystals as
they can provide rich information without the need for precise
geometries. But learning from the graph directly requires
special approaches. Similar to message passing neural net-
works, Xie and Grossman developed convolution operations
on the structure graph that let an edge interact iteratively with
its neighbors to update the descriptor vector (cf. Figure 24)

and in this sense is a special case of the message-passing NNs
(cf. section 5.1.1.2).223 Again, this approach has been shown to
be promising in the molecular domain before it has been
applied to crystals.301

5.2. Limited Amount of (Structured) Data (Wide Data)

Especially for structured data, conventional ML models, like
kernel-based models, can often perform equally or better than
neural networksespecially when the amount of data is
limited. In any case, it is generally useful to implement the
simplest model possible first, to have a baseline and also to
ensure that the infrastructure (getting the data into the model,
calculating metrics, ...) works before starting to implement a
more complex architecture.
5.2.1. Linear and Logistic Regression. The most widely

known regression method is probably linear regression. In its

ordinary form, it assumes a normal distribution of residuals,
but we want to note that also generalized versions are available
that work for other distributions. One significant advantage of
linear regression is that it is simple and interpretable. One can
directly inspect the weights of the model to understand how
predictions are made and it has been the workhorse of
cheminformatics. Even though the simple architecture limits
the expressivity of the model, this is also a feat as one can use it
for initial debugging, feedback loops, and to get some initial
baseline results.

5.2.2. Kernel Methods. One of the most popular learning
techniques in chemistry is KRR (Figure 25). The core idea

behind kernel methods is to improve beyond linear methods
by implicitly mapping into a higher-dimensional space which
allows treating nonlinearities in a systematic and efficient way
(cf. Figure 26). A naive approach for introducing nonlinearities

would be to compute all monomials of the feature columns,
e.g., ϕ(x1,x2) = (x1

2,x1x2,x2x1,x2
2). But this can become

computationally infeasible for many features. The kernel trick
avoids this by using kernel functions, i.e., inner products in
some feature space.302 If they are used, the computation scales
no longer with the number of features but with the number of
data points.
There are strict mathematical rules that govern what a

function needs to fulfill to be a valid kernel (Mercer’s
theorem),302 but the most popular choices for kernel functions
are the Gaussian (K(x,x*) = exp(γ∥x − x*∥2)) or the

Figure 24. Schematic illustration of the crystal graph CNN developed
by Xie and Grossman.223 Reprinted from Xie and Grossman.223

Copyright 2018 by the American Physical Society. After representing
the crystal structure as a graph (a) by using the atoms as nodes and
the bonds as edges, the graph can be fed into a graph CNN (b). For
each node of the graph, K convolutional layers and L1 hidden layers
are used to create a new graph that is then, after pooling, sent to L2
hidden layers.

Figure 25. KRR to learn the Lennard-Jones (12,6) potential. We
randomly sampled 80 points on the potential and then tuned the
hyperparameters of the kernel and then predicted for all points. The
model fails completely to model the strong repulsion due to the lack
of training examples in that region.

Figure 26. Visualization of one idea behind the kernel trick
mapping to higher-dimensional spaces to make problems linearly
separable. In two dimensions, the data (two different classes, colored
in red and blue, respectively) are not linearly separable, but after
applying the kernel K(x,y) = x·y + ∥x∥2 = ∥y∥2, we can draw a plane
to separate the classes (three-dimensional plot on the right).
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Laplacian (K(x,x*) = exp(γ∥x − x*∥)) kernels, which width
(γ) controls how local the similarity measure is.
The general intuition behind a kernel is to not consider the

isolated data points but rather the similarity between a query
point x, for which we want to make a prediction, and the
training points x* (landmarks, which are usually multidimen-
sional vectors) and to measure this similarity with inner
products (as many algorithms can be rewritten in terms of dot
products). At the same time, one then uses this similarity
measure to work implicitly in a higher-dimensional space
where the data might be more easily separable. That is, it is
most useful to think about predictions with KRR using the
following equation

y x a K x x( ) ( , )

kernel

i
i i

prediction weight landmark query point
∑= *  ß ßß ß

(14)

or in matrix form, we write

y Ka a K y1= ⇔ = −
(15)

But this equation assumes that K−1 can be found, which might
not be the case if there is no K or more than one K that
satisfies the equation (i.e., it is an ill-posed, unstable or
nonunique, problem). For this reason, one typically adds a
regularization term λI, with I being the identity matrix (we will
explore the concept of regularization in more depth and from
another viewpoint in section 6) which acts as a high-pass filter;
that is, it filters out the noise and makes the inversion more
stable and the solution smoother. One then solves

a K I y( ) 1λ= + −
(16)

The most widely known algorithms which use this kernel trick
are support vector machines (SVMs) and KRR. They are
equivalent except for the loss function and the fact that the
KRR is usually solved analytically. The SVMs use a special loss
function, the ϵ-insensitive loss, where errors smaller than ϵ are
not considered. The KRR, on the other hand, uses the ridge
loss function, which penalizes high weights and which we will
discuss in section 6.2.1 in more detail.
One virtue of kernel learning is the mathematical framework

which it provides. It allows deriving a scheme in which data of
different fidelity can be combined to predict on the high-
fidelity levela concept that was used to learn using a lot of
general-gradient approximation (GGA) data (PBE functional)
to predict hybrid functional level (HSE06 functional) band
gaps.303 We will explore this concept, that can be promising for
the ML of electronic properties of porous materials with large
unit cells, in more detail in section 10.3.
Also, kernels pave an intuitive way to multitask predictions;

by using the same kernel for different regression tasks and
predicting the coefficients for the different tasks at the same
time, Ramakrishnan and von Lilienfeld could predict many
properties from only one kernel (computing the kernel is
usually the expensive step as it involves a matrix inversion
which scales cubically).304 Due to the relative ease of use of
kernel methods and their mathematical underpinning, they are
the workhorse of many of the quantum ML works.97,305 Also,
kernel methods are useful for the development of new
descriptors as they are much more sensitive to the quality of
the descriptor than NN or tree-based models as they are
similarity-based. That is, a kernel-based method will likely fail if

two compounds that are distant in property space are close in
fingerprint space.

5.2.3. Bayesian Learning. Up to now, we surveyed the
models from a frequentist point of view in which probabilities
are considered as long-run frequencies of events. A more
natural framework to look at probabilities is the Bayesian point
of view. Bayesian learning is built around Bayes rule306
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(17)

which describes how the likelihood P(D|θ) (probability of
observing the data given the model parameters) updates prior
beliefs P(θ) after observing the data D. This updated
distribution is the posterior distribution P(θ|D) of model
parameters θ.
Similar to molecular Monte Carlo simulations one can use

Markov chain Monte Carlo to sample the posterior
distribution P(θ|D). Several packages like pymc3307 and
Edward308 offer a good starting point for probabilistic
programming in Python.
The power of Bayesian modeling is that one can incorporate

prior knowledge with the choice of the prior distribution and
that it allows for a natural way to deal with uncertainties as the
output; the posterior distribution P(θ|D), is a distribution of
model parameters. Furthermore, it gives us a natural way to
compare models: The best model is the one with the highest
evidence, i.e., probability of the data given the model.309

An example of how prior knowledge can be incorporated is a
work by Mueller and Ceder, who incorporated physical insight
to fit cluster expansions, which are simple but powerful models
that express the property of a system using single-site
descriptors. An archetypal example is the Ising model. They
used physically intuitive insights such as the distance of the
prediction to a simple model, like a weighted average of pure
component properties for the energy of an alloy, or that
observation that similar cluster functions should have similar
values, to improve the predictive power of such cluster
expansions. This is effectively a form of regularization,
equivalent to Tikhonov regularization (cf. section 6.2.1).

5.2.3.1. Gaussian Process Regression. Bayesian methods
are most commonly used in the form of GPR,310 which drives
the Gaussian approximation potentials (GAPs).195 GPR is the
Bayesian version of KRR, i.e., it also solves eq 16.
In GPR one no longer uses a parametric functional form

(like polynomials or a multilayer perceptron (MLP)) to model
the data but uses learning to adapt the distribution
(“ensemble” of functions), where the initial distribution (the
prior) reflects the prior knowledge.311 That is, in contrast to
standard (multi)linear regression one does not directly choose
the basis functions but rather allows for a family of different
possible functions (this is also reflected in the uncertainty band
shown in Figure 27 and the spread of the functions in Figure
28).
We can think of the prior distribution as samples that are

drawn from a multivariate normal distribution, that is
characterized by a mean μ and a covariance C; that is, we
can write the prior probability as
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Usually, one uses a mean of zero and the covariance matrix
cov(y(x), y(x*)) that describes the covariance of function
values at x and x*i.e., it is fully analogous to the kernel in
KRR. But in KRR one needs to perform a search over the
kernel hyperparameters (like the width of the Gaussian),
whereas the GPR framework allows learning the hyper-
parameters using gradient descent on the marginal likelihood,
which is the objective function in GPR.
Also, the regularization term has another interpretation in

GPR, as it can be thought of as noise σf in the observation

y y Ccov( , )i j ij f ijσ δ= + (19)

with Kronecker delta δij (1 for i = j, else 0). Hence, the
regularization also has a physical interpretation, whereas in
KRR we introduced a hyperparameter λ that we need to tune.
But the most important practical difference is that the

formulation in the Bayesian framework generates a posterior
distribution and hence a natural estimate of the uncertainty of
the prediction. This is especially valuable in active learning
settings (cf. section 3.3) where one needs an estimate of the
uncertainty to decide whether to trust the prediction for a
given point or whether additional training data are needed.
This was for example successfully used by Jinnouchi et al.
employing ab inito force fields derived in the SOAP-GAP
framework.312 During the molecular dynamics simulations of
hybrid perovskites, they monitored the uncertainty of the
predictions and then could switch to DFT in case the
uncertainty was too high and refined the force field with this
new training point. Using this approach, which is implemented

in VASP 6, they could access time scales that would require
years of simulations with first principle techniques.

5.2.4. Instance-Based Learning. Thinking in terms of
distances to training examples, as we do in kernel methods, is
also the key ingredient to the understanding of instance-based
learning algorithms such as kNN regression. Here, the learner
only memorizes the training data and the prediction is a
weighted average of the training data. For this reason, kNN
regressors are said to be nonparametricas they do not learn
any parameters and only need the data itself to make
predictions.
The difference between kernel learning and kNN is that in

the case of kernel learning the prediction is influenced by all
training examples and the nature of the locality is influenced by
the kernel. kNN, on the other hand, only uses a weighted
average of the k nearest training examples. This limits the
expressivity of the model but makes it easy to inspect and
understand. As it requires that examples that are close in
feature space are also close in property space, there might be
problems in the case of activity cliffs313 and per definition, such
a model cannot extrapolate. Still, such models can be useful
especially due to the interpretability. For example, Hu et al.
combined kNN with a Gaussian kernel weighting over the k
neighbors to predict the capacity of lithium-ion batteries.314

An interesting extension of kNN for virtual high-throughput
screenings was developed by Swamidass et al. The idea here is
to refine the weighting of the neighbors using a small NN,
which allows taking nonlinearities into account.315 The
advantages here are the short training time, the low number
of parameters, and hence the low risk of overfitting and the
interpretability, which is only slightly lower than for a vanilla
kNN.

5.2.5. Ensemble Methods. Ensemble models try to use
the “wisdom of the crowds” by using a collection (an
ensemble) of several weak base learners, which are often
high-variance models such as decision trees, to produce a more
powerful predictor.316,317

The power of ensemble models is to reduce the variance
(the error due to the finite sample, i.e., the instability of the
model) while not increasing the bias of the model. This works
if the predictors are uncorrelated.7 In detail, one finds that the
variance is given by

x x
x

M
variance( ) ( )

1 ( )2 2ρ σ ρ σ= + −
(20)

where M is the covariance matrix of the M predictors with
variance σ. The bias is given by

x f xbias ( ) ( ( ) )2 2μ= − (21)

These equations mean that for an infinite number of predictors
(M →∞) with no correlations with each other (ρ = 0) we can
completely remove the variance and the only remaining
sources of error are the bias of the single predictor and the
noise. Hence, this approach can be especially valuable to
improve unstable models with high variance. One example for
high-variance models are decision trees (DTs) (also known as
classification and regression tree (CART)) which build
flowchart like models by splitting the data based on particular
values of variables, i.e., based on rules like “density greater than
1g cm−3?” Only one such rule is usually not enough to describe
physical phenomena, wherefore usually many rules are chained.
But such deep trees can have the problem that their structure

Figure 27. Using Gaussian process regression (GPR) to learn the
Lennard-Jones potential (same as in Figure 25). Here, we trained two
different GPR models: First, on the same 80 points we used for Figure
25, and then one for a bad training set with “holes”, i.e., areas from
which we did not sample training points. Again, we tuned the
hyperparameters of the kernel and then predicted for all points. We
can observe that, similar to our KRR results, our model cannot predict
the strong repulsion due to the lack of training points. But, in contrast
to the KRR, the GPR gives us an estimate for the uncertainty that is
larger when we lack examples in a particular region.

Figure 28. Samples from the prior and posterior distributions for the
fit shown in Figure 27 using the same scale for the axes. Here, we
assume a zero mean (thick black line) for the prior but the mean in
the posterior is no longer zero after the inference. The standard
deviation is shown as a gray area.
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(splitting rules) is highly dependent on the training set,
wherefore the variance is high. One approach to minimize this
variance is to build ensemble models. Another motivation for
ensemble models can be given based on the Rashomon effect
which describes that there are usually several models with
different functional forms that perform similarly. (Rashomon is
a Japanese movie in which one person dies and four persons
witness the crime, and report the same facts at court but in a
different story.) Averaging over them using an ensemble can
resolve to some extent this nonuniqueness problem and make
models more accurate and stable.318

There are two main approaches for the creation of ensemble
models (cf. Figure 29): The first one is called bagging
(bootstrap aggregating) in which bootstraps of the training are
fitted to a model and the predictions of all models are averaged
to give the final prediction. In RFs, which are one of the most
popular models in materials informatics, this idea is combined
with random feature selection, in which the model is fitted only
on a subset of randomly selected features. ExtraTrees, are even
more randomized by not using the optimal cut at different
points in the decision tree but the best one from a random
selection of possible cuts.319 Additionally, they also do not use
bootstraps but the original training set. In a benchmark of ML
models for the prediction of the thermodynamic stability of
perovskites (based on composition features), Schmidt et al.
found that ExtraTrees outperform random forest, neural
networks, ridge regression, and also adaptive boosting (which
we will discuss in the following).320

The other approach for the ensembling of models is
boosting. Here, models are not trained in parallel but
iteratively, one after another, on the error of the previous
model. The most popular learners from this category are
AdaBoost321 and gradient boosted decision trees (GBDTs)322

which are efficiently (and in a refined version) implemented in
the XGBoost323 and LightGBM324 libraries. Given that GBDT
models are fast to train on data sets of moderate size, easy to
use, and robust, they are a good choice as a first baseline model
on tabular descriptor data.325,326 GBDTs were used in many
studies on porous materials (cf. section 9). For example, they
were used by Evans et al. to predict mechanical properties of
zeolites based on structural properties such as Si−O−Si bond
lengths and angles as well as additional descriptors such as the
porosity.327,328

An approach that is different from bagging and boosting is
model stacking. In boosting and bagging one usually uses the
same base estimator, like a DT, whereas in stacking one

combines different learners and can use a meta learner to make
the final prediction based on the prediction of the different
models. This approach was, for example, successfully used by
Wang, who could reduce the error in predicting atomization
energies by 38%, compared to the best single learner, using a
stacked model.329

6. HOW TO LEARN WELL: REGULARIZATION,
HYPERPARAMETER TUNING, AND TRICKS

6.1. Hyperparameter Tuning

Almost all ML models have several “knobs” that need to be
tuned to achieve good predictive performance. The problem is
that one needs to evaluate the model to find the best
hyperparameterswhich is expensive because this involves
training the model with the set of parameters and then
evaluating its performance on a validation set. This problem
setting is similar to the optimization of reaction conditions,
where the execution of experiments is time-consuming,
wherefore akin techniques are used.
The most popular way in the materials informatics

community is to use grid search, where one loops over a
grid of all possible hyperparameter combinations. Unfortu-
nately, this is not efficient as all the information about previous
evaluations remains unused and one has to perform an
exponentially growing number of model evaluations. It was
shown that even random search is more efficient than grid
search, but especially Bayesian hyperparameter optimization
was demonstrated to be drastically more efficient.330,331 This
approach is formalized in sequential model-based optimization
(SMBO). The idea behind SMBO is that a (Bayesian) model is
initialized with some examples and then used to select new
examples that maximize a so-called acquisition (or selection)
function a, which is used to decide which points to choose
nextbased on the surrogate model. The task of the
acquisition function is to balance exploration and exploitation,
i.e., to choose a balanced ratio between points x where the
surrogate model is uncertain (exploration) and points where f,
the target, is maximized (exploitation). The need for an
uncertainty estimate (to be able to balance exploration and
exploitation) and the ability to incorporate prior knowledge
makes this task ideally suited for Bayesian surrogate models.
For example, Gaussian processses (GPs) are used to model the
expensive function in the spearmint332 and MOE (Metric
Optimization Engine)333 libraries. The SMAC library334 on the
other hand uses ensembles of RFs, which are appealing as they

Figure 29. Schematic representation of the two most popular approaches for the creation of ensemble models, bagging (a) and boosting (b).
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naturally allow incorporating conditional reasoning.335 A
popular optimization scheme is the tree-Parzen estimator
(TPE) algorithm, which is implemented in the hyperopt
package336 and which has an interface to the sklearn337

framework with the hyperopt-sklearn package.338 The key idea
behind the TPE algorithm is to model the hyperparameter
selection process with two distributions; one for the good
parameters and one for the bad ones. In contrast to that, GPs
and trees model it as dependent on the entire joint variable
configuration. The Parzen estimator, which is a nonparametric
method to estimate distributions, is used to build these
distributions. To encode conditional hyperparameter choices,
the Parzen estimators are structured in a tree.
6.2. Regularization

Many problems in which we are interested in the chemical
sciences and materials science are ill-posed. In some cases, they
are not smooth, in other cases, not every input vector is
feasible (only a fraction of all imaginable compounds exist at
standard conditions), and in other cases, our descriptors might
not be as unique as we would want them to be, or we have to
deal with noise in the data. Moreover, we often have to cope
with little (and wide) data which can easily lead to overfitting.
To remedy these problems, one can use regularization
techniques.339

Particularly powerful regularization techniques are based on
physical or chemical insights, such as the reaction tree heuristic
from Rhone et al., where they only consider reaction products
that are close to possible outcomes of a rule-based reaction
tree.139

In the following, we will discuss more conventional
techniques that require no physical or chemical insight and
that are applicable to most problems.
6.2.1. Explicit Regularization: Adding a Term or

Layer. The most popular way to avoid overfitting is to add
a term that penalizes high model weights (“large slopes”) to
the loss function:

L w w( ) pλ= (22)

In most of the cases, one uses either the Manhattan norm (p =
1), which is known as the LASSO (l1), or the p = 2, which is
known as ridge regularization. As we discussed previously (cf.
section 4.3.2.3), the LASSO yields sparse solutions which can
be seen as a general physical constraint. Since the ridge term

shrinks high weights smoothly (there are no edges in the
regularization hypercube, cf. Figure 30), it does not lead to
sparse solutions but it can be seen as a way to enforce
smoother solutions. For example, we do expect potential
energy surfaces to vary smoothly with conformational
changesa squiggly polynomial with high weights will hence
be a bad solution that does not generalize. Ridge regression can
be used to enforce this when training models. For both LASSO
and ridge regression, we recover the original solution for λ→ 0
and force it to zero for λ → ∞.
In deep learning (DL) specific regularization layers are often

used to avoid overfitting. The most widely known technique,
dropout, randomly disables some neurons from training.341 As
it is computationally cheap and can be implemented in almost
any network architecture, it belongs to the most popular
choices.
For trees, one usually uses pruning heuristics to limit

overfitting. One can either limit the number of splits or the
maximum depth of the trees before fitting them or eliminate
some leaves after fitting.342 This idea was also used in NNs,
e.g., by automatically deleting weights (also known as optimal
brain damage (OBD)).343 This procedure not only improves
generalization but can also speed up inference (and train-
ing).344

6.2.2. Implicit Regularization: More Subtle Ways to
Stop the Model from Remembering. But there are also
other, more subtle ways to avoid overfitting. One of the
simplest, most powerful, and generally applicable techniques is
early stopping. Here, one monitors both the error on the
training and a validation set over the training process and stops
training as soon as the validation error no longer decreases (cf.
Figure 31).346 Another simple and general technique is to
inject noise in the training process.347,348

For the training of NN, batch normalization is widely
used.349 Here, the input to layers of a DNN is normalized in
each training batch; that is, the means and the variance are
fixed in this way. It was shown that this can accelerate training
but it also acts as a regularizer as each training example no
longer produces a deterministic value as it depends on which
batch it is in.349

Similarly, the training algorithm itself, batched stochastic
gradient descent (SGD), was shown to induce implicit

Figure 30. Visualization of the l1 and l2 constraints and the solution paths. The solution (dots) of the constrained optimization is at the intersection
between the contours of the least-squares solution (red/blue colored ellipses indicating with the color the error for different parameter choices) and
the regularization constraint region (black), which extent depends on λ ∝ 1/t. For λ = 0, we recover the least-squares solution; for λ → ∞, the
solution will lie at (0,0). If we increase λ, the optimal solution will tend to be zero in one dimension at the vertex of the LASSO constrain region.
For the ridge case, the smooth constrain region will lower the magnitude of the weights but will not force them to exactly zero. Figure created based
on an illustration in Tibshirani, Friedman, and Tibshirani31 and code by Sicotte.340
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regularization due to its stochasticity as only a part of all
training examples is used to approximate the gradient.350,351

In general, one finds that stochasticity is a theme underlying
many regularization techniques. Either through the addition of
noise, by randomly dropping layers, or by making the
prediction not fully deterministic by means of batch normal-
ization. This is in some sense similar to bagging as we also
average over many slightly different models.352

7. HOW TO MEASURE PERFORMANCE AND
COMPARE MODELS

In ML, we want to create a model that performs well on
unseen data for which we often do not know the underlying

distribution when we train a model. To optimize our models
toward good performance on unseen data, we need to develop
surrogates for the performance on the unseen data (empirical
error estimates). An article by Sebastian Rascka gives an
excellent overview (see Figure 32) of different techniques for
model evaluation and selection (the mlxtend Python library of
the same author implements all the methods we discuss).353

Often, one finds that models are selected, compared, and
evaluated based on only one single number, which is the MAE
in many materials informatics applications. But this might not
be the optimal metric in all casesespecially since such global
metrics depend on the distribution of data points (cf. Figure
33) and in materials informatics we often do not only want a
model that is “on average right” but one that can also reliably
find the top performers. Moreover, in some cases, we want to
consider other parameters such as the training time, the feature
set, or the amount of training data needed. Latter we can for
example extract from learning curves in which a metric for the
predictive performance, like the MAE, is plotted against the
number of training points.186,354,355

The optimal (and feasible) model evaluation methodology
depends on the amount of available data, the problem setting
(e.g., if extrapolation ability is important), and the available
computational resources. We will discuss these trade-offs in the
following.

7.1. Holdout Splits and Cross-Validation: Sampling
without Replacement

The most common approach to measure the performance is to
create two (or three) different data sets: the training set, on
which the learning algorithm is trained on, the development

Figure 31. Example of early stopping. For this example, we trained a
NN (three hidden layers with ReLU activation and 250, 100, and 10
neurons, respectively, followed by linear activation in the output
layer) using the Adam optimizer,345 to predict the CO2 uptake for
structures in the database from Boyd et al.13 using RACs and pore
geometry descriptors as features. We can observe that after
approximately 43 epochs (dotted vertical line) the training error
still decreases, whereas the validation error starts to increase again.

Figure 32. Model performance evaluation and comparison landscape, following the schema from Raschka.353 Blue boxes represent training data,
red ones test data. Validation data, for hyperparameter optimization, is shown with orange boxes. Differences between groups can be shown with
Gardner-Altman plots where the data for each group are shown with dots and the effect size is shown with a bootstrapped confidence interval.
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(or validation set), which is used for hyperparameter tuning,
and the test set, which is the ultimate surrogate for the
performance on unseen data (cf. Figure 34b). We do not use
the test set for hyperparameter tuning to avoid data leakage,
i.e., by tuning our hyperparameters on the test we might overfit
to this particular test set. The most common choice to
generate these sets is to use a random split of the available
data.
But there are caveats with this approach.353 First, and

especially for small data sets, the number of training points is
reduced (which introduces a pessimistic bias) in this way. But
at the same time, the test set must still be large enough to
detect statistically significant differences (and avoid too much
variance). Second, one should note that random splitting can
change the statistic, i.e., we might find different class ratios in
the test set than in the training set, especially in the case of
little data (cf. the discussion for Figure 5).
The most common approach to deal with the first problem

is k-fold cross-validation (cf. inner loop in Figure 34a), which
is an ensemble approach to the holdout technique. The idea
here is to give every example the chance to be part of the
training set by splitting the data set into k parts, using one part
for the validation and the remaining k − 1 parts for training
and iterate this procedure k times. A special case of the k-fold
method is when the number of folds is equal to the number of
data points, i.e., k = n. This case has a special name, leave-one-
out cross validation (LOOCV), as it is quite useful for small

data sets where one does not want to waste any data point, and
it is also an almost unbiased estimator since nearly all data is
used for the training. But it comes with a high computational
burden and a high variance (the training set merely changes
but the test example can change drastically from one fold to
the next). Empirically, it was found that k = 10 provides a good
trade-off between bias and variance for many data sets.356 But,
one needs to keep in mind that a pessimistic bias might not be
a problem as in some cases, as in the model selection, we are
only interested in relative errors of different models.
A remedy for the second problem of the holdout method

(the change of the class distributions upon sampling) is
stratification (cf. Figure 5), which is a name for the constraint
that the original class proportions are kept in all sets. To use
this approach in regression one can bin the data range and
apply stratification on the bins.
One caveat one should always keep in mind when using

cross-validation is that the data splitting procedure must be
applied before any other step of the modeling pipeline
(filtering, feature selection, standardization, ...) to avoid data
leakage. The problem of performing for example feature
selection before splitting the data is that feature selection is
then performed based on all data (including the test data)
which can bias which features are selected (based on the
information from the test set)which is an unfair advantage.

Figure 33. Influence of class imbalance on different classification metrics. For this experiment, we used different thresholds (median, mean 2.5
mmol g−1) for CO2 uptake to divide structures in “high performing” and “low performing” (see histogram inset). That is, we convert our problem
with continuous labels for CO2 uptake to a binary classification problem for which we now need to select an appropriate performance measure. We
then test different baselines that randomly predict the class (uniform), i.e., sample from a uniform distribution, that randomly draw from the
training set distribution (stratified), and that only predict the majority class (majority). For each baseline and threshold, we then evaluate the
predictive performance on a test set using common classification metrics such as the accuracy (red), precision (blue), recall (yellow), F1 score
(green), and the area under the curve (AUC) (pink). We see that by only reporting one number, without any information about the class
distribution, one might be overly optimistic about the performance of a model; that is, some metrics give rise to a high score even for only random
guessing in the case of imbalanced distributions. For example, using a threshold of 2.5 mmol g−1 we find high values for precision for all of our
sampling strategies. Note that some scores are set to zero due to not being defined due to zero division.
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7.2. Bootstrap: Sampling with Replacement

An alternative to k-fold cross-validation is to artificially create
new data sets by means of sampling with replacement, i.e.,
bootstrapping. If one samples n examples from n data points
with replacement, some points might not be sampled (in the
limit of large data, only 63.2% will be sampled).357 Those can
be used as a leave-one-out bootstrap (LOOB) estimator of the
generalization error and using 50−100 bootstraps, one also
finds reliable estimates for confidence intervals (vide inf ra).
Since only 63.2% of the examples are selected also this
estimator is pessimistically biased and corrections such as the
0.632(+) bootstrap358 have been developed to correct for this
pessimistic bias. In practice, the bootstrap is more complicated
than the k-fold cross-validation for the estimation of the
prediction error, e.g., because the size of the test set is not fixed
in the LOOB approach. Therefore, in summary, the 10-fold
cross-validation offers the best compromise for model
evaluation on modestly sized data setsalso compared to
the holdout method which is the method of choice for large
data sets (like for deep learning (DL) applications).359

7.3. Choosing the Appropriate Regression Metric

One of the most widely known metrics is the R2 value (for
which several definitions exist, which are equal for the linear
case).360 The most basic definition of this score is the ratio
between the variance of the predictions and the labels. The
problem is that in this way it can be arbitrarily low even if the
model is correct and, e.g., on Anscombe’s quartet it has the
same value for all data sets (cf. Figure 4). Hence, this metric
should be used with great care. The choice between the MAE

and the mean squared error (MSE) depends on how one wants
to treat outliers. If all errors should be treated equally, one
should choose the MAE, if large errors should get higher
weights, one should choose the MSE. Often, the square root of
the latter, the root MSE (RMSE), is used to achieve a metric
that is more easily interpretable.
To get a better estimate of the central tendency of the errors,

one can use for example the median or trimean361 absolute
error, which is a weighted average of the median, the first
quartile, and the third quartile.
Especially in the process of model development it is valuable

to analyze the cases with maximum errors by hand to develop
ideas why the model’s prediction was wrong. This can for
example show that a particular structure class is under-
representedin which case it might be worth generating more
data for this class or to try techniques for imbalanced learning
(cf. section 3). In other cases one might also realize that the
feature set is inadequate for some examples or that features or
labels are wrong.
7.4. Classification

7.4.1. Probabilities That Can Be Interpreted as
Confidence. An appealing feature of many classification
models is that they output probabilities and one might be
tempted to interpret them as “confidence in the prediction”.
But this is not always possible without additional steps.
Ensemble models, such as random forest for example tend to
rarely predict high or low probabilities.362 To remedy this, one
can calibrate the probabilities using either Platt scaling or
isotonic regression. Platt scaling is a form of logistic regression
where the outputs of the classifier are used as input for a
sigmoid function and the parameters of the sigmoid are
estimated using maximum likelihood estimation on a validation
set. In isotonic regression, on the other hand, one fits to a
piecewise constant, stair-shaped, function which tends to be
more prone to overfitting. To study the quality of the
probabilities that are produced by a classifier, it is convenient
to plot a reliability diagram in which the probabilities are
divided into bins and plotted against their relative frequency. A
well-calibrated classifier should fall onto the diagonal of this
plot.

7.4.2. Choosing the Appropriate Classification Met-
ric. Especially in a case in which one wants to identify the few
best materials, accuracyalthough widely usedis not the
ideal classification metric. This is the case as accuracy is
defined as the ratio of correct predictions over the total
number of predictions and can, in the case of imbalanced
classes, be maximized by always predicting the majority class
which certainly is not the desired outcome (cf. Figure 33).
Popular alternatives to the accuracy are precision and recall:

true pos true neg
true pos true neg false pos false neg

accuracy =
+

+ + +
(23)

precision
true pos

true pos false pos
=

+ (24)

recall
true pos

true pos false neg
=

+ (25)

The precision will be low when the model classifies many
negatives as positives, and the recall, on the other hand, will be
low if the model misses many positive results. Similar to

Figure 34. Comparison of model selection techniques for little and
big data. For little data, one can use k-fold cross-validation with a
separate test set (a) whereas the holdout method with three sets can
be used for big data (b). In k-fold cross-validation the data is split into
k folds and one loop over all the k-folds, using k − 1 folds as the
training set and the kth fold for testing.
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accuracy these metrics have their issues, e.g., recall can be
maximized by predicting only the positive class. But as there is
usually a trade-off between precision and recall, summary
metrics have been developed. The F1 score tries to summarize
precision and recall using a harmonic mean

F
2

2
precision recall

precision recall1 1
precision

1
recall

=
+

=
·
+

(26)

which is useful for imbalanced data.
Since the classification usually relies on a probability (or

score) threshold (e.g., for binary classification we could treat all
predictions with probability >0.3 as positive), receiver-
operating characteristic (ROC) curves are widely used. Here,
one measures the classifier performance for different
probability thresholds and plots the true positive rate [true
positives/(true positives + false negatives)] against the false
positive rate [1 − true negative/(true negative + false
positive)]. A random classifier would fall on the diagonal of
a ROC curve, and the optimal classifier would touch the top
left corner (only true positives). This motivated the develop-
ment of metrics that try to capture the full curve in only one
number. The most popular one is the AUC,363,364 but also this
metric is no silver bullet. For example, care has to be taken
when one wants to use the AUC as a model selection criterion.
For instance, the AUC will not carry information about how
confident the models are in their predictionswhich would be
important for model selection.365

Related to ROC curves are precision-recall curves. They
share the recall (true positive rate) with the ROC curves but
plot it against the precision, which is, for a small number of
positives, more sensitive to false positive predictions than the
false positive rate. For this reason, we see an increasing
difference between the ROC and the precision-recall curves
with increasing class imbalance (cf. Figure 35).366

Usually, it is also useful to print a confusion matrix in which
the rows represent the actual classes and the columns the
predicted ones. This table can be useful to understand between
which classes misclassification happens and allows for a more
detailed analysis than a single metric. A particularly useful
Python package is PyCM which implements most of the
classification metrics, including multiclass confusion matri-
ces.367

7.5. Estimating Extrapolation Ability

For some tasks, like the discovery of new materials, one wants
models that can robustly extrapolate. To estimate the
extrapolation ability, specific metrics have been developed.
The leave-on-cluster-out cross-validation (lococv) technique
proposed by Meredig et al. is an example of such a metric.368

The key idea is to perform clustering in the n cross-validation
runs and leave one of the clusters out in the training set and
then use this cluster as the test set. Xiong et al. propose a
closely related approach: But instead of clustering the data in
feature space they partition the data in target property space
and use only a part of property space for training in a k-fold
cross-validation loop and the holdout part for testing
purposes.369

Similar to that is the scaffolding splitting technique,366 in
which the two-dimensional framework of molecules370 is used
to separate structurally dissimilar molecules into training and
test set.

7.6. Domain of Applicability

In production, one would like to know if the predictions the
model gives are reliable. This question received particular
attention in Cheminformatics371,372 with the emphasis of the
registration evaluation and authorization of chemicals
(REACH) regulations on the reliability of QSAR predic-
tions.373−375 Often, comparing the training and production
distributions is a good starting point to understand if a model
can work. Here, one could first consider if the descriptor values
of the production (test) examples fall into the range of the
descriptors of the training examples (boundary box estimate).
This approach gives a first estimate if the prediction is made on
solid ground, but it does not consider the distribution of the
training examples; that is, it might overlook “holes” in the
training distribution.371 But it is easy to implement and can, for
example, be used during a molecular simulation with a NN
potential. If a fingerprint vector outside the bounding box is
detected, a warning could be raised (or the ab initio data can be
calculated in an active learning setting).290

More involved methods often use clustering,376 subgroup
discovery,377 and distances to the nearest neighbors of the test
datum. If this distance is greater than a threshold, which can be
based on the average distance of the points in the training set,
the model can be considered unreliable. Again, the choice of
the distance metric requires some testing.
More elaborate are methods based on the estimation of the

probability density distribution of data sets and the evaluation
of their overlaps. These methods are closely related to kernel-
mean matching (KMM)a method to mitigate covariate
shiftwhich attempts to estimate the density ratio between
test (production) and training distribution and then reweighs
the training distribution to more closely resemble the test (or
production) distribution.378

Figure 35. Comparison of precision-recall (top) and ROC (bottom)
curves for different thresholds for the binary classification of CO2
uptake (same as for Figure 5). For this example, we fitted a GBDT
classifier on the data set from Boyd et al.13 We can observe that for
increasingly imbalanced class distributions (e.g., higher threshold for
“high” performing MOFs, i.e., there are few of them) the difference
between the shape of the precision-recall curve and the ROC, as well
as the area under those curves, is more different. For imbalanced
classes, the precision-recall curve (and the area under this curve) is a
more sensible measure of model performance.
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7.7. Confidence Intervals and Error Estimates

The outputs of ML models are random variables, with respect
to the sampling, e.g., how the training and test set are created
(cf. sections 3.2 and 6)379 and the optimization (one may end
up in a different local minimum for stochastic minimization)
and in some cases also with respect to the initialization. Hence,
one needs to be aware that there are error bars around the
predictions of any ML model that one needs to consider when
comparing models (cf. section 7.8), using the predictions, or
simply to estimate the stability of a learning algorithm.
In addition, reliable error estimates are also needed to make

predictions based on ML models trustworthy. Bayesian
approaches automatically produce uncertainty estimates (cf.
section 5.2.3) but are not applicable to all problem settings. In
the following, we will review techniques that can be used to get
error estimates in a model-agnostic way.
7.7.1. Ensemble Approach. Based on the insight that the

outputs are random variables it seems natural to use an
ensemble approach to calculate error bars.380 One of the most
popular ways to do this is to train the same model on different
bootstraps of the data set and then take the variance of this
ensemble as a proxy for the error bars. This is connected to
two insights. First, the training set is only one particular
realization of a probability distribution (which is the key idea
behind the bootstrap), and second, the variance of the
ensemble will be larger for cases in which the model is
uncertain and has seen few training data.381

A related approach is to use to same data but to vary the
architecture of the model, e.g., the number of hidden layers. If
the variance between the predictions in a particular part of
chemical space is too large, this indicates that the models are
still too “flexible” and need more training data in that particular
region.290 In contrast to the bootstrap approach, the ensemble
surrogate can also be used in production, i.e., when we do not
know the actual labels.
The fact that all ensemble or resampling approaches increase

the computational cost motivated the development of other
approaches for uncertainty quantification.
7.7.2. Distance-Based. Most of the distance-based

uncertainty surrogates are based on the idea that there is a
relationship between the distance of a query example from the

training set and the uncertainty of the prediction. This is
directly related to the concept of the domain of applicability,
which we discussed above (cf. section 7.6). Although this
approach may seem straightforward, there are caveats as the
feature vector and the distance metric must be carefully chosen
to allow for the calculation of a meaningful distance. Also, this
approach is not applicable to models that perform
representation learning (cf. section 5.1.1.2).
This motivated Kulik and co-workers to develop uncertainty

estimators that are cheaper than ensemble approaches and
applicable to NN in which feature engineering happens in the
hidden layers.382 The idea of this approach is to use the
distance in the latent space of the NN, which is calibrated by
fitting it to a conditional Gaussian distribution of the errors, as
a surrogate for the uncertainty.

7.7.3. Conformal Prediction. A less widely known
technique is conformal prediction, which is a rigorous
mathematical framework that only assumes interchangeability
(which is the case for independently and identically distributed
(i.i.d.) data, which is usually assumed for interpolative
applications of ML) and can be used for any learning
framework with minimal cost. Practically, given a test datum
xi and a significance level of choice ϵ ∈ (0, 1), a conformal
predictor calculates a prediction region YiΓ ⊆ϵ that contains
the ground truth yi ∈ Y with a probability of 1 − ϵ. The idea
behind this concept (cf. Figure 36) is to compute the
nonconformity scores that measure the “uniqueness” of an
example, using a nonconformity function, that can be the MAE
(∥yi − ŷi∥) for regression,383 on a calibration set (green in
Figure 36)

y y

exp( )
i i

i
α

σ
=

− ̂

(27)

and that can be scaled by a measure of uncertainty, like the
variance σ between the different trees in a random forest.384,385

One then sorts this list of nonconformity scores and can then
choose the nth percentile (e.g., 60th percentile αCL
corresponding to a confidence level of 60%) and compute
the prediction region for a test example (red in Figure 36)

Figure 36. Example of inductive conformal prediction for the regression with tree models.
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y (exp( ) )i i CLσ α̂ ± · (28)

The review by Corteś-Ciriano and Bender gives a more
detailed overview of the possibilities and limitations of
conformal prediction in the chemical sciences, especially for
drug discovery,385 and a tutorial by Shafer and Vovk provides
more theoretical background.386 A Python package that
implements the conformal prediction framework is non-
conformist.387

7.8. Comparing Models

One of the reasons why we focus on developing robust metrics
and measures of variance is to be able to compare the
predictive performance of different models. Even though, as it
is sometimes done, one could simply compare the metrics,
such a comparison is not meaningful given that the predictions
are random variables with an error bar around them. The task
of the modeler is to identify statistically significant and relevant
differences in model performance. There are a range of
statistical tools that try to identify significant differences.388

Some of the fallacies and the most common techniques are
discussed in a seminal paper by Dietterich.388

If the difference between the error of two models is small, or
not even statistically significant, one usually prefers, following
Occam’s Razor, the simpler model. One popular rule-of-thumb
is the one-standard error rule according to which one chooses
the simplest model within one standard error of the best
performing one.31,353

The simplest approach to compare two models is to perform
a z-test which practically means to check if their confidence
intervals overlapbut this tends to often show differences
even if there are none (due to not independent training and/or
test sets in resampling approaches which results in a variance
estimate that is too small).
It was found that one of the most reliable estimates is the 5

× 2-fold cross-validated t-test in which the data is split into
training and test set five times. For each fold, the two models
that shall be compared are fitted on the training set and
evaluated on the test set (and the sets are rotated afterward)
which results in two performance difference estimates per fold.
The variance of this procedure can be used to calculate a t-
statistic which was shown to have a low type-1 errorbut also
low replicability, i.e., different results are obtained when the
test is rerun.389 Using statistical tests for model comparison
leads to another problem when one does not only compare
two models: Namely, the problem of multiple comparisons for
which reasons additional corrections, like the Bonferroni
correction, need to be applied. Also, problems with the
interpretability of p-values are also widely discussed outside the
ML domain. For this reason, it is not practical to use such
statistical tests and estimation statistics might be the method of
choice.390,391,391,392 It is more meaningful to compare effect
sizes, e.g., differences between the accuracies of two classifiers,
and the corresponding confidence interval than relying on a
dichotomous decision based on the p-value. A convenient
format to do this can be a Gardner-Altman plot for
bootstrapped performance estimates. Here, each measurement
is plotted together with the means and the bootstrapped
confidence interval of the effect sizewhich is particularly
useful if the main focus of a study is to compare algorithms. A
Python package that creates such plots is DABEST.393

7.8.1. Ablation Studies. When designing a new model,
one often changes multiple parameters at the same time: the
network architecture, the optimizer, or the hyperparameters.

But to understand what caused an improvement, ablation
studies, where one removes one part of the set of changes and
monitors the change in model performance, can be used. In
several instances, it was shown that not a more complex model
architecture but rather a better hyperparameter optimization is
the reason for improved model performance.394−396 Under-
standing and reporting where the improvement stems from is
especially important when the main objective of the work is to
report a new model architecture.
7.9. Randomization Tests: Is the Model Learning
Something Meaningful?

With the number of tested variables the probability of chance
correlation increasesbut ideally, we want a meaningful
model. Randomization tests, where either the labels or the
feature vectors are randomized, are powerful ways to ensure
that the model learned something for the right or at least
reasonable reasons. y-scrambling,397 where the labels are
randomly shuffled, is hence known as the “probably most
powerful validation strategy” for QSAR (cf. Figure 37).398 A

web app available at go.epfl.ch/permutationplotter allows
performing basic permutation analysis online and to explore
how easy it is to generate “patterns” using random data. The
importance of randomization tests has recently been
demonstrated for a model for C−N cross-coupling reac-
tions.399 Chuang and Keiser showed that “straw” models which
use random fingerprints perform similarly to the original model
trained on chemical features.400 This showcases that random-
ization tests can be a powerful tool to understand if the model
learns causal chemical relationships or not.

8. HOW TO INTERPRET THE RESULTS: AVOIDING THE
CLEVER HANS

Clever Hans was a horse that was believed to be able to
perform intellectual tasks like arithmetic operations (it was
later shown that it did this by observing the questioner). In
ML, there is also the risk that the user of a model can be
deceived by the model and (unrightfully) believe that a model
makes predictions based on physical or chemical rules it
(supposedly) learned.401 In the following, we describe
methods that can be used to avoid “black boxes” or to at

Figure 37. Example of a y-scrambling analysis to assess the
significance of a performance metric. For this example, we built two
simple GBDT classifiers that attempt to classify the materials from
Boyd et al.13 into structures with high and low CO2 uptake,
respectively. We trained one of them using RACs and pore property
descriptors and the other one using only the cell volume as descriptor.
We also measure the performance using the AUC and can observe
that the model, trained on the full feature set, can capture a
relationship in the real data (red line) and significantly (p < 0.01)
outperforms the models with permuted labels (bars). The model
trained only on the cell volume does not perform better than random.
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least peek inside them to debug models, to understand
problems with the underlying data set, or to extract design
rules. This is especially valuable when high-level, physical, and
interpretable, features are used.
Unfortunately, the term “interpretable” is not well-

defined.402 Sometimes, the term might be used to describe
efforts to understand how the model works (e.g., if one could
replicate what the model does using pen and paper), and in
other instances it might be used to generate post-hoc
explanations that one could hope to use for inferring general
design rules. Still, one needs to keep in mind that we draw
conclusions and interpretations only based on the model’s
reasoning (and the underlying training data) which can be a
crude approximation of nature and without proof of predictive
ability of the underlying models, such analyses remain
inutile.318 For a more comprehensive overview over the field
of interpretable ML we recommend the book from Molnar.403

8.1. Consider Using Explainable Models

Cynthia Rudin makes a strong point against post-hoc
explanations.29 If they were completely faithful, there would
be no need for the original model in the first place. Especially
for high-stakes decisions a post-hoc explanation that is right
90% of the time is not trustworthy. To avoid such problems,
one can attempt to first use simple models that might be
intrinsically interpretable, e.g., in terms of their weights.
Obviously, simple models such as linear regression reach their
limitations of expressivity for some problems, especially if the
feature sets are not optimal.
Generalized additive models (GAMs) try to combine the

advantages of linear modelsfor each feature one can analyze
the weight (due to the additivity) and get confidence intervals
around itwith flexibility to describe nonlinear patterns (cf.
Figure 38). This can be achieved by using the features via
smooth, nonparametric functions, like splines:

g E y x f x f x f x( ( )) ( ) ( ) ... ( )Y p p0 1 1 2 2β| = + + + + (29)

GAMs are hence additive models that describe the outcome
by adding up smooth relationships between the target and the
label. Linear models can be seen as a special case of GAMs,
where the f are restricted to be linear.

One drawback of such additive models is that interaction
effects have to be incorporated by creating a specific
interaction feature like f(density·surface area) (in case one
assumes that the interaction between the density and the
surface area is important). A modification of Caruana et al.
includes pairwise interactions in the form of f(x1, x2) by
default404 and is implemented in the interpret package.405

Similar to DTwhich we do not recommend due to their
instability, and the fact that they are only interpretable when
they are shortdecision rules formulate if−then statements.
The simplest approach to create such rules is to discretize
continuous variables and then create cross tables between
feature values and model outcomes. Afterward, one can
attempt to create decision rules based on the frequency of
the outcomes, e.g., “if ρ > 2 g cm−3 then deliverable capacity
low and if 1 g cm−3 < ρ < 2 g cm−3 then deliverable capacity
high”. Further developments provide safeguards against
overfitting, and multiple features can be taken into account
by deriving rules from small DT. One of the main
disadvantages of this method is that it needs discretization of
features and targets, which induces steps in the decision
surfaces. The skater Python library implements this techni-
que.406 Short DTs are also used in the RuleFit algorithm.407

Here, Friedman and Popescu propose to create a linear model
with additional features that have been created by decompos-
ing decision trees. The model is then sparsified using the
LASSO. The problem using this approach is that, although the
features and rules themselves might be interpretable, there
might be problems in combining them when there are
overlapping rules. This is the case since the interpretation of
weights of linear models assumes that all other weights remain
fixed (e.g., there can be problems with colinear features).
Another form of interpretability can be achieved using kNN

models. As the model does not learn anything (cf. section
5.2.4), the explanation for any prediction is the k closest
examples from the training setwhich works well if the
dimensionality is not too high (cf. section 4.1.0.1).
This also illustrates the two different levels of interpretation

one might aim for. Some methods such as the coefficients of
linear models or the feature importance rankings for tree
models (see below) give us global interpretations (integrated
over all data points), whereas other techniques such as kNN
give us local explanations for each sample and some techniques
can give us both (like SHapley Additive exPlanations (SHAP),
see below).

8.2. Post-Hoc Techniques to Shine Light Into Black Boxes

The most popular approach to extract interpretation from ML
models in the materials informatics domain is to use feature
importanceoften based on where in a tree model a feature
contributed to a split (an early split is more important) or how
good this split was, e.g., by measuring how much it reduces the
model’s variance. Most of these methods fall under the
umbrella of sensitivity analysis,408,409 which is also widely
known as the study of how uncertainty in the output of models
is related to the uncertainties in the inputs by studying how the
model reacts to changes in the input. Unfortunately, there are
problems with several of those techniquessuch as the fact
that some of them are biased toward the high-variance
features.410,411

There are several model-agnostic alternatives that attempt to
avoid this problem. Isayev et al. used partial dependence plots
(cf. Figure 39) to interrogate the influence of the features and

Figure 38. Examples for the splines for features that we used in a
GAM to predict the N2 uptake for structures in the database of Boyd
et al.13 Overall, we can observe that the surface area (ASA) and the
minimum negative charge (MNC) have only a small influence on the
prediction, whereas an increase in density leads to a stark decrease in
the model outcome.
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their interaction on the model outcome.210 This can be done
by marginalizing over all the other features xc which are not
plotted (cf. eq 30).

f x f x x x( ) ( , )d ( )x s s c c
s

∫̂ = ̂
(30)

The integral over all the other features xc is in practice
estimated using Monte Carlo (MC) integration. By integration
over all but two variables, one can generate heatmaps that
show how the target property varies as a function of the
features assuming that those features are independent of all the
other features. The latter assumption is the biggest problem
with partial dependence plots.
Another powerful method, the permutation technique,

shares this problem. In the permutation technique one tries
to estimate the global importance of features by measuring the
difference between the error of a model trained with fully
intact feature columns and one where the values for the feature
of interest are randomly permuted. To remedy issues due to
correlated features,412 one can permute them together. The
permutation technique was for example used by Moosavi et al.
to capture the importance of synthesis parameters in the
synthesis in the of HKUST-1.21

One technique that attempts to provide consistent
interpretations, on both local and global levels, is the use of
Shapley values. The idea is based on a game-theoretical
problem in which a group of players receives a reward and one
wants to estimate the optimal payout for each player, in such a
way that it reflects the contribution of each player. The players
in the case of ML are the features, and the reward is the
prediction. Again, this involves marginalization over all the
features we are not interested inbut considering all possible
ways in which the feature can enter the model (similar to all
possible teams a player could be in). But considering all
possible combinations of features is computationally unfeasible
wherefore Lundberg and Lee developed new algorithms, called
SHAP, to calculate it efficiently (exact for trees and
approximate for kernel methods, see Figure 40 for an
example).413−415 In contrast to partial dependence plots,
which show average effects, the plots of the feature values
against the importance will appear dispersed in the case of the
SHAP technique, which can give more insight into interaction
effects. This technique started to find use in materials
informatics. For example, Korolev et al. used SHAP values to
probe their ML model for partial charges of MOFs. There they,
for example, find that the model (a GBDT) correctly recovers

Figure 39. Partial dependence plots of ΔIPbond. The first plot reflects physical intuition that more polar bonds (larger ionization potential
difference) have larger band gaps. Interactions between two features are shown in b and c. For example, we can observe that materials with higher
density, ρ, and lower average ΔIPbond statistically have a larger band gap. Figure reprinted from Isayev et al.210

Figure 40. Summary plot of SHAP feature importance for a GBDT model, trained using pore properties descriptors (POV: pore occupiable
volume, Di: diameter of the largest included sphere, Df: diameter of the largest free sphere, Dif: diameter of the largest included sphere along the free
path) to predict N2 uptake from the CO2/N2 mixture data from Boyd et al.13 Note that we chose the N2 uptake as one expects that the pore
geometry is more important than the chemistry, which simplifies the example. The violins in this plot show the distributions of the importance, i.e.,
the spread of the SHAP values (along the abscissa) and how many samples we have for different SHAP values (the thickness of the violin). The
coloring encodes the value of the features, red meaning high feature values whereas blue represents low feature values (e.g., high vs low density).
The SHAP value is shown on the abscissa and reflects how a particular feature (one feature per row) with a value represented by the color impacts
the prediction. For example, a high density (red color in the second row) leads to lower predictions for N2 uptake (indicated by negative SHAP
values).
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that the charge should decrease with increasing electro-
negativity.416 But it also highlights that (post-hoc) interpret-
ability methods are not the only puzzle-stone toward
interpretability. If the features themselves are not intuitive
quantities (like the RDF) no post-hoc interpretability technique
will make it easier to create design rulesbut it still can be
useful for debugging of models.
Still, one should keep in mind that it has also been shown

that there can be stability problems with SHAP.417

For NNs techniques that analyze the gradients are popular.
The magnitude of the partial derivative of the outputs with
respect to the input was for example also used by Esfandiari et
al. to assign importance values to the features they used for
their NN that predicts the CO2/CH4 separation factor.418

Related is work by Umehara et al., who used gradient
analysis to visualize the predictions of neural networks and
showed that this analysis can reveal structure−property
relationships for the design of photoanodes.419 This technique,
where one calculates the partial derivative in the ith feature
dimension for the jth sample

G
f

x
x( )

ij
i

=
∂
∂ (31)

is also known as saliency mapping. Thanks to libraries like tf-
explain420 and keras-vis,421 appealing visualizations of model
explanations are often only one function call away, but one
should be aware that there are many caveats wherefore some
sanity checks (such as randomization tests or addition of
noise) should be used before relying on such a model
interpretation.417,422

8.3. Auditing Models: What Are Indirect Influences?

In the mainstream ML community algorithmic fairness, e.g., to
prevent racial bias, is a pressing problem. One might expect
that this is not a problem in scientific data sets. Jia et al.
showed that also reaction data sets are anthropogenically
biased, e.g. by experimenters selecting reactants and reaction
conditions that they know to work (Matthew effect
mechanism423)which is similar to the bias toward certain
reaction types which Schneider et al. found in the U.S. patent
database.424 Jia et al. trained ML models on randomly selected
reaction conditions and on larger, human-selected reaction
conditions from the chemical literature and found that the
models trained on random conditions outperform the models
trained on (anthropogenically biased) conditions from the
literature for the prediction of crystal formation of amine-
templated metal oxidesdue to a better sampling of feature
space.425

Some features in our feature set might encode such
anthropogenic biases. Auditing techniques, as for example
implemented in the BlackBoxAuditing package,426 try to
estimate such indirect influences. In a high-stake decision
case, an example for indirect influence might be a zip-code
feature that is a proxy for ethnicitywhich we then should
drop to avoid that our model is biased due to the ethnicity.
In scientific data sets, such indirect influences might stem

from artifacts in the data collection process or nonuniqueness
of specific identifiers (which could be interpreted in different
ways by different tools).427 The estimation of indirect
influences works by perturbing a feature in such a way
(typically by random perturbation) that it no longer can be

Table 2. Overview of Learning Methods That We Discussed in Section 5 and Examples of Their Use in the Field of Porous
Materialsa

method section application to porous materials

representation learning
HDNNP 5.1.1.1 trained on fragments for MOF-5 by Behler and co-workers286

message-passing NN 5.1.1.2 not used for porous materials so far
convolutional or
recurrent NN

5.1.1.3 Wang et al. used CNN to classify MOFs based on their XRPD pattern135

crystal-graph based
models

5.1.1.6 Korolev et al. use them to predict bulk and shear moduli of pure silica zeolites and Xe/Kr selectivity of MOFs433

generative models 2.1.2.2.2 ZeoGAN by Kim and co-workers434 (cf. section 9.7)
classical statistical learning
linear models 5.2.1 predicting gas uptakes based on tabular data of simple geometric descriptors246

kernel methods 5.2.2 predicting gas uptakes based on graphs and geometric properties,435 might be also interesting in the SOAP-GAP framework, as
work by Ceriotti and co-workers as well as Chehaibou et al. showed436,437

ensemble models 5.2.5 often used in form of RF or GBDT to predict gas uptakes based on tabular data of simple geometric descriptors, ensemble used
to estimate uncertainty when predicting oxidation states438

Bayesian methods 5.2.3 have been used, e.g., in the form of GPR435 or Bayesian NN439,440 but not all features, like the uncertainty measure, have been
fully exploited so far. This might be useful for active learning, e.g. for MD simulations in the Bayesian formulation of the
SOAP-GAP framework

TDA 4.2.2.4.1 Moosavi, Xu et al. built KRR models for gas uptake in porous organic cages,185 or Zhang et al. for gas uptake in MOF,233 Lee et
al. for similarity analysis237

other ML techniques
automated machine
learning

10.1 Tsamardinos et al.441 use the Just Add Data tool to predict the CH4 and CO2 capacity of MOFs, Borboudakis et al. use the
same tool to predict CO2 and H2 uptakes

172

data augmentation 3 Wang et al. used it for the detection of MOFs based on their diffraction patterns135

transfer learning 10.3 He et al. used it for the prediction of band gaps245

active learning 3.3 could be used for MD simulations using ML force fields,312 or to guide the selection of next experiments or computations
capturing the
provenance of ML
experiments

10.2 Jablonka et al. used comet.ml to track the experiments they ran for building models that can predict the oxidation state of metal
centers in MOFs438

Δ-ML 10.3 Chehaibou et al. used a Δ-ML approach to predict random phase approximation (RPA) adsorption energies in zeolites437

aFor some methods there has been no application reported in the field of porous materials, and we instead provide ideas of possible applications.
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predicted by the other features. Similar to the perturbation
techniques discussed above for (direct) feature importance,
one then measures the drop in performance between the
original model and the one with the perturbed feature. And
indeed Jia et al. found the indirect feature importance for
models trained for the reaction conditions in literature
conditions to be linearly correlated to those for models trained
on randomly selected conditionsexcept for the features that
describe the chemistry of the amines.425

9. APPLICATIONS OF SUPERVISED MACHINE
LEARNING

As we mentioned in the introduction, ML in the field of
MOFs, COFs, and related porous materials relies on the
availability of tens of thousands of experimental structures2,3

and to a large extent on the large libraries of (hypothetical)
structures that have been assembled and scrutinized with
computational screenings.5,13,428−432 But even with the most
efficient computational techniques, like force-field-based
simulations, the total number of materials has become so
large that it is prohibitive to screen all possible materials for
any given application. In addition, brute force screening is not
the best way to uncover structure−property relationships.
More importantly, other phenomena, especially electronic
properties or fuzzy concepts such as synthesis or reactivity, are
so complex that there is no good theory to describe the
phenomenon (reaction outcomes) or that the theory is too
expensive for a large-scale screening (electronic phenomena).
For these reasons, researchers started to employ (supervised)
ML for porous materials.
In Table 2 we give an overview of the techniques which we

discussed in the first part and some examples where they have
been used in the field of porous materials and will discuss those
examples in more detail in the following. It is striking that
many of the techniques that we discussed in the first part did
not find an application for porous materials. We discuss those
possibilities in more detail in the following and the outlook.

9.1. Gas Storage and Separation

Gas storage is one of the simplest screening studies. Most
screening studies focus on designing a material with the highest
deliverable capacity, which is defined as the difference between
the amount of gas a material can adsorb at the high, charging,
pressure minus the amount of gas that stays in the material at
the lowest operational pressure.442 Hence, these screening
studies typically require two data points on the adsorption
isotherms. Most of the studies for gas storage have focused on
methane429,442−446 and hydrogen.445,447,448

Gas separations are another important application of porous
materials.449,450 Given the importance of reducing CO2
emission,451,452 a lot of research has focused on finding
materials for carbon capture, both experimentally453−456 as
well as by means of computational screening studies.15,457,458

Gas separations require the (mixture) adsorption isotherms of
the gases one would like to separate. In most screening studies,
the mixture isotherms are predicted from the pure component
isotherms using ideal adsorbed solution theory. For gas
separations, the objective function is less obvious. Of course,
one can argue that for a good separation the selectivity and
working capacity are important, but one often has to carry out
a more detailed design of an actual separation process to find
what are the key performance parameters one would like to
screen.

Most screening studies focus on thermodynamic properties.
Yet, if the diffusion coefficients of the gases that need to be
adsorbed are too low, excellent thermodynamic properties are
of little use. Therefore, it is also important to screen for
transport properties. However, only a few studies have been
reported that study the dynamics.459−462 The conventional
method to compute transport properties, such as diffusion
coefficients, is molecular dynamics. However, depending on
the value of the diffusion coefficients these simulations can be
time-consuming.460 Because of these limitations, free energy-
based methods have been developed to estimate the diffusion
coefficients from transition state theory (cf. refs 461 and 462).
A popular starting point is methane storage, a topic which

has been studied extensively.443,444 As in most of the screening
studies methane is considered a united atom without net
charge, and without dipole or quadruple, the interactions with
the framework atoms are described by the van der Waals
interactions.429 As these interactions do not vary much from
one atom in the framework to another, one can expect that
methane storage is dominated by the pore topology rather than
the specific chemistry. Hence, most of the ML models are
trained using simple geometric properties such as the density,
the pore diameter, or the surface area. These characteristics are
obviously directly related to physisorption, but sometimes
multicolinear, which can lead to problems with some
algorithms as we discussed above (cf. section 4.3.3.2).
For gases such as CO2 or H2O, the specific chemistry of the

material will be more significant. For these gases, the pore
geometry descriptors will not be sufficient and we will need
descriptors that can describe phenomena that involve specific
chemical interactions. One also has to keep in mind that
conventional high-throughput screenings can have difficulties
to properly describe the strong interactions of CO2 with open
metal sites (OMSs).463 For example, especially for the low-
pressure regime of the adsorption isotherm of CO2, the
method used to efficiently (i.e., avoiding DFT calculations for
each structure) assign partial charges to the framework atoms
can lead to systematic errors in the results.
One also needs to realize that descriptors that are only based

on geometric properties have limited use for materials’ design.
Even if we find a model that relates pore properties with the
gas uptake and then use optimization tools (like particle swarm
optimization, genetic algorithms, or random searches435) to
maximize the uptake with respect to the pore properties, there
still remains the burden of proof as a given combination of
pore properties might optimize gas adsorption in our model
but might not be feasible or synthesizable (cf. section 3.1).

9.1.1. Starting on Small Data Sets. As in other fields of
chemistry, ML for porous materials developed from
quantitative structure property relationship (QSPR) on small
data sets (tens of data points) to the use of more complex
models, such as neural networks, on large data sets with
hundred thousands of data points. Generally, one needs to
keep in mind that all boundaries or trends that are observed in
QSPR studies can either be due to underlying physics or
limitations of the data set, which necessarily does not explore
some areas of the enormous design space of MOFs.464

As in computer aided drug design (CADD), the first studies
also used high-level descriptors. Kim reported one of the first
QSPR for gas storage in MOFs.465 Inspired by previous works
in CADD, they calculated descriptors such as the polar surface
area and the molar refractivity but also used the iso-value of the
electrostatic potential to create a model for the H2 adsorption
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capacity of ten MOFs. Similar to that, Amrouche et al. built
models based on descriptors of the linker chemistry of zeolitic
imidazolate frameworks (ZIFs), such as the dipole moment, as
well as descriptors of the adsorbing gas molecules to predict
the heat of adsorption for 15 ZIFs and 11 gas molecules.466

Also Duerinck et al. used descriptors such as polarizability and
dipole moment, which are familiar from cheminformatics, to
build a model for the adsorption of aromatics and heterocyclic
molecules on a set of 22 functionalized MIL-47 and found that
polarizability and dipole moment are the most important
features.467

9.1.1.1. Pore Geometry Descriptors. Sezginel et al. used a
small set of 45 MOFs and trained multivariate linear models to
predict the methane uptake based on geometric properties,468

and also Yilidz and Uzun used a small set of 15 structures to
train a NN to predict methane uptakes in MOFs based on
geometric properties.469 Wu et al. increased the number of
structures in their study to 105 and built a model that can
predict the CO2/N2 selectivity of MOF based on the heat of
adsorption and the porosity.470 They used this relationship to
create a map of the interplay between the porosity and the heat
of adsorption and their impact on the selectivity which showed
that simultaneously increasing the heat of adsorption while
decreasing the porosity is a route to increase selectivity for this
separation.
9.1.2. Moving to Big Data. 9.1.2.1. Development of New

Descriptors. Fernandez et al. started working with considerably
larger sets of structures and also introduced more elaborate
techniques like DT or SVMs, which reflect the shift from
cheminformatics with (multi)linear models on small data sets
to complex nonlinear models trained on large data sets, that
also other fields of chemistry experienced.246

In their first work,246 they used geometric descriptors such
as the density or the pore volume to predict the methane
uptake but then realized220 the need to introduce more
chemistry to build predictive models for carbon dioxide
adsorption. They did so by introducing the atomic property
(AP) weighted RDF (AP-RDF). For different fields of
chemistry different encodings of the RDF emerged as powerful
descriptors (cf. section 4.2.1.1) and also Fernandez et al.220

achieved good predictive performance for gas adsorption using
this descriptor and could also show that the principal
components of this descriptor show good discrimination of
geometrical and gas adsorption properties. Importantly, they
also demonstrated that ML techniques can be used for
prescreening purposes to avoid running grand-canonical
Monte Carlo (GCMC) simulations for low-performing
materials. For this, they trained a support vector classifier
(SVC) using their AP-RDF as descriptors and found that this
classifier correctly identifies 945 of the top 1,000 MOFs while
only flagging 10% for further investigation with GCMC
simulations. Recently, also Dureckova et al. used this
descriptor to screen a database of hypothetical materials with
more than 1000 topologies for CO2/N2 selectivity.

471

9.1.2.2. Interaction Energy Based Descriptors. Related to
the Voronoi energy introduced by Simon et al.431 is the energy
histogram Bucior et al. developed253 (see Figure 41). In this
descriptor, the interaction energy between gas and the
framework is binned and used as input for the learning
algorithm which the group around Snurr used to learn the H2
uptake for a large library of hypothetical structures and more
than 50,000 experimental structures from the CSD. Notably,
the authors also investigated the limits of the domain of
applicability by training a model only on hypothetical
structuresfrom only one database as well as a random mix
of two databasesand evaluating its performance on
experimental structures from the CSD. Overall, they found
better performance for the “mixed” model that was trained on
data from two different hypothetical databases.
Fanourgakis developed a descriptor that uses ideas similar to

the ones used for the interaction energy histogram from Bucior
et al. Instead of using the actual probe atom, they decided to
use multiple probes with different Lennard-Jones parameters
and to compute the average interaction energy for each of
them by randomly inserting the probes into the framework,
basically computing void fractions for different probe radii.248

In doing so, Fanourgakis et al. observed an improvement in
predictive performance in the low methane loading regime
compared to conventional descriptors such as void fraction,
density, and surface area.

Figure 41. Overall machine learning workflow used by Bucior et al.253 to predict the H2 storage capacity of MOFs. For each MOF, an energy grid
within the MOF unit cell was computed, from which an energy histogram was obtained, which is a feature in their regression model that they used
to predict the H2 uptake. Figure adopted from Bucior et al.253
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Closely related is the use of the heat adsorption as a
descriptor in ML models. Similar to the interaction energy
captured by the energy histograms, it is a crude estimate of the
target. It was for example used in recent studies on adsorption-
based heat pumps, where a working fluid is adsorbed by the
adsorbent and the released heat is used to drive the heat pump.
MOFs are an interesting alternative for the conventional
adsorbents.472 The most commonly used working fluid is
water, but for applications below 0 °C one would like to use an
alternative fluid.473 Shi et al.474 used ML to identify that the
density and the heat of adsorption are the most important
features from their descriptor set (including geometric
properties and the maximal working capacity) for models for
identifying the optimal MOF for a methanol-based adsorption-
driven heat pump. Li et al.475 used a similar approach, using
the Henry coefficient KH as a surrogate for the target, to build
ML models that identify promising COFs and MOFs for
ethanol-based adsorption.
9.1.2.3. Geometric Descriptors. As we already indicated,

most of the works on ML of the adsorption of nonpolar gases
in porous materials simply trained their models using
geometric descriptors.418,476,477

Following the idea that MOF databases are likely to contain
redundant information, Fernandez et al. performed archetypal
analysis (AA) and clustering on geometrical properties to
identify the “truly significant” structures.478 AA is a matrix
decomposition technique that deconstructs the feature matrix,
in their case built from geometric properties, into archetypes
that do not need to be contained in the data and which can be
linearly combined to describe all the data. They trained
classifiers on the 20% of structures that are closest to the
archetypes and cluster centroids and propose the rules which
their DTs learned as rules of thumb for enhancing CO2 and N2
uptake.
Using only geometric descriptors, Thornton et al. developed

an iterative prescreening workflow to explore the limits of
hydrogen storage in the Nanoporous Materials Genome. After
running GCMC simulations on a diverse set of zeolites, they
trained a NN on that data and used it to predict a set of 1,000
promising candidates, for which they again ran GCMC
simulations and repeated this cycle two more times to reduce
the computational time (cf. Figure 42).
9.1.2.4. Using the Building Blocks as Features. In contrast

to all aforementioned studies, Borboudakis et al. chose a
featurization approach that is not based on geometric
properties but that encodes the presence (and absence) of
building blocks. In this way, it is not possible for the model,
which they trained with an automated ML tool (cf. section
10.1), to perform predictions for structures with building
blocks that are not in the training set.172 This approach was
recently generalized by Fanourgakis et al., who use statistics
over atom types (e.g., minimum, maximum, and average of
triple bonded carbon per unit cell), that would usually be used
to set up force field topologies, as descriptors to predict the
methane adsorption in MOFs.255

9.1.2.5. Graph-Based Descriptors. Ohno and Mukae used a
different set of descriptors, which have also been used with
great success in other parts of chemistry. They decided to use
molecular graphs to describe the building blocks of the
structures (cf. section 4.2.2.2) and then used a kernel-based
technique (Gaussian process regression, cf. section 5.2.3) to
measure similarities between the structures.435 They used this
kernel in a multiple kernel approach together with pore

descriptors and then performed a random search to find the
combination of linkers and pore properties that maximizes the
prediction (methane uptake) of their model.
Recently, Korolev et al. benchmarked GCNN (cf. section

4.2.2.2) on different materials classes and also considered the
prediction of the bulk and shear modulus of pure-silica zeolites
and the Xe/Kr selectivity of MOFs.433 For both applications
they found worse performance than with the GBDT baselines
which let the authors to conclude that pore-centered
descriptors are more suitable for porous materials than atom
centered descriptors. Still, GCNN are a promising avenue as
the same framework can be applied to many structure classes
without tedious feature engineering.

9.1.2.6. Describing the Pore Shape Using Topological
Data Analysis. A different approach for the description of a
similarity between pores has been developed by Lee et al.
Using topological data analysis, they create persistent
homology barcodes (see section 4.2.2.4). By means of this
pore-shape analysis, the authors could find hypothetical
zeolites that have similar methane uptake as the top-
performing experimental structures.236,237 Lee and co-workers
recently also used this descriptor to train machine learning
models to predict the methane deliverable capacity of zeolites
and MOFs.233 To do so, they had to derive fixed-length
descriptors based on the original persistent homology barcodes
which cannot easily be used in ML applications as the number
of nonzero elements of the barcodes are of varying lengths.
They worked around this limitation by using the distances with
respect to landmarks, which are a selection of the most diverse
structures, as well as some statistics describing the persistent
homology barcode (like the mean survival time, the latest birth
time). An approach related to the distance to barcodes has
been chosen by Moosavi, Xu, et al., who used the distance
between barcodes to define a kernel which they then used to
train a KRR model for the methane deliverable capacities of
porous molecular crystals.185

9.1.2.7. Predicting Full Isotherms. The works we described
so far were built to predict one specific point on a gas
adsorption isotherm (i.e., at one specific temperature and
pressure). But in practice, one often wants multiple points on
the isotherm, or even the full isotherm, for process develop-
ment. In principle, one could imagine training one model per

Figure 42. Net deliverable energy as a function of the void fraction for
the data predicted using the NN and experimental data. The solid
dark line shows the Langmuir model. Figure reproduced from
Thornton et al.440
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pressure point. But we also all know that this is a waste of
resources as there are laws that connect the pressure and the
loading (e.g., Langmuir adsorption). This motivated research-
ers to investigate whether one single ML model can be used to
predict the full isotherm.
Recently, Sun et al. reported a multitask deep NN

(SorbNet) for the prediction of binary adsorption isotherms
on zeolites.479 Their idea was to use a model architecture in
which the two components have two independent branches in
the neural network close to the output and share layers close to
the inputs, which are the initial loading, the volume, and the
temperature. They then used this model to optimize process
conditions for desorptive drying, which highlights that such
models can help avoid the need for iteratively running
simulations for the optimization of process conditions (we
discuss the connection between materials simulation and
process engineering in more detail in the next section). A
limitation of the reported model is that it does not use any
descriptors of the sorbate or the porous framework and is
therefore limited to a specific combination of sorbates and
framework and needs to be retrained for new systems. A recent
work by Desgranges uses the same inputs (N, V, T, or N1, N2,
V, T, respectively) to predict the partition function, which in
principle gives them access to all thermodynamic quantities.480

But similar to the work of Sun et al. the model remains limited
to the systems (gas and framework) it was trained on. An
interesting avenue might be to combine this approach with the
ideas from Anderson et al., who encode the sorbates by
training with different achemical species (e.g., varying the
Lennard-Jones interaction strength, ϵ).481,482

Most of the works we discussed so far trained their models
on data that were generated with force fields (FFs). But in
some cases this is not accurate enough. A correlated method
such as RPA might enable simulations to reach chemical
accuracy (1 kcal/mol). Unfortunately, those methods are
prohibitively expensive for use in MD simulations. For this
reason, Chehaibou et al. combined several (ML) techniques to
predict adsorption energies of CO2 and CH4 in zeolites.437

First, they ran MD simulations with an affordable DFT
functional; then they selected a few distant snapshots on which

they performed RPA calculations. They used these calculations
to train a KRR model for which they used a SOAP kernel to
describe the similarity between structures. Interestingly, they
also use the Δ-ML approach in which they predict the
difference between the RPA and DFT energy. This is based on
the reasoning that the DFT result already gives the majority of
the contribution to the RPA total energy, wherefore it is not
necessary to learn this part (cf. section 10.3). Using
thermodynamic perturbation theory, they reweighed the
DFT trajectory using the RPA energies predicted using the
KRR model to get ensemble averages on the RPA level.

9.1.3. Bridging the Gap between Process Engineer-
ing and Materials Science.Materials’ design is nearly always
a multiobjective optimization in which the goal is to find an
optimal spot on the Pareto front of multiple performance
metrics. One issue with performance metrics is that it is not
always clear how they relate to the actual performance on a
process level, e.g. in a pressure swing adsorption system. This is
also reflected in the 2018 Mission Innovation report that
highlights the need to “understand the relationship between
material and process integration to produce optimal capture
designs for flexible operationbridging the gap between
process engineering and materials science”.483 ML might help
to bridge this gap.484−487 Motivated by the need to integrate
materials science and process engineering, Burns et al.
performed molecular simulations and detailed simulations for
a vacuum swing adsorption process for carbon capture on 1632
MOF.488 When attempting to build ML models that can
predict the process level performance metrics, they realized
that they can predict the ability of a material to reach the 95%
CO2 purity and 90% CO2 recovery targets (95/90-PRT)but
not the parasitic energy, which is the energy needed to recover
the sorbent and to compress the CO2. Furthermore, using their
RF models they found the N2 adsorption properties to be of
the highest importance for the prediction of the 95/90-PRT.

9.1.4. Interpreting the Models. Over the years QSPR has
evolved from visual inspection of relationships,464 over the use
of more and more complex models to the interpretation of
these models, e.g., using some feature importance analysis. On
the one hand, these analyses can give potentially more insights,

Figure 43. Relative importance of the different material descriptors for carbon capture, as obtained for GBDT models trained by Anderson et al.494

In these plots S = selectivity, WC = working capacity, N = adsorption loading. FG = functional group, VF = void fraction, HDBM = highest dipole
moment, MPC = most positive charge, MNC = most negative charge, LPD = largest pore diameter, PLD = limiting pore diameter, SE = sum of
epsilons, GSA = gravimetric surface area. Figure adopted from Anderson et al.494
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also for new materials, but on the other hand, they introduce
new error sources. As we discussed in section 8, we not only
have to consider the limitations of the data set for such
analyses but also the limitations of the ML model, that might
not be able to capture these relationships.
The use of tree-based models474−476,489−492 and the feature

importance that can be extracted from them (e.g., based on
how high in the tree a feature was used for a split) have
evolved to the most popular techniques to interrogate ML
models in the MOF community.431,477,493,494

For example, Gülsoy fitted decision trees for the CH4
storage capacity of MOFs using two different feature sets.247

Similar trees were also derived by Fernandez and Barnard as
“rules of thumb” for CO2 and N2 uptake in MOFs.478

Anderson et al. used feature importance analysis on a library
of hypothetical databases for a selection of storage and
separation tasks and found that the importance of different
features depends on the task. For example, they found
chemistry-related metrics (such as the maximum charges) to
be more important for CO2/N2 mixtures than for only the
uptake of CO2

494 (see Figure 43). One advantage of ML
models is that they can potentially be used for materials’
design, i.e., to design a material with an optimal performance
from scratch. Anderson et al. attempted to do so by using a
genetic algorithm to find feature combinations that maximize
the performance indicators.

9.2. Stability

But also the MOF with the best gas adsorption properties is
not of much use if it is not stable. One needs to distinguish
between chemical stability and mechanical stability.495

The issue of chemical stability is one of the most asked
questions after a MOF presentation. Indeed, MOF-5, one of
the first published MOFs, is not stable in water and therefore
there is a strong perception that therefore all MOFs have a
water issue. However, one has to realize that MOFs are, like
polymers, a class of materials. Some can be boiled in acids for
months without losing their crystallinity while others readily
dissolve in water.496 For most practical applications it is
important, however, to know whether a structure is stable in
water. For this reason, there have been efforts to develop
models that are able to predict the stability of porous materials
based on readily available descriptors. This is a typical example
of a less well-defined property as can be seen by the different
proxies that are used to mimic the notion of stability. Most of
these proxies are based on the idea that for a chemically
unstable MOF it is favorable to replace a linker by water. To
the best of our knowledge, no ML studies have been reported
that investigate the chemical stability. Yet this is a complex
topic in which ML might give us some interesting insights.
Sufficient mechanical stability is also of considerable

practical importance. In most practical applications MOFs
need to be processed, and during this processing there will be
pressure and shear forces applied on the crystal. If this causes
the pores to deform, the properties of the material may change
significantly. Therefore, sufficient mechanical stability is an
important practical requirement. Yet, it is not a property that is
often studied.497−499

Evans and Coudert took on this challenge by training a
GBDT to predict the bulk and shear moduli based on
geometrical properties for 121 training points calculated using
DFT.327 Moghadam et al. followed up this work by training a
NN on bulk moduli of more than 3000 MOFs that they

obtained from FF-based simulations.500 Their model uses
geometric descriptors and also information about the topology,
which their EDA showed to be of utter importance. Recently,
the group around Coudert extended their analysis of the
mechanical properties of zeolites using FF-derived mechanical
properties for all structures from Deem’s database of
hypothetical zeolites501 for a subset of which they also
computed the mechanical properties using DFT. Motivated
by the lackluster performance of the FF to describe the
mechanical properties, they trained a GBDT (using the same
approach which they also used in their first work) on the data
derived with DFT. And they found that, on average, their
model can predict the Poisson’s ratio better than the FF.
For a related family of porous materials, organic cages,

mechanical stability is even a bigger problem as they lack 3D
bonding. Turcani et al. built models to predict the stability of
the cages based on the precursors to focus more elaborate
investigations on materials that are likely mechanically
stable.502

Such a tool would certainly also benefit screenings of MOFs,
but the lack of good training data makes it difficult to create
such a model and also explains the scarcity of the studies in this
field. An important part of a solution for this problem is the
adoption of standardized computing protocolssuch that
different databases can be combined into one training set
and sharing of the data in a findable, accessible, interoperable,
reusable (FAIR) compliant way.503

9.3. Reactivity and Chemical Properties

One of the emerging topics in MOFs is catalysis.504−507 MOFs
are interesting for catalysis as the presence of OMS or the
specifics of the linker can be combined with concepts of shape
selectivity known from zeolite catalysis.508

For reactivity on surfaces,509 but also in zeolites,510−512

scaling relations (that often incorporate the heat of adsorption
of the reactants) have been proven to be a powerful tool to
predict and rationalize chemical reactivity. Rosen et al. recently
introduced such relationships, for example, based on the H-
affinity of open metal sites, for methane activation in MOFs.513

As Andersen et al. recently pointed out, more elaborate ML
techniques such as compressed sensing (cf. section 4.3.2.3)
might help us to go beyond scaling relationships and discover
hidden patterns in big data. This approach is motivated by the
realization that some phenomena might not be describable by
a simple equation and that data-driven techniques might be
able to approximate those complex relationships.514

9.4. Electronic Properties

Other emerging applications of MOFs are photocatalysis,515

luminescence,516,517 and sensing.518,519 For these properties it
is important to know the electronic (band) structure. However,
ML studies on the electronic properties of MOFs are scarce
due to the lack of training data in open databases and the fact
that this data is expensive to create using DFT due to the large
unit cells of many MOFs. This motivated He et al. to attempt
to use transfer learning.245 They trained four different
classifiers on inorganic structures from the open quantum
materials database (OQMD) in which the band gaps have
been calculated for about 52,300 materials using DFT and then
retrained the model to classify nearly 3,000 materials from the
computationally ready experimental (CORE)-MOF database
as either metallic or nonmetallic using their ML model.
A key descriptor for the chemistry of materials, that is also

needed as input for electronic structure calculations, is the
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oxidation state of a material. Jablonka et al. retrieved the
oxidation states assigned in the chemical names of MOFs in
the CSD and trained an ensemble of classifiers to assign the
oxidation state,438 using features that, among other, describe
the geometry of local coordination environments.520 Using the
ensemble they not only made the model more robust (cf.
section 5.2.5) but also obtained an uncertainty measure. In this
way, they could not only assign oxidation states with high
predictive performance but also find some errors in the
underlying training data.

9.5. ML for Molecular Simulations

In other parts of chemical science, HDNNPs received a lot of
attention as they promise to create potentials in ab initio
quality that can be used to run simulations at a cost of FF
based simulation with the additional advantage of the ability to
describe reactions (with bond breaking and formation). Also,
popular molecular simulation codes such as large scale atomic/
molecular massively parallel simulator (LAMMPS) have been
extended to perform simulations with such potentials.
However, such models are usually trained on DFT reference
data which can make it a demanding task to create a training a
set given the large unit cells of MOFs.
Eckhoff and Behler attempted to avoid this problem by

constructing a potential based on more than 4,500 small
molecular fragments (the base fragments are shown in Figure
44) that were constructed by cutting out fragments from the
crystal structure of MOF-5. The HDNNP which they trained
in this way was able to correctly describe the negative thermal
expansion and the phonon density of states.286

Besides a potential that describes the interatomic inter-
actions, the assignment of partial charges is needed to calculate
the Coulomb contribution to the energy in molecular
simulations. The most reliable methods to assign those charges
rely on DFT derived electrostatic potentials and in this way
can easily become the bottleneck for molecular simulations. As
an alternative, Xu and Zhong proposed to use connectivity-
based atom types, for which it is assumed that atoms with the
same connectivity have the same charge.521 Korolev and co-
workers attempted to solve the main limitation of the
connectivity-based atom types, namely that all relevant atom
types need to be included in the training set, using a ML
approach.416 To do so, they trained a GBDT on 440,000
partial charge assignments using local descriptors such as the
electronegativity of the atom or local order parameters, which
are based on a Voronoi tessellation of the neighborhood of a
given site.

9.6. Synthesis

Synthesis is at the heart of chemistry. Still, it is unfeasible to
use computational approaches to predict reactivity or to
suggest ideal reaction conditionsalso because for example
crystallization is a complex interfacial phenomenon that is
influenced by structure-directing agents or modifiers.522 For
this reason, chemical reactivity is one of the most promising
fields for ML.
Nevertheless, there are only a few reports that try to use

artificial intelligence techniques in the synthesis of MOFs. This
is likely due to the same reasons as for reactivity and electronic
properties, for which there are also no large open databases of
properties and for which the training data is expensive to
generate.
Some of the early works in the field set out to optimize the

synthesis of zeolites. Corma et al. attempted to make high-
throughput synthesis (e.g., using robotic systems) more
efficient, i.e., improve on classical DoE techniques such as
full factorial design (generating all possible combinations of
experimental parameters, cf. section 3.2.1.2)523,524 by reducing
the number of low-promising experiments.525 First, they
attempted to use simple statistical analysis to estimate the
importance of different experimental parameters and then
moved to actual predictive modeling. After training a NN on
synthesis descriptors to predict and optimize crystallin-
ity,525,526 they combined a genetic algorithm (GA) with a
NN to guide the next experiments suggested by the GA with
the knowledge extracted by the NN527 (using the NN to
predict the fitness).527 A related approach was introduced to
the field of MOF synthesis by Moosavi et al. where the
synthesis parameters were optimized using a GA. To make this
more efficient, the authors introduced the importance of
variables derived from a RF model, that was also trained on the
failed experiments, as weights for the distance metric for the
selection of a diverse set of experimental parameters. In this
way, they could synthesize the HKUST-1 with the highest
Brunauer−Emmett−Teller (BET) surface area reported so
far.21

In a similar vein, Xie et al.528 analyzed failed and partly
successful experiments and used a GBDT to determine the
importance of experimental variables that determine the
crystallization of metal−organic nanocapsules (MONCs),
which are compounds that can self-assemble and form porous
crystals in some cases.529

Figure 44. Molecular basis fragments used by Eckhoff and Behler as
starting points for the generation of reference structures for the
training of the HDNNP for MOF-5. Based on the five fragments,
more than 4,500 other fragments were generated by scaling of the
coordinates and small random displacements. All atoms that have
complete bulk-like environments within a cutoff radius of 12 Å are
shown as balls; capping hydrogen atoms, to saturate broken bonds,
are shown in orange. Figure reprinted from Eckhoff and Behler.286
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Given the large body of experimental procedures for the
synthesis of porous materials, many works attempted to mine
or extract this collective knowledge to create structured data
sets that can be used to train ML models for reaction condition
prediction.
A recent study of Muraoka et al. was enabled by a literature

review on the synthesis of zeolites. Using this data, they trained
ML models to predict the phase based on parameters
describing the synthetic conditions, producing decision trees,
as shown in Figure 45, that reflect chemically reasonable
knowledge extraction from the literature data. For example, the
authors compare the early split based on the Si/Al ratio with
Lüwenstein’s rule that forbids Al−O−Al bonds. By optimizing
the structural fingerprint by reweighing the similarity between
zeolites to be similar in the synthesis and structure space, they
could build a similarity network in which they could uncover
an overlooked similarity between zeolites that also manifested
itself in the synthesis conditions.530

Jensen et al. developed algorithms to retrieve the synthesis
conditions from 70,000 zeolite papers and used this to build a
model that can predict the framework density of germanium
zeolites based on the synthetic conditions.531 Also, Schwalbe-
Koda mined the literature about polymorphic transformations
between zeolites to enable their work in which they showed
that graph isomorphism can be used as a metric for these
transformations.532

For MOFs, Park et al.,158 as well as Tayfuroglu et al.,533

parsed the literature to retrieve surface areas and pore volumes
for a large collection of MOF. But so far, the data generated
from these studies have not yet been used to build predictive
models for MOF properties and synthesis.
Another approach was taken by Deem and co-workers, who

addressed the design of organic structure directing agents
(OSDAs).534 Zeolites are all isomorphic structures, and
OSDAs are used during the synthesis to favor the formation
of the desired isomorph. Finding the right OSDA to synthesize
a particular zeolite is seen as one of the bottlenecks. To
support this effort, Deem and co-workers developed a
materials’ design program to generate synthetically accessible
OSDA.501 To expedite this process, Deem and co-workers
developed a ML approach, in which they calculated the
stabilization energy of different OSDAs inside of zeolite beta

and then trained a NN using molecular descriptors derived
from ideas of electron diffraction.535 In this way, they could
speed up the search for novel OSDA by a factor of 350 and
suggest 469 new and promising OSDA (see Figure 46).

Figure 45. First four layers of a decision tree for zeolite synthesis that Muraoka et al. extracted from a GBDT model fitted on literature data. The
percentages give the fractions of the dominant phases for the complete tree with 12 layers. According to this tree, the most important factor for
predicting the synthesis result is the Na/(Si + Al) ratio. Figure reprinted from Muraoka et al.530

Figure 46. Deem and co-workers used a ML approach to identify
chemically synthesizable OSDA for zeolite beta, which is one of the
top-six zeolites of commercial interest. The figure shows the top-three
OSDAs that Deem and co-workers discovered.534 The scores in the
figure are the binding energy in kJ/(mol Si). Figure adapted from ref
534.
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Daeyaert and Deem536 further extended this work to find an
OSDA for some of the hypothetical zeolites that were found to
perform optimally in a screening study for the separation of
CO2 and CH4.

461

Even if one manages to create some material, it is not always
trivial what the material is. To address this, Wang et al. build
models, including CNNs similar to the one we described in
section 5.1.1.4 to identify the material based on its
experimental XRPD pattern. To do so, they predicted
diffraction patterns for structures deposited in the CSD and
used data augmentation techniques (cf. section 3.4) such as the
addition of noise and then tested their model using
experimental diffraction patterns.135

9.6.1. Synthesizability. One question that always arises in
the context of hypothetical materials is the question of
synthesizability. In the context of zeolites, this question
received a lot of attention. Early works proposed that low
framework energies are the distinctive criterion537−539akin
to the recent attempt of Anderson and Goḿez-Gualdroń to
assess the synthetic feasibility of MOFs.540 But this quickly got
overturned with the discovery of high-energy zeolites and
replaced by a “flexibility window”,541 which was eventually also
found to not be reliable and replaced by criteria that focus on
local interatomic distances.542 A library of such criteria was
used in a screening study of Perez et al. to reduce the pool of
candidate materials from over 300,000 to below 100. As a
conclusion of their study, they suggest using the overlap
between the distribution of descriptors of experimental
materials and those generated in silico as a metric to evaluate
how feasible the materials are which an algorithm produces.543

Such an approach, which is related to approaches suggested for
benchmarking of generative techniques for small mole-
cules,544,545 might also be useful for evaluation of the
generative models that we discuss in the following.

9.7. Generative Models

The ultimate goal of materials’ design is to build a model that,
given desired (application) properties, can produce candidate
structures using generative techniques such as GANs. Though
this flavor of ML is formally not supervised learning, on which
we focused in this review, we give a short overview of recent
progress in this promising application of ML to porous
materials. One model architecture that is often used in this
context are GANs where a first NN acts as generator and tries
to “deceive” a discriminator NN that tries to distinguish real
data (structures) from the “fake” ones that the generator
generated. For molecules, this approach received wide
attention,24,64 but the works on nanoporous solids proved to

be more difficult due to the periodicity and the nonunique
representation of the unit cell. Kim and co-workers started
building GANs that can generate energy grids of zeolites546

and recently extended their model to predict the structure of
all-silica zeolites.434 To do so, they used a separate channel (as
is used for the RGB channels in color images) for oxygen and
silicon atom positions which they encoded by placing Gaussian
at the atom positions. By adjusting the loss function to target
structures with a specific heat of adsorption, they could observe
a drastic shift in the shape of the distribution of this property
but not in the one for the void fraction or the Henry coefficient
(Figure 47).

10. OUTLOOK AND CONCLUDING REMARKS

One of the aims of this review is to provide a comprehensive
overview of the state of the art of ML in the field of materials
science. In our review, we not only discuss the technical details,
but we also try to point out the potential caveats that are more
specific for material science. As part of the outlook, we discuss
some techniques that are, as of yet, little, if at all, used for
porous materials. Yet, these methods can address some of the
issues that we have discussed in the previous sections.

10.1. Automatizing the Machine Learning Workflow

Given that the complete process from structure to prediction,
which we discussed in this review, is quite laborious, there is a
significant barrier for scientists with little computational
background to enter the field. To lower the entrance barrier,
a lot of effort is spent to automatize the ML process.547 In the
ML community tools like H2O’s autoML,548 TPOPT,549 or
Google’s AutoML are widely known and receive mounting
attention.550 In the materials science community especially the
chemml551,552 and the automatminer packages553 are worth
mentioning. The latter uses matminer to calculate descriptors
that are relevant for materials science and performs the feature
selection (using TPOPT) as well as training and cross-
validation.553 Such tools will lower the barrier for domain
experts even more and also help practitioners of ML to
expedite tedious tasks.

10.2. Reproducibility in Machine Learning

Reproducibility, and being able to build on top of previous
results, is one of the hallmarks of science. And it is also one of
the main technical debts of ML systems, where technical debt
describes cost due to (code) rework that are caused by
choosing an easy solution now instead of a proper one that
might take longer to be developed.554 If one cannot even
replicate published experiments, one can ask if we are making

Figure 47. Distribution of Henry coefficient, void fraction and heat of adsorption for generated structures with a user-defined target range of 18−22
kJ mol−1 for the heat of adsorption. Reproduced from ref 434.
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any progress as a community. This question was posed by a
recent study that found that they could only reproduce 7 from
18 recommender algorithms. Moreover, six of the recom-
mender algorithms which were reproducible could be out-
performed by simple heuristics.555

It is also the authors’ personal experience that reproducing
computational data from the literature can be a painful process.
Even if the literature is an article from the same group,
reproducing the results from only a few years earlier can be a
difficult search for the information that was not reported in the
original article. Often, the reason for being unable to reproduce
the data is that many programs use default settings. These
default settings can be hidden in the input filesor in the code
itselfand since they are never changed during the reported
studies, these settings get overlooked and do not get reported.
However, if in a new release or for any other reasons the

defaults get changed, the results become nearly impossible to
reproduce. Of course, if we had realized the importance of
these unknown unknowns, we, and any other author, would
have reported the values in the original article. The only way to
avoid these issues is to rigorously report all input and output
files as well as workflows for all computations.556 In ML the
same holdsfor example different implementations of
performance measures (e.g., in off-the-shelf ML libraries) can
lead to different, biased, estimates that hinder comparability
and reproducibility.557

In computational materials science there are ongoing efforts,
such as the AiiDA infrastructure558 or the Fireworks workflow
management system,559 to make computational workflows
more reproducible and to lower the barrier of applying the
FAIR principles of data sharing.560 For example, Ongari et
al.561 developed a workflow to optimize and screen

Figure 48. Screenshot of the Materials Cloud (https://archive.materialscloud.org/2019.0034/v2) pages for the screening of COFs for carbon
capture. In the “Discover” section (a) there is an interactive plot and table that links to the original references and structures as well as to plots of
the relaxation and the process optimization which are all linked to the “Explore” section (b), where one can find the source code for the workflows
and interactive provenance graphs.
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experimental COFs structures for their potential for carbon
capture.561

Figure 48 shows a snapshot from the Materials Cloud Web
site where, by clicking on a data point, one obtains not only all
data that have been computed for this particular material but
also the complete provenance. This provenance includes an
optimization step of the experimental structure, the computa-
tion of the charges on the framework, the GCMC simulations
to compute the isotherms and heats of adsorption, and finally
the program that computes the objective function used to rank
the materials for carbon capture. The idea here is that anybody
in the world can reproduce the data by simply downloading the
AiiDA scripts and running the programs on a local computer
or, by adding more structures, extending to work to other
materials, or reproducing the complete study using a different
force field, by simply replacing the force field input file. Given
that the data contains rich metadata, and all parameters of the
calculations, it is easy to identify with which other databases it
could be combined to create a training set for a ML algorithm.
But these workflow management tools, and even version

control system such as git, are not easily applicable to ML
problems, where one usually wants to share and curate data
separately from the code, but still retain the link between data,
hyperparameters, code, and metrics. Tools like comet,562

Neptune,563 provenance,564 Renku,565 mlflow,566 ModelDB,567

and dvc568 try to make ML more reproducible by providing
parts of this solution, such as data version control or automatic
tracking of hyperparameter and metrics together with data
hashes.
We consider both reproducibility and sharing of data as

essential for the progress in this field. Therefore, to promote
the adaptation of good practices, we encourage using tools
such as the data-science cookiecutter569 that automatically sets
up a ML development environment that promotes good
development practices.
Journals in the chemical domain might also encourage good

practices by providing “reproducibility checklists”, similar to
the major ML conferences like NeurIPS.570

Publishing the full provenance of the model development
process, as can be done for example with tools such as comet,
can to some extent also remedy the problem that negative
results (e.g., plausible architectures that do not work) are
usually not reported.
10.2.1. Comparability and Reporting Standards. One

factor that makes it difficult to build on top of previous work is
the lack of standardization. In the MOF community, many
researchers use hypothetical databases to build their models.
But unfortunately, they typically use different databases, or
different train/test splits of the same database. This makes it
difficult to compare different works as the chemistry in some
databases might be less diverse and easier to learn than for
example in the CoRE-MOF database, which contains
experimental structures. Also, in comparing the protocols
with which the various labels (y) for different databases are
created, one often finds worrying differences, e.g., in the details
of the truncation of the interaction potential571 or the choice of
the method for assigning partial charges. This can make it
necessary to recompute some of the data, as the discrepancy
between the two approaches will dictate the Bayes basis
error.215,279 Unfortunately, there are no widely accepted
benchmark sets in the porous materials communityeven
though the ML efforts on (small) molecules greatly benefited
from such benchmark sets (see e.g. http://quantum-machine.

org/datasets/ or MoleculeNet366) which allow for a fair
comparison between studies.427 We are currently working on
assembling such sets for ML studies on porous materials.
In addition to the lack of benchmark sets, there is also a lack

of common reporting standards. Not all works provide full
access to data, features, code, trained models, and choice of
hyperparameterseven though this would be needed to
ensure replicability. The crystals.ai project is an effort to
create a repository for such data.572 Again, reproducibility
checklists, like the one for NeurIPS, might be beneficial for our
community to ensure that researchers stick to some common
reporting standard.

10.3. Transfer Learning and Multifidelity Optimization

A problem of ML for materials science, and in particular MOFs
with their large unit cells, is that the data sets of the ground
truth (the experimental results) are scarce and only available
for a few materials. Often, experimental data are replaced by
estimates from computations, and these computational data
necessarily introduce errors due to approximations in the
theories.142 Similarly, it is much easier to create large data sets
using DFT than using expensive, but more accurate, wave
function methods. But even DFT can still be prohibitively
expensive for large libraries of materials with large unit cells.
This is why multifidelity optimization (which combines low
and high-fidelity data, such as semiempirical and DFT-level
data) and transfer learning are promising avenues for materials
science.
Transfer learning has found widespread use in the

“mainstream” ML community, e.g., for image recognition,
where models are trained on abundant data and then partially
(re)-trained on the less abundant (and more expensive) data.
Hutchinson et al. used transfer learning techniques to predict
experimental band gaps and activation energies using DFT
labels as the main data source and showed that transfer
learning generally seems to be able to improve predictive
performance.142 Related to this is a recent physics-based neural
network from the Pande group in which a cheap electron
density, for example from Hartree−Fock (HF), is used to
predict the energetics and electron density on the “gold
standard” level of theory (Coupled Cluster Single−double with
perturbative triple excitations (CCSD(T))).573 The authors
relate the expensive electron density ρ to the cheap one using a
Taylor expansion and use a CNN to learn the Δρ and ΔE.
Since both Taylor expansions for ΔE and Δρ share terms such

as ( )E
r r( ) ( )

2δ
δρ δρ ′

they can use the same first layers and then

branch into two separate output channels for Δρ and ΔE,
respectively. The NN was first trained using less expensive
DFT data, and then transfer learning was used to refine the
weights using the more expensive and less abundant CCSD(T)
densities. This is similar to the approach which was used to
bring the ANI-1 potential to CCSD(T) accuracy on many
benchmark sets.287

But for transfer learning to find more widespread use in the
materials science domain it would be necessary to share the
trained models, and the training as well as evaluation data, in
an interoperable way.
The fact that inaccurate, but inexpensive, simulation data is

widely available motivated the development of the Δ-ML
technique, where the objective of the ML model is to predict
the difference between the result of a cheap calculation and
one obtained at a higher level of theory.36 This approach was
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subsequently formalized and extended in multiple dimensions
using the sparse grid combination technique, which combines
models trained on different subspaces (e.g., combination of
basis set size and correlation level) such that only a few
samples are needed on the highest, target, level of accuracy.574

A different multifidelity learning approach, known as
cokriging, can combine low- and high-fidelity training data to
predict properties at the highest fidelity levelwithout using
the low-fidelity data as features or baseline. This technique was
used by Pilania et al. to predict band gaps of elpasolites on
hybrid functional level of theory using a training set of
properties on both GGA and hybrid functional level.303

All these methods are promising avenues for ML for porous
materials.

10.4. Multitask Prediction

In the search for new materials, we usually do not only want to
optimize one property but multiple. Also, we usually not only
have training data for only one target but also for related
targets, e.g., for Xe, Kr, and CH4 adsorption. Multitask models
are built around this insight and that models, particularly NNs,
might learn similar high-level representations to predict related
properties (e.g., one might expect the gas uptake for noble
gases and CH4 follow the same basic relationship). Hence,
training a model to predict several properties at the same time
might improve its generalization performance due to the
implicit information captured between the different targets. In
the chemical sciences, Zubatyuk et al. used multimodal training
to create an information-rich representation using a message-
passing NN.141 This representation could then be used to
efficiently (with less training data) learn new properties.
Similar benefits of multitask learning were also observed in
models trying to predict properties relevant for drug
discovery.140,575

10.5. Future of Big-Data Science in Porous Materials

It is tempting to conclude that MOFs and related porous
material are synthesized for ML. MOFs are among the most
studied materials in chemistry, and the number of MOFs that
are being synthesized is still growing. In addition, the number
of possible applications of these materials is also increasing. We
are already in a situation that if a group has synthesized a novel
MOF it is in practice impossible to test this novel material for
all possible applications. One can then clearly envision the role
of ML. If we can capture the different computational screening
studies using ML, we should be able to indicate the potential
performance of a novel material for a range of different
applications. Clearly, a lot of work needs to be done to reach
this aim; with this review we intended to show that the
foundations for such an approach are being built.
The other important domain where we expect significant

progress is in the field of MOF synthesis. The global trend in
science is to share more data, and technology makes it easier to
share large amounts of data. But the common practice to only
publish successful synthesis routes is throwing away lots of
valuable information. For example, an essential step in MOF
synthesis is finding the right conditions for the material to
crystallize. At present, this is mainly trial and error. Moosavi et
al.21 have shown how to learn from the failed and partially
successful experiments. Interestingly, they used as example
HKUST-1, which is one of the most synthesized MOFs, but
they had to reproduce the failed experiments to be able to
analyze the data using ML techniques. One can only dream
about the potential of such studies if all synthetic MOF groups

would share their failed and partially successful experiments.
This would open the possibility to use ML to find correlations
between linker/metal nodes and crystallization conditions and
would allow us to make predictions of the optimal synthesis
conditions for novel MOFs. Also here, ML methods have the
potential to change the way we do chemistry, but the
challenges are enormous in solving the practical issues in
creating an infrastructure and change of mind set that all
synthesis attempts are shared in such a way that the data are
publicly accessible.
Hence, a key factor in the success of ML in the field of

MOFs will be the extent to which the community is willing and
able to share data. If all data on these hundreds of thousands of
porous materials are shared, it will open up possibilities that go
beyond the conventional ways of doing science. We hope that
the examples of ML applied to MOFs we discussed in this
review illustrate how ML can change the way we do and think
about science.
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ABBREVIATIONS
kNN k nearest neighbor
AA archetypal analysis
ADASYN adaptive synthetic oversampling
AP atomic property
AUC area under the curve
BAML bond-angles machine learning
BET Brunauer−Emmett−Teller
BoB bag of bonds
CADD computer aided drug design
CART classification and regression tree
CAS Chemical Abstract Services
CCSD(T) Coupled Cluster Single−double with perturbative

triple excitations
CNN convolutional neural network
COF covalent organic framework
CoRE computationally ready experimental
CSD Cambridge Structure Database
DFT density-functional theory
DL deep learning
DNN deep neural networks
DoE design of experiment
DOS density of states
DT decision tree
DTNN deep tensor neural network
EDA exploratory data analysis
FAIR findable, accessible, interoperable, reusable
FF force field
FPS farthest point sampling

GA genetic algorithm
GAM generalized additive model
GAN generative adverserial network
GAP Gaussian approximation potential
GBDT gradient boosted decision trees
GCMC grand-canonical Monte Carlo
GCNN graph-convolutional NN
GGA general-gradient approximation
GP Gaussian process
GPR Gaussian process regression
HDNNP high-dimensional neural network potential
HF Hartree−Fock
HIP hierarchically interacting particle
i.i.d independently and identically distributed
KMM kernel-mean matching
KRR kernel ridge regression
LAMMPS large-scale atomic/molecular massively parallel

simulator
LASSO least absolute shrinkage and selection operator
LHS latin hypercube sampling
lococv leave-on-cluster-out cross-validation
LOOB leave-one-out bootstrap
LOOCV leave-one-out cross validation
MAE mean absolute error
MBTR many-body tensor representation
MC Monte Carlo
MD molecular dynamics
MDP maximum diversity problem
ML machine learning
MLP multilayer perceptron
MOF metal−organic framework
MONC metal−organic nanocapsules
MSE mean squared error
NLP natural language processing
NN neural network
NP nondeterministic polynomial-time
OBD optimal brain damage
OMS open metal site
OQMD open quantum materials database
OSDA organic structure directing agent
PCA principal component analysis
PES potential energy surface
PLMF property labeled materials fragments
PPN porous polymer network
PSD pore size distribution
QSAR quantitative structure activity relationship
QSPR quantitative structure property relationship
RAC revised autocorrelation
RDF radial distribution function
REACH registration evaluation and authorization of chem-

icals
ReLU rectified linear unit
RF random forest
RFA recursive feature addition
RFE recursive feature elimination
RMSE root MSE
RNN recurrent neural network
ROC receiver-operating characteristic
RPA random phase approximation
SGD stochastic gradient descent
SHAP SHapley Additive exPlanations
si sure independence
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SISSO sure independence screening and sparsifying
operator

SMBO sequential model-based optimization
SMILES simplified molecular input line entry system
SMOTE synthetic minority oversampling technique
SOAP smooth overlap of atomic positions
SVC support vector classifier
SVM support vector machine
t-SNE t-distributed stochastic neighbor embedding
TDA topological data analysis
TPE tree-Parzen estimator
VAE variational autoencoders
VIF variance inflation factor
XRD X-ray diffraction
XRPD X-ray powder diffraction
ZIF zeolitic imidazolate framework
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(61) Goḿez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernańdez-
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(195) Bartoḱ, A. P.; Csańyi, G. Gaussian Approximation Potentials:
A Brief Tutorial Introduction. Int. J. Quantum Chem. 2015, 115,
1051−1057.
(196) Artrith, N.; Urban, A. An Implementation of Artificial Neural-
Network Potentials for Atomistic Materials Simulations: Performance
for TiO2. Comput. Mater. Sci. 2016, 114, 135−150.
(197) Lee, K.; Yoo, D.; Jeong, W.; Han, S. SIMPLE-NN: An
Efficient Package for Training and Executing Neural-Network
Interatomic Potentials. Comput. Phys. Commun. 2019, 242, 95−103.
(198) Ziletti, A. ai4materials; 2020; https://github.com/
angeloziletti/ai4materials (accessed 2019-11-18).
(199) Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A
general-purpose machine learning framework for predicting properties
of inorganic materials. npj Comput. Mater. 2016, 2, 16028.
(200) Willatt, M. J.; Musil, F.; Ceriotti, M. Atom-Density
Representations for Machine Learning. J. Chem. Phys. 2019, 150,
154110.
(201) Drautz, R. Atomic Cluster Expansion for Accurate and
Transferable Interatomic Potentials. Phys. Rev. B: Condens. Matter
Mater. Phys. 2019, 99, 014104.
(202) Pozdnyakov, S. N.; Willatt, M. J.; Bartoḱ, A. P.; Ortner, C.;
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(291) Schütt, K. T.; Gastegger, M.; Tkatchenko, A.; Müller, K.-R. In
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning;
Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., Müller, K.-R.,
Eds.; Springer International Publishing, 2019; Vol. 11700; pp 311−
330.
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