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Inflammation is a hallmark and potent driver of pathological vascular remodelling in atherosclerosis. However, current anti-inflammatory
therapeutic strategies have shown mixed results. As an alternative perspective on the conundrum of chronic inflammation emerging evi-
dence points towards a small subset of senescent cells as a critical player and central node driving atherosclerosis. Senescent cells belong-
ing to various cell types are a dominant and chronic source of a large array of pro-inflammatory cytokines and various additional plaque
destabilizing factors, being involved with various aspects of atherosclerosis pathogenesis. Antagonizing these key agitators of local chronic
inflammation and plaque instability may provide a causative and multi-purpose therapeutic strategy to treat atherosclerosis. Anti-
senescence treatment options with translational potential are currently in development. However, several questions and challenges remain
to be addressed before these novel treatment approaches may enter the clinical setting.
...................................................................................................................................................................................................
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Introduction

Inflammation is a critical driver of atherosclerosis and an independent
risk factor for myocardial infarction and cardiovascular death.1 The
Canakinumab Anti-inflammatory Thrombosis Outcome Study
(CANTOS) showed that targeting inflammation can provide signifi-
cant, clinically relevant cardiovascular benefit.2 In another attempt to
target inflammation, the Cardiovascular Inflammation Reduction Trial
(CIRT)3 yielded negative, but highly educative results. These trials
highlighted the potential, but also the limitations of current anti-
inflammatory approaches, including immune suppression and the
associated risk of sepsis.4 Furthermore, targeting individual cytokines
of the pro-inflammatory cascade may not fully address the effects of
various other pro-inflammatory elements.5 Strategies to target up-
stream effectors in the inflammatory signalling cascade may provide a
solution for these issues.5

A strong suspect for the central upstream source of inflammatory
factors is ageing, being the strongest independent risk factor for car-
diovascular disease (CVD).6 On the cellular level, ageing is driven by
the accumulation of senescent cells.7 Cellular senescence is defined as
an irreversible cell cycle arrest (mechanism outlined in Figure 1)8 and
is accompanied by a pro-inflammatory phenotype. The phenotype is
referred to as the senescence-associated secretory phenotype
(SASP), producing pro-inflammatory cytokines [interleukin (IL)-1a, IL-
1b, IL-6, IL-8, IL-18, CCL-2, tumour necrosis factor a (TNF-a)], metal-
loproteinases (MMP-1, -2, -3, -7, -8, -9, -10, -12, -13, and -14), and
other factors.9,10 Emerging experimental evidence indicates that, in
contrast to an acute inflammatory response, the SASP is a protracted
and chronic source of inflammatory and other plaque-destabilizing
factors,9,10 gradually contributing to atherosclerosis pathogenesis.

Intriguingly, cellular senescence and atherosclerosis share multiple
causative stimuli1,11,12: oxidized and electronegative low-density
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..lipoprotein (LDL),13,14 inflammation,15 reactive oxygen species,8 cig-
arette smoke,16 hypertension,17 hyperglycaemia,18 cytomegalovirus
(CMV) infection,19 telomere attrition,20 mitochondrial failure,21 dys-
functional autophagy,22 and genomic damage.8 Senescent cells are
more than simple bystanders, as multiple molecules involved in the
SASP act as promoters of atherosclerosis and are biomarkers of
CVD risk.23 Furthermore, effects of experimental overexpression of
many molecules drives both atherosclerosis and senescence. On the
other hand, antagonizing cellular senescence and ageing processes
has anti-atherosclerotic effects. These overlapping features of senes-
cence and atherosclerosis are shown in Table 1. For a better under-
standing of the cell-specific roles of these molecules refer to Figure 2,
which explains expression patterns on a cellular level of senescence
and their roles in atherogenesis.

These observations suggest that senescent cells are an important
source of local, chronic, low-grade inflammation and plaque destabil-
ization, and thus, a promising upstream therapeutic target. Targeting
of senescent cells and ageing processes therefore holds unexplored
potential to ameliorate atherosclerosis as a causal approach to de-
crease inflammation and provide plaque stabilization, possibly with-
out overt immunosuppression.

In this review, we present the current experimental knowledge
close ties of senescence with many aspects of atherosclerosis patho-
physiology. Further on, we present clinical evidence connecting cellu-
lar senescence and atherosclerosis. We elaborate on how targeting
senescence can be utilized to develop novel therapeutic strategies
for atherosclerosis. Finally, we discuss the challenges and unmet
needs that remain to be addressed before anti-senescence therapies
can be introduced in the clinical setting.

Evidence on the cellular level of
the contribution of senescence to
atherosclerosis

Cellular senescence evolves with ageing and in sites of disease7 in re-
sponse to sub-lethal exposure to various stimuli,81 which are outlined
in the Introduction section. Senescent cells, within their physiological
roles, facilitate tissue repair in response to acute damage,82 but are
promptly cleared by the innate immune system after injury reso-
lution.83 However, some senescent cells remain and gradually

accumulate in tissues.84 These persisting senescent cells have been
recently tied to multiple chronic diseases other than atherosclerosis,
including diabetes mellitus,85 obesity,85 Alzheimer’s disease,86 heart
failure,10,87 idiopathic pulmonary fibrosis,88,89 chronic obstructive
pulmonary disease,90 chronic kidney disease,91 cancer,92 and osteo-
arthritis.93 It is thus not surprising that senescent cell burden is a
good predictor of animal lifespan.94,95

Cellular senescence is observed in early stages of atherosclerosis,9

affecting different cell types in the arterial wall that have distinct roles
in the pathogenesis of this disease: endothelial cells (ECs),96–98 vascu-
lar smooth muscle cells (VSMCs),45,99–101 macrophages, foam
cells,9,102 monocytes,103 fibroblasts,104–106 and T cells.107,108

Originating from these different cell types, senescent cells directly
facilitate multiple key pathophysiological processes in atherosclerosis,
which are displayed in Figure 2 (necrotic core enlargement, extracel-
lular matrix degeneration and cap thinning, erosion, calcification,
intra-plaque angiogenesis).109 Take home figure details the complex
mechanisms leading to plaque destabilizing outcomes. Take home fig-
ure also exemplifies that some features of cellular senescence are
shared by different senescent cell types, while some are cell popula-
tion specific.

All senescent cells contribute to plaque inflammation. Consistent
SASP elements in the majority of senescent cells are IL-1a, IL-1b, IL-
6, IL-8, IL-18, and TNF-a,15,105,110 all of which are clinically validated
CVD risk factors.1,5 These inflammatory cytokines promote senes-
cence locally in a paracrine manner30 and perhaps, at a systemic
level.111 Other features depend on the cell type.

Endothelial cell senescence directly compromised the endothelial
barrier through disruption of cellular proliferation, permeability, and
motility,112–114 possibly contributing to endothelial erosion and intra-
plaque haemorrhage. As seen in a retinopathy model, the overall ef-
fect of the SASP leads to pathological neo-angiogenesis.115

Vascular smooth muscle cell senescence was associated with nec-
rotic core enlargement80 and plaque calcification62 in human athero-
sclerosis. Senescent VSMCs acquire an osteoblastic secretory
phenotype and activate several osteogenic pathways [e.g. Runt-
related transcription factor 2 (RUNX-2), bone morphogenetic pro-
tein 2 (BMP-2), alkaline phosphatase (ALP), osteopontin (OPN), and
osteoprotegerin (OPG)], thus contributing to plaque calcification.62

OPG, a soluble factor and key element of the SASP,63 is a CVD risk
factor.64 Plaque destabilization through cap thinning is promoted by

Figure 1 Cell cycle arrest mechanisms in senescence. CDK, cyclin-dependent kinase; hypo-p-Rb, hypo-phosphorylated retinoblastoma protein.
G1, S, G2, and M are cell cycle phases; p16, p53, and p21 are cell cycle inhibitors.
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various MMPs,49 such as MMP-1, -2, -3, -7, -8, -9, -10, -12, -13, and -
14,45,49,51 which are secreted as part of the SASP of senescent
VSMCs, monocytes, macrophages, and foam cells.

Furthermore, CD4þ, CD28-null, CD45 re-expressing senescent
T-cells (also known as CD4þ T-EMRA cells) were found to be highly
active subpopulations, expressing increased amounts of TNF-a,
INF-c, CXCR-3 (C-X-C chemokine receptor), CCR-6, CCR-7 (C-C
motif chemokine receptor 6 and 7), and the anti-apoptotic Bcl-2
family proteins.19,116 In addition to the pro-inflammatory phenotype,
T-EMRA cells showed atypical cytotoxic activity towards the plaque
endothelium,117 likely contributing to plaque erosion.

Together, these findings indicate that different types of senescent
cells in the vasculature exhibit features that are considered highly un-
favourable in the setting of atherosclerosis.

Clinical evidence linking ageing
and senescence processes to
atherosclerosis

Ageing is well-documented as a risk factor for CVD118 and age is con-
sidered in various cardiovascular risk scoring systems (Framingham,

Reynolds, PROCAM, ESC, and Diamond Forrester). In addition, ageing-
associated morphological and haemodynamical arterial disturbances
are known.119,120 The majority of individuals older than 70 years of age
(57.1% male and 68.7% female) have atherosclerotic lesions.121 The
trend progressively worsens, as 87.4% of male and 88.9% of female
patients older than 85 were affected by subclinical or clinical forms of
vascular disease.122 However, ageing has a strong residual effect that
cannot be simply explained by longer exposure to classical risk factors.
Only 11.9% and 40.3% of the effect of age can be attributed to longer
exposure to risk factors in men and women, respectively.123

Cellular senescence may account for a part of this void, acting a
hub between various cardiovascular risk factors. As depicted in
Figure 3, cellular senescence can be a consequence of two processes
which may run in parallel and are intertwined. The first is replicative
exhaustion resulting from chronological age or intense proliferation
(telomere dependent)20,124,125 and the latter is exposure to cardio-
vascular risk factors (stress-induced).13–18 Therefore, cellular senes-
cence burden is a phenomenon only partly correlated with age from
birth; it is rather a consequence of a combined effect of chronological
ageing and risk factor exposure. Being a shared consequence of the
effect of all of these various factors, senescence is an important up-
stream effector that promotes atherogenesis.

....................................................................................................................................................................................................................

Table 1 Clinical and experimental expression of molecules in atherosclerosis and senescence

Molecules Effect on

CVD risk

Over-expression effect

on atherosclerosis

Over-expression

effect on senescence

Down-regulation effect

on atherosclerosis

Down-regulation effect

on senescence

References

Ang II 24–26

AMPK 27–29

CCL2 30–32

FOXO3 33–35

GATA4 36–38

HMGB1 39–41

HSP90 42–44

IL1a/b 1,30,45

IL6 1,30,45

IL18 46–48

MMP9 45,48–50

MMP12 51–53

mTOR 27,54

NF-jB 55,56

NLRP3 57–60

NR3C2 25,61

OPG 62–65

PI3K 27,54,66,67

p66Shc 68–71

SIRT1 27,72–74

STAT3 75,76

TRAF6 77–79

TRF2 80

, promoting effect; , inhibitory effect; , unknown/unclear evidence; Ang II, angiotensin II; AMPK, AMP-activated protein kinase; CVD, cardiovascular risk; FOXO, forkhead
box class O; HMGB1, high-mobility group box 1; IL, interleukin; MMP, matrix metalloproteinase; mTOR, mechanistic target of rapamycin; NF-jB, nuclear factor kappa B;
NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; NR3C-2, mineralocorticoid receptor; PI3K, phosphoinositide 3-kinase; OPG,
osteoprotegerin; SIRT, sirtuin; STAT3, signal transducer and activator of transcription 3; TRAF6, tumour necrosis factor receptor-associated factor 6; TRF2, telomeric repeat-
binding factor 2.

Senescence-induced inflammation 2985
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..In clinical practice, the capability of cellular senescence to drive
atherosclerosis independently of chronological ageing and classical
risk factor exposure is seen in drastic examples of human progeria
syndromes, such as Hutchinson–Gilford progeria (HGS), Werner
syndrome, and other laminopathies. Patients with these syndromes
are characterized by a strong accumulation of senescent cells early in
life and suffer from strikingly increased CVD risk due to a large ath-
erosclerotic plaque burden.101,126,127 Patients with HGS suffer from
myocardial infarction or stroke in the absence of classical risk factors
at the mean age of 13 years.128

Furthermore, cancer therapies that induce cellular senescence,
such as cisplatin, doxorubicin and radiation,129 accelerate
atherosclerosis.130

Additional clinical evidence of the involvement of cellular senes-
cence in the atherosclerotic vessel wall in the general population
comes from post-mortem histological analysis,96,131–134 that showed
that senescent EC and VSMC accumulate substantially more in ath-
erosclerotic than in physiologically aged healthy arteries.96,131–134

Expression of senescence marker p16 INK4a in the diseased human
coronary arteries positively coincided with unstable plaques and cor-
related with intra-plaque TNFa levels.135 Furthermore, coronary ves-
sels from ischaemic heart disease patients showed significant
endothelial senescent cell burden, while the mostly plaque-free in-
ternal mammary arteries from the same donors had no evidence of

senescence.96 In human carotid artery atherosclerosis, senescent
VSMCs were associated with phenotypical features of plaque instabil-
ity80,134,136,137 and accounted for 18% of all plaque cells.134 Senescent
T-EMRA cells were also found inside unstable plaques.117 Additional
studies with detailed quantification of senescent cells, plaque features,
and correlation to clinical data are necessary to strengthen the causal
link between arterial wall cellular senescence and atherosclerosis.

As specific and safe imaging methods to evaluate senescent cell
burden in the arteries of patients still do not exist, tracking senescent
cell populations in the blood appears to be the best option to evalu-
ate the contribution of cellular senescence to CVD risk.

Senescence of blood–borne immune cells has been tied to CVD
risk. Bulk analysis of leucocyte populations showed that short telo-
meres predict atherosclerosis development and CVD.124,125 The age-
ing pro-oxidative marker p66Shc68 is overexpressed in leucocytes
from patients with acute coronary syndromes, but not stable coron-
ary artery disease.69 As these results from bulk leucocytes may be
affected by telomere length and expression profiles of short-lived
myeloid cells, the stable lymphoid populations attracted significant at-
tention, specifically senescent T-EMRA cells. Accumulation of
T-EMRA was associated with increased acute mortality and re-
occurrence of MI, particularly among diabetic patients.19 Increased
numbers of these cells were found in hypertension and rheumatoid
arthritis, predicting worsened CV outcomes within these high-risk

Figure 2 Roles of different senescent cell types in atherosclerosis, represented in blue. CRP, C-reactive protein; CVD, cardiovascular disease; EC,
endothelial cell; ET-1, endothelin-1; ICAM, intercellular adhesion molecule; IL, interleukin; MAPK, mitogen-activated protein kinase; MMP, matrix
metalloproteinase; NO, nitric oxide; NF-jB, nuclear factor jB; TNF-a, tumour necrosis factor a; VCAM, vascular cell adhesion molecule; VSMC, vas-
cular smooth muscle cell.

2986 S.D. Stojanovi�c et al.
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conditions.19 Both CD4þ and CD8þ T-EMRA cells are strong inde-
pendent predictors of cardiovascular mortality in the elderly.107

Cytomegalovirus infection activated senescence mostly in CD4þ
EMRA cells,19,107 providing an interesting connection between CMV
infection, CD4þ EMRA senescence, and atherosclerosis.

In line herewith, the role of age-dependent accumulation of pro-
inflammatory lymphocytes with somatic mutations (clonal haemato-
poiesis of indeterminate potential), mainly in TET2 and DNMT3a, is
emerging.138 Senescence is associated wide perturbations in DNA
methylation.139 Given its critical functions in this process, it is possible
that DMNT3a plays a role in the immuno-senescence programme.
Silencing of DMNT3a reportedly activated senescence in cancer and
skin experimental models.140,141 However, it is unclear whether
these mutations are involved in haematopoietic cellular senescence
or SASP activation.

In summary, chronic senescent cells accumulate over time as a
result of repeated tissue damage. Through the SASP, cellular sen-
escence exerts many pro-atherogenic effects and it possibly is a
key aetiologic driver of aberrant vascular remodelling, forming a
perpetual loop that chronically amplifies the effects of risk factor
exposure (Figure 3). Therefore, senescence appears to be a

therapeutic target worth exploring for the prevention or treat-
ment of atherosclerosis.

Treatment options for targeting
senescence

Multiple clinically approved treatment strategies for CVD have an
anti-senescent effect upon closer analysis. Aldosterone and
Angiotensin II drove VSMC senescence independently and syner-
gistically, this being prevented by mineralocorticoid receptor and
angiotensin II receptor blockers.24,25 Pioglitazone ameliorated
endothelial cell senescence by telomerase activation.142 Statins
were shown to delay endothelial and T-cell senescence, through
p38-mediated SASP inhibition, telomerase and cell cycle regula-
tion.143 Metformin has anti-senescent and anti-atherosclerotic
effects through SIRT-1 agonism.27 Rivaroxaban attenuates VSMC
senescence, by inhibiting the signalling cascade between Factor Xa
and Insulin-like growth factor-binding protein 5.137 The cardiovas-
cular benefits of exercise in adulthood can be explained by a de-
crease of immuno-senescence.144

Take home figure Senescent cell contributions to the mechanisms of atherosclerotic plaque rupture.

Senescence-induced inflammation 2987
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In a direct senescence-specific approach, several inflammatory

and energy-sensing pathways and complex epigenetic modulators
provide valid entry points to prevent, stabilize, or reverse athero-
sclerosis. Given the status quo of the clinical application of
genome-based therapies in the CVD field, pharmacological
approaches are discussed in detail below because of their immedi-
ate translational potential. Figure 4 provides an overview of the
known molecular therapeutic targets in senescence and divides
them into six most promising therapeutic strategies: direct anti-
inflammatory, anti-SASP, energy sensing, epigenetic modulation,
senolytics, and reprogramming. These approaches and the com-
plex relationships between various molecular targets are
explained in further detail below.

Targeting intracellular signalling
molecules at the crossroads of
inflammation and senescence

The idea of antagonizing pro-inflammatory molecules upstream of
the IL-1-IL-6/TNFa-CRP cascade or other immune regulators145 is vi-
able, not only for a direct anti-inflammatory effect but also to ameli-
orate senescence. Inhibition of the nucleotide-binding domain,
leucine-rich-containing family, pyrin domain-containing-3 inflamma-
some (NLRP3) suppressed T-cell senescence57 and atheroscler-
osis.58 Even more upstream, inhibition of nuclear factor jB (NF-jB)
abrogated p53-mediated senescence.55 However, while inhibiting
NF-jB in ECs was beneficial in atherosclerosis, in macrophages, this
had a pro-atherogenic effect.56 Immunosuppression and the inhib-
ition of cellular debris traffic are strong reasons not to target these
and other major inflammatory pathways.

A related concept is the inhibition of the SASP. Recent data sug-
gest DNA leakage from the senescent nucleus into the cytoplasm
and consequent activation of the GMP-AMP Synthase-Stimulator
of Interferon Genes (cGAS-STING) anti-viral pathway as a mech-
anism of SASP onset.146,147 This pathway is an attractive target to
antagonize the SASP, but may come at the cost of lowering anti-
viral defences. Alternatively, it is possible to modulate individual
components of the SASP by inhibiting Janus kinase (JAK) 1/2148 and

JAK2/signal transducer and activator of transcription 3 (STAT3).149

TNF receptor-associated factor 6 (TRAF6) inhibition in macro-
phages is another anti-inflammatory strategy to counter athero-
sclerosis development.77 The ATM-TRAF6-TAK1 axis is a driver
of the SASP,78 and an Serine-protein kinase ATM inhibitor was
found to have an anti-senescence effect.79 p38 Mitogen-activated
protein kinase (MAPK) inhibition has been suggested as an anti-
SASP strategy.150 Independently of the senescence context, block-
ade of this pathway failed to improve cardiovascular outcomes
12 h to 2 weeks post-myocardial infarction.151 However, anti-SASP
strategies may not be effective in acute or subacute disease (see
Future directions section).

Energy-sensing pathways, like those regulated by mammalian tar-
get of rapamycin (mTOR), sirtuin (SIRT)-1, Forkhead box class O 3
(FOXO3), and AMP-activated protein kinase (AMPK), have been
shown to be largely responsible for the anti-ageing benefits of caloric
restriction.27 Inhibition of mTOR complex 1 by rapamycin prolonged
the healthy lifespan of mice and exerted anti-senescence and anti-
atherosclerotic effects.152,153 However, mTOR inhibition can cause
muscular atrophy.154 The SIRT-1 agonist resveratrol ameliorated age-
ing pathology, in part by activating FOXO3.33,155 Clinical application
of resveratrol and related SIRT agonists is challenging due to stability
and bioavailability issues.156 Direct FOXO3 agonism is pharmaco-
logically possible.33 Importantly, more than 12.5-fold overexpression
of FOXO3 has been shown to be harmful, possibly because of nico-
tinamide adenine dinucleotide (NAD) depletion155; thus, a careful
dose-finding study is imperative. Recently, fine-tuning of FOXO3 lev-
els has been achieved via a miRNA-132 antagonistic approach,157

that is currently clinically tested (NCT04045405). NADP boosters
(nicotinamide mononucleotide,158 nicotinamide riboside,159

P7C3,160 apigenin161) can be used resolve the NAD depletion issue
and are able to prevent senescence in ECs158 and VSMCs.159 The
small scale Metformin in Longevity Study (MILES, NCT02432287)
trial studied AMPK activation for anti-ageing purposes and the results
are currently analysed. A larger scale study with a similar design is
planned [Targeting Aging with Metformin (TAME) trial].

Epigenetic manipulation through long non-coding RNAs, miRNA
modulators, and other oligonucleotides has yielded promising out-
comes in experimental settings.162–165 Some of these molecules are

Figure 3 Putative model of the role of cellular senescence in inflammation-associated cardiovascular disease risk.
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currently clinically evaluated in CVD.166 Epigenetic modification
through histone modification via bromodomain inhibitors could sup-
press atherosclerosis,167 senescence,168 and the SASP,169 indicating
high potency for such interventions. The non-histone DNA-binding
protein high mobility group protein B1 (HMGB1) is a major pro-
inflammatory SASP factor, when externalized from the nucleus into
the extracellular environment.39 Soluble HMGB1 promoted athero-
sclerosis40,41 and CVD risk.170 It remains to be seen if HMGB1 nu-
clear retention ameliorates the epigenetic landscape of senescent
cells and provides benefits in atherosclerosis. Another promising
strategy is the epigenetic blockade of p66Shc, since pharmacological
inhibitors are not currently available. p66Shc is a promoter of oxida-
tive stress70 and is highly expressed in senescent cells68 and athero-
sclerosis.171 Inhibiting p66Shc its key regulator MiR-34a is
promising,172 as p66Shc knock-out led to senescence prevention,68

30% animal lifespan extension,173 and strong inhibition of
atherogenesis.70,71

Targeting senescent cells as the
root of inflammation: senolytic
approaches or cellular
reprogramming

Senolytic approaches
Safe removal of chronic senescent cells is an attractive approach to
blocking ageing pathology and atherosclerosis. It is possible to specif-
ically delete senescent cells through activation of apoptosis by com-
pounds that selectively target senescent cells, called senolytics. INK-
ATTACK transgenic mice contain an inducible suicide gene in the
CDKNA2 locus, which encodes p16 INK4a, a key molecule in senes-
cent cells. This elegant transgenic model has been used to selectively
eliminate senescent cells in vivo, leading to reversal of age-related
characteristics without noticeable side effects.94,95 The positive effect
of senescent cell removal in atherosclerosis in LDL receptor-

Figure 4 Anti-senescence strategies. Akt, protein kinase B; AMPK, AMP-activated protein kinase; cGAS, cyclic GMP-AMP synthase; DPP4, dipep-
tidyl peptidase 4; FOXO, Forkhead box class O; HMGB-1, high-mobility group box 1; IL, interleukin; MAPK, mitogen-activated protein kinase;
mTOR, mechanistic target of rapamycin; NF-jB, nuclear factor kappa B; NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin do-
main-containing-3; ox-vimentin, oxidized vimentin; PI3K, phosphoinositide 3-kinase; SASP, senescence-associated secretory phenotype; SIRT, sirtuin;
STING, stimulator of interferon genes; TBK, serine/threonine-protein kinase TBK1; TNFa, tumour necrosis factor a.
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..knockout mice has been replicated in INK-ATTACK, p16-3MR, and
INK-nitroreductase mouse models using the senolytic navitoclax
(ABT-263).9 Senescent cell elimination diminished plaque size, inflam-
mation, and instability features.9 These data provide a rational basis
for the use of senolytics in the treatment of atherosclerosis.

Recently, multiple senolytic compounds have been developed and
have been tested for the treatment of CVD (Figure 4).42,174–185

Navitoclax, a Bcl-2 inhibitor, has beneficial effects in atherosclerosis,9

and may be a good candidate for the targeting of T-EMRA cells, which
overexpress Bcl-2 family proteins.116 Combination therapy with
dasatinib and quercetin (DþQ) removed senescent cells from the tu-
nica media, but not the intima, improving vascular function parame-
ters, but not arterial compliance and plaque burden.33 Senolytic
drugs were known to be more effective against particular senescent
cell types in vitro, and less effective against others, for unclear rea-
sons.42,174–185 It is otherwise unknown how the cell type specificity of
senolytics affects cells of the arterial wall, but it may explain why
DþQ removed senescent cells only within the tunica media. Further
studies are needed to corroborate the senolytic effect within plaque.

Another option for using senolytics may with the goal of improving
outcomes of autologous transplantation therapies of bone marrow-
derived angiogenic cells in ischaemic heart failure. In ischaemic heart
failure patients, these cells are severely impaired186,187 and display
markers of senescence,188,189 disabling their use for patient-derived
cellular therapy. Senolytics may be used to remove senescent cells,
either in vivo or ex vivo, leading to a rejuvenated population and more
effective therapeutic outcomes.186,189

In the context of drug repurposing, some senolytic compounds
are already clinically approved (dasatinib) or in clinical trials (navito-
clax, HSP90 inhibitors) for indications in oncology. The results of the
first human trial of dasatinib and quercetin in idiopathic pulmonary fi-
brosis (IPF) have been recently published.88 This small scale single-
arm study reported improvements of 6-min walk distance, 4 m gait
speed, chair-stands, and Short Physical Performance Battery (SPPB)
score, showing the promise of this therapy for IPF. An ongoing trial is
evaluating dasatinib and quercetin for their senolytic ability in chronic
kidney disease (NCT02848131).

Currently available senolytics drugs are limited by adverse effects.
When used for cancer treatment, these drugs often exhibit adverse
effects such as nausea, vomiting diarrhoea, and skin rashes; notably,
Bcl-xl inhibitors induce severe thrombocytopenia.190 To avoid these
effects, localized delivery via percutaneous intervention may be
required to target senescence in a CVD setting. This could be com-
bined with senescent cell-specific delivery methods, such as the
galactose-encapsulation of drugs that reduced thrombocytopenia
after navitoclax application in an experimental setting.191

Alternatively, the drugs could be applied periodically, with long off-
drug periods.175

Cellular reprogramming
The induction or reprogramming of mesenchymal cells into a pluri-
potent state is possible via octamer-binding transcription factor
(Oct)3/4, Sox2, c-Myc, and Krüppel-like factor (KLF4).192 Cells can
potentially be reverted to a non-senescent state, reversing their cellu-
lar biological clock. Short-term cyclic expression of Oct4, Sox2,
KLF4, and c-Myc in LAKI 4F mice suppressed the ageing phenotype,

prevented VSMC degeneration, and reversed bradycardia without
observed tumorigenesis.193 These results suggest an intriguing possi-
bility that low-dose short-term reprogramming may be beneficial for
atherosclerosis. A drug cocktail of HDACs, GSK-3b, and TGF-b kin-
ase enabled cell reprogramming in vitro, thus improving liver regener-
ation and function after acute injuries in mice.194 The authors
attributed this effect to the up-regulation of pluripotency genes.
Extensive reprogramming may be tumourigenic, as it leads to up-
regulation of strong oncogenes, such as c-Myc.195 Extremely precise
and reliable control of this anti-senescence strategy is an absolute
must to avoid malignant transformation. Of note, senescent cells
from elderly people could be reverted to a pluripotent state only by
the additional over-expression of NANOG and LIN2 in addition to
Oct3/4, Sox2, c-Myc, and KLF4.196

Another intriguing strategy is direct reprogramming or trans-
differentiation, which enables a phenotypic change from one differen-
tiated cell type into another without achieving pluripotency.197

Hypothetically, senescent secretory VSMCs could thereby regain a
contractile phenotype.

Future directions towards clinical
application of anti-senescence
strategies

Research regarding ageing mechanisms and cellular senescence is
confronted with pre-clinical and clinical challenges that need to be
addressed in order to pinpoint the role of cellular senescence in ath-
erosclerosis and define optimal therapeutic strategies. Firstly, in pre-
clinical research, the detection of senescent cells is hampered by the
lack of specific markers. In vitro, the gold standard senescence-
associated b-galactosidase staining and p16 INK4a expression detec-
tion can yield false-positive results in macrophages.198 In vivo, the best
currently available models for senescent cell detection are reporter-
harbouring transgenic mice (p16-LUC, p16 tdTom)199,200 and trans-
genic mouse strains used for selective senescent cell removal (INK-
ATTAC, p16-3MR).201

Secondly, a better understanding of the role of cellular senescence
in vascular disease development is needed. Studies in cell cycle inhibi-
tor knock-out models have raised questions about the complex rela-
tionships between senescence, proliferation, and apoptosis in
different phases of atherosclerosis. p16 INK4a, p14 ARF (p19 ARF in
mice), p21, and p53 enable cell cycle arrest in senescence. However,
polymorphisms that hinder their activity promote atherosclerosis in
humans.202 Knock-out of p16 INK4a, p19 ARF, p21, and p53 had a
pro-atherosclerotic effect in mice.203–205 On the other hand, cellular
senescence promotes atherosclerosis in each developmental
phase.9,101 Selective removal of p16 INK4a-positive senescent cells
prevented atherosclerosis, while stabilizing plaques and decreasing
plaque inflammation.9 This discrepancy can be explained by other
critical roles of cell cycle inhibitors in cell physiology and disease de-
velopment, all of which are afflicted by the abovementioned genetic
polymorphisms and knock-outs in a nondiscriminatory way.

Thirdly, special care must be taken in selecting patients for possible
anti-senescence clinical trials. Experimental evidence shows that
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cellular senescence has roles in limiting myocardial206 and liver207 fi-
brosis, promoting skin healing,82 as well as in embryonal develop-
ment,208 which have to be considered. However, these studies
focused on the function of senescence in acute organ injury, not in
chronic processes such as atherosclerosis. The aim of anti-senescent
therapies would be to clear chronic senescent cells or suppress their
noxious effects, while not permanently abrogating the senescence
programme. Nevertheless, these findings may imply that initial anti-
senescence/anti-SASP therapeutic trials need to be applied to
patients with a clinically stable phase of vascular disease, with high re-
sidual CVD risk,2 and not in a setting of acute injury. Another concern
would be that inducing senescence in the short term initially slows
cancer growth due to the cell cycle arrest induction,81 which raises
questions about oncogenesis as an adverse effect. However, chronic
senescence promotes cancer.92 These issues remain to be carefully
addressed and analysed in future studies exploring anti-senescence
strategies.

To track the effect of anti-senescence therapies in a clinical setting,
it would be important to specifically detect total or localized senes-
cent cell burden.7 Using a matrix-biomarker approach of 48 SASP-
associated cytokines and miRNAs88 seemed not to be an effective
strategy in evaluating the effects of senolytic therapy in IPF. The pos-
sible explanation is that immune cells can also produce these factors,
making senescence-specific detection problematic. An alternative to
the matrix approach may be the discovery of senescence-specific sol-
uble antigens, such as oxidized vimentin.209

Anti-senescence approaches may be a crucial component of preci-
sion medicine therapy. The development and decreasing cost of –
omics methods or imaging can lead to a clinically applicable biomark-
er set, which combines senescence-associated soluble biomarkers
and cellular compartments to identify patients with a high senescence
burden, and thus the best candidates for anti-senescence therapies.
For example, patients with a high burden of Bcl-2 overexpressing
senescent T-EMRA cells may be good candidates for therapy with a
Bcl-2-targeting senolytic, navitoclax. On the other hand, if there is a
dominance of endothelial senescence, SASP inhibitors may be more
beneficial than senolytics to avoid endothelial erosion. Decision-
making can be further tailored with individual genetic profiling.
Speculatively, a patient with a down-regulating rs2802292 FOXO3 T;
T polymorphism210 may benefit more from FOXO/SIRT-1 agonists
and NAD boosters than from other forms of anti-senescence ther-
apy. Ultimately, developing next-generation biomarkers and imaging
methods seems essential to translate anti-senescence therapeutics to
the clinic.

Conclusions

Current therapeutic strategies targeting known risk factors for CVD,
such as hypertension, diabetes mellitus, and cholesterol levels lower
CVD risk. However, the disease risk remains high and will increase in
the ageing western population. Targeting specific upstream inflamma-
tory processes involved in deleterious local plaque pathophysiology
has emerged as a novel approach to limit atherosclerosis.
Accumulation of senescent cells promotes inflammation and nega-
tively affects plaque remodelling. Translating novel anti-senescence

strategies into the clinic has potential to causally and effectively pre-
vent and treat atherosclerosis and/or CVD.
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