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Abstract

Historically, research in ovarian biology has focused on folliculogenesis, but recently the ovarian 

stroma has become an exciting new frontier for research, holding critical keys to understanding 

complex ovarian dynamics. Ovarian follicles, which are the functional units of the ovary, comprise 

the ovarian parenchyma, while the ovarian stroma thus refers to the inverse, or the components of 

the ovary that are not ovarian follicles. The ovarian stroma includes more general components 

such as immune cells, blood vessels, nerves, and lymphatic vessels, as well as ovary-specific 

components including ovarian surface epithelium, tunica albuginea, intraovarian rete ovarii, hilar 

cells, stem cells, and a majority of incompletely characterized stromal cells including the 

fibroblast-like, spindle-shaped, and interstitial cells. The stroma also includes ovarian extracellular 

matrix components. This review combines foundational and emerging scholarship regarding the 

structures and roles of the different components of the ovarian stroma in normal physiology. This 

is followed by a discussion of key areas for further research regarding the ovarian stroma, 

including elucidating theca cell origins, understanding stromal cell hormone production and 

responsiveness, investigating pathological conditions such as polycystic ovary syndrome (PCOS), 

developing artificial ovary technology, and using technological advances to further delineate the 

multiple stromal cell types.
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WHAT IS THE OVARIAN STROMA AND WHAT DOES IT DO?

Organs are comprised of two components: (1) the parenchyma, or the specialized tissue that 

performs the function of the organ, and (2) the stroma, which is typically the supporting 

tissue (Young et al., 2014; Mescher, 2018). Ovarian follicles, which are the functional units 

of the ovary, comprise the ovarian parenchyma. Conceptualizing the stroma as the inverse of 

the parenchyma, the ovarian stroma thus refers to the components of the ovary that are not 
ovarian follicles. The ovarian stroma is comprised of general components such as immune 

cells (Wu et al., 2004), blood vessels (Reeves, 1971), nerves (Neilson et al., 1970), and 

lymphatic vessels (Brown et al., 2010), as well as ovary-specific components. These ovary-

specific components include ovarian surface epithelium (Auersperg et al., 2001), tunica 

albuginea (Reeves, 1971), intraovarian rete ovarii (Wenzel and Odend’hal, 1985), hilar cells 

(Neilson et al., 1970), ovarian stem cells (Hummitzsch et al., 2015), a majority of 

incompletely characterized stromal cells that includes the fibroblast-like, spindle-shaped, 

and interstitial cells (Reeves, 1971), and possibly other cell types not included in this list. In 

addition to these cell types, ovarian extracellular matrix (ECM) provides structural and 

biochemical support to surrounding cells and is a key component of the stroma (Berkholtz et 
al., 2006) (Figure 1, Table I). Some studies have used the broad terms ‘ovarian interstitial 

stroma’ or ‘theca interstitial cells’ (TICs) to refer to the heterogeneous stromal compartment 

(e.g. Tingen et al., 2011; Hummitzsch et al., 2019). For the purpose of this review, we will 

interpret the ovarian stroma as the broadly inclusive non-follicular components of the ovary. 

We also want to highlight that the term ‘stromal cells’ does not refer to a single homogenous 

cell population. Instead, when feasible, we recommend more specific descriptions like 

‘stromal macrophages’ to refer to individual components of the stromal compartment. What 

is known about the multiple cell types and components of the stroma is detailed below.

General Cell Types of the Ovarian Stroma

Immune Cells—Cells of the immune system appear to play critical roles in supporting 

ovarian physiologic processes. Immune cells, including macrophages, mast cells, and 

eosinophils, are present in immature or resting ovaries at low levels throughout the stroma. 

These levels tend to increase around ovulation, particularly near the theca vasculature, with 

subsequent migration into developing corpora lutea (Norman and Brannstrom, 1994). 

Ovarian immune cells serve multiple functions, including phagocytosis and antigen 

presentation, tissue remodeling via proteolytic enzymes, and secretion of soluble signals 

including cytokines, chemokines, and growth factors (Norman and Brannstrom, 1994; Wu et 
al., 2004). Macrophages are a predominant ovarian immune cell type, with other immune 

cells present including B and T lymphocytes, Natural Killer cells, dendritic cells, 

neutrophils, eosinophils, and mast cells (Norman and Brannstrom, 1994; Suzuki et al., 1998; 

Carlock et al., 2013; Kenngott et al., 2016; Fan et al., 2019; Zhang et al., 2020) (Figure 1, 

Table I). Ovarian macrophages have received ongoing attention with regard to their role in 

reproductive homeostasis and their regulation by estrogen (reviewed in Wu et al., 2004; Pepe 
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et al., 2018). Ovaries may contain multiple macrophage subsets, and phenotypes can range 

from classical inflammatory (M1) to alternative tissue remodeling (M2) during different 

parts of the ovarian cycle (Carlock et al., 2013; Pepe et al., 2018). Increased proportions of 

M2 macrophages, monocyte-derived macrophages, and multinucleated macrophages have 

been seen with murine ovarian aging (Briley et al., 2016; Zhang et al., 2020). Macrophage 

and other myeloid cell depletion using the CD11b-DTR mouse model has resulted in 

infertility, with hemorrhagic ovaries, ovarian endothelial cell depletion, impaired corpora 

lutea formation, and diminished progesterone production (Turner et al., 2011; Care et al., 
2013). Although ovarian immune cells, particularly macrophages, have been the subjects of 

ongoing research, gaps in knowledge remain regarding cyclic, hormonal, and temporal 

dynamics as well as contributions to ovarian pathologic conditions (Table I).

Blood Vessels—The vasculature of the ovary supports critical ovarian functions, and 

includes blood vessel endothelial cells, pericytes, and smooth muscle cells (Figure 1, Table 

I). Ovarian blood vessels travel through connective tissue to provide tissue oxygenation, 

hormone trafficking, and nutrients, in addition to supporting waste removal. The medulla of 

the human ovary typically contains the larger blood vessels and at the cortico-medullary 

junction, small medullary arteries branch to cortical arterioles (Reeves, 1971). These cortical 

arterioles form vascular arcades of interconnected short straight vessels of fixed length 

running along the connective tissue fascicles. With pressure, the cortical arterioles could be 

compressed to form avascular regions as part of the formation of stigma for ovulation 

(Reeves, 1971). Medullary vessels include spiraling arteries and arterioles, which may allow 

expansion with growth (Reeves, 1971). The microvasculature of the ovary contributes to 

folliculogenesis and corpora lutea formation. Follicles contain a basal lamina between their 

granulosa and theca cell compartments, allowing for a blood-follicle barrier (Siu and Cheng, 

2012). With the formation of the theca cell layer, follicles develop microvasculature between 

the theca cells that supports the increased growth and development of the follicle, yet never 

passes beyond the basal lamina before ovulation. The formation of the corpus luteum, a 

highly vascular structure, occurs after theca microvasculature invades into the granulosa 

layer following ovulation (Rolaki et al., 2005). Gaps in knowledge remain around the role of 

oxygen tension, as regulated by ovarian vasculature. Oxygen tension may have regulatory 

effects in the ovary, with in vitro studies demonstrating that oxygen levels can impact bovine 

granulosa cell luteinization and rat corpora lutea progesterone production (Gafvels et al., 
1987; Baddela et al., 2018). Dysfunction of ovarian vasculature has been implicated in the 

pathophysiology of PCOS (Di Pietro et al., 2018), and additional studies are needed to 

address the pathologic role and therapeutic management of altered ovarian angiogenesis 

(Table I).

Nerves—Neilson et al.’s (1970) review of ovarian innervation describes widespread 

innervation present in the ovarian stromal compartment, noting that some nerves follow 

blood vessels in the medulla while others branch among the cells in the stroma (Figure 1, 

Table I). In mouse gonadal development, neural crest neurons colonize the ovary, 

differentiate into neurons and glia, and form dense neural networks in the medulla that 

extend towards cortical regions (McKey et al., 2019). Functionally, both sympathetic and 

parasympathetic innervation of the ovary has been demonstrated, and regulation by the 
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sympathetic nervous system has been shown to inhibit estradiol secretion and cause 

vasoconstriction (reviewed in Uchida, 2015). In a PCOS model, estradiol-treated rats 

demonstrated increased ovarian sympathetic activity and cystic anovulatory ovaries, with 

improvement noted in cyclicity and corpora lutea formation following superior ovarian nerve 

transection (Barria et al., 1993). Further study is warranted regarding the neuronal regulation 

of different cells types in the stroma, physiologic consequences of denervation, and neuronal 

contributions to pathology (Table I).

Lymphatic Vessels—Lymphatic vasculature includes small capillaries comprised of 

endothelial cells without a basement membrane that have large gaps between cells to allow 

fluid, cellular, and macromolecular transport. These capillaries feed into larger collecting 

vessels with basement membranes, valves, and smooth muscle (Figure 1, Table I). The ovary 

has a rich lymphatic network, closely associating with blood vasculature, extending from the 

medulla into the cortex adjacent to developing follicles, with some species variability in 

regard to presence in the corpus luteum (Brown and Russell, 2014). The lymphatic system 

typically helps to maintain fluid homeostasis by returning extravascular fluid and proteins 

back to the bloodstream and participating in immune cell trafficking. In the developing 

mouse ovary, lymphatic vessels only appeared postnatally, potentially arising from the 

extraovarian rete ovarii, as seen in a Prox1-EGFP mouse model, where Prox1 expression 

marks the commitment of endothelial cells to the lymphatic lineage (Svingen et al., 2012). 

Lymphatic vasculature has been shown to remodel in response to hormonal regulation in 

mouse ovaries (Brown et al., 2010). Although lymphatic vasculature plays essential 

physiologic roles in the ovary, the dynamic regulation and pathologic relevance of the 

ovarian lymphatics remains to be fully elucidated (Table I).

Ovary-Specific Cell Types of the Ovarian Stroma

Ovarian Surface Epithelium—The surface epithelium of the ovary is a heterogenous flat 

to cuboidal epithelial layer derived from the mesoderm, also called the “germinal 

epithelium” because of the false past belief that it contributed to germ cell formation 

(Auersperg et al., 2001) (Figure 1, Table I). The keratin-rich ovarian surface epithelial cell 

layer helps to facilitate repair after ovulation and dynamically expands and contracts with 

cyclic ovarian changes (Xu et al., 2018; Hartanti et al., 2020). Scanning electron microscopy 

and immunofluorescence of the surface epithelium of developing fetal bovine ovaries 

demonstrated expansion from the hilar region to surround the entire ovary, with changes 

corresponding to underlying stromal rearrangement (Hartanti et al., 2020). Although fetal 

ovarian surface epithelial cells had been previously thought to be a developmental source for 

granulosa cells, more recent studies suggest that ovarian surface epithelial cells instead share 

a common progenitor with granulosa cells, known as the Gonadal Ridge Epithelial-Like 

(GREL) cell (Auersperg et al., 2001; Hummitzsch et al., 2013). Although definitive markers 

have not been identified, surface epithelial cells have increased expression of the 

cytokeratins 7, 8, 18, and 19 as well as plakophillin-2 and desmoglein-2 (Hummitzsch et al., 
2013; Hartanti et al., 2020) (Table I). Further work remains regarding identifying definitive 

markers, understanding heterogeneity, and clarifying the pathologic contributions of the 

ovarian surface epithelium.
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Tunica Albuginea—The ovarian tunica albuginea, positioned beneath the surface 

epithelium, is a thin and hypocellular connective tissue sheath, which serves as a protective 

layer for the ovary (Reeves, 1971). The tunica albuginea is collagen-rich and undergoes 

remodeling prior to ovulation. Using electron microscopy, Okamura et al, (1980) observed a 

decrease in presence of collagen bundles at the human follicular apex as follicles reached the 

preovulatory stage. This degradation was paralleled by an increase in apical fibroblasts with 

developed cytoplasm and lysosome-like granules, which were suspected to contain 

collagenases for degradation of the tunica albuginea (Okamura et al., 1980). There has been 

limited study of the ovarian tunica albuginea and further work can help to clarify physiologic 

and pathologic roles and regulation (Figure 1, Table I).

Intraovarian Rete Ovarii—The rete ovarii are remnants of the mesonephric (Wolffian) 

ducts that typically form part of the male reproductive tract and regress in the female 

reproductive tract. They are often found as groups of tubules lined by cuboidal or columnar 

epithelium in the hilus of the ovary or extending through the medulla, as well as in the 

extraovarian space (reviewed in Wenzel and Odend’hal, 1985) (Figure 1, Table I). There has 

been limited investigation into the function of the rete ovarii, particularly after development 

where they may play relevant roles. In a study of murine theca cell lineages, one of the two 

identified progenitor populations of theca cells migrated from the adjacent mesonephros and 

was potentially related to the rete ovarii (Liu et al., 2015; Rotgers et al., 2018). Ovarian 

lymphatic vasculature origins have also been connected to the rete ovarii (Svingen et al., 
2012). Although not necessarily specific markers, increased levels of cytokeratin 19 and 

vimentin have been noted in human rete ovarii (Russo et al., 2000). Further study is needed 

to elucidate the physiologic role of the rete ovarii in adults as well as the pathologic 

relevance (Table I).

Hilar Cells—There are reports of distinct cells located in the ovarian hilus with Reinke 

crystals, which are commonly found in testicular Leydig cells (Neilson et al., 1970) (Figure 

1, Table I). These cells are frequently located in clusters associated with a nerve trunk 

(Neilson et al., 1970), and synthesize and secrete androgens in response to LH stimulation, 

although their physiologic role has not been well-established (Erickson et al., 1985). 

Hyperplasia of these hilar cells has been implicated in virilization in postmenopausal women 

(Delibasi et al., 2007). Cellular markers have not been established and the physiologic role 

and pathologic relevance of these cells remains generally uncharacterized.

Ovarian Stem Cells—The ovary may contain stem cells for a variety of different cell 

types, including somatic (e.g., granulosa, surface epithelial, thecal, stromal) and germline 

stem cells (reviewed in Hummitzsch et al., 2015) (Figure 1, Table I). The presence and 

importance of ovarian germline (oogonial) stem cells has been a controversial topic, 

although the ovarian follicular reserve is generally lost with age without substantive renewal. 

Putative ovarian oogonial stem cells were first isolated through DEAD [Asp-Glu-Ala-Asp] 

box polypeptide 4 (DDX4, also known as VASA) tagging and cell sorting and have been 

shown to develop into oocytes, although isolation of DDX4 positive cells has been 

questioned, particularly related to assumptions about cytoplasmic versus surface expression 

and antibody cross-reactivity (Johnson et al., 2004; Zarate-Garcia et al., 2016). Others have 
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disputed the presence of oogonial stem cells, noting that oogonial stem cells were not 

detectable using sensitive single-cell lineage-tracing in adult female mice (Lei and 

Spradling, 2013). Additionally, postnatal DDX4-expressing cells generated using a 

Rosa26rbw/+; Ddx4-Cre fluorescent reporter mouse were not seen to be mitotically active nor 

participating in follicular renewal (Zhang et al., 2012). A recent single-cell sequencing study 

isolated human Abcam DDX4-positive cells and concluded these cells were perivascular 

cells rather than oogonial stem cells (Wagner et al., 2020). In contrast, cell line 

establishment of female germline stem cells has been described using cells from human 

ovarian cortical tissue fragments present in follicular aspirates, which differentiated into 

oocyte-like cells (Ding et al., 2016). Isolated, purified, and cultured female germline stem 

cells from an EGFP-transgenic mouse were shown to differentiate into oocytes, capable of 

restoring function and generating offspring in a mouse model of premature ovarian failure 

(Wu et al., 2017). The presence of ovarian germline stem cells continues to be a highly 

contested topic, generally eclipsing the discussion of somatic stem cells. The addition of 

human mesenchymal stem cells originating from amniotic fluid has also been used to help 

restore ovarian function in mouse models of premature ovarian failure, suggesting a role for 

somatic stem cells in improving altered paracrine signaling and the stroma 

microenvironment (Liu et al., 2019).

Incompletely Characterized Stromal Cells—The majority of the ovarian stroma is 

comprised of a mixed population of incompletely characterized cells commonly referred to 

as stromal cells (Reeves, 1971). This includes the populations of cells also described as 

fibroblast-like, spindle-shaped cells, or interstitial cells (Figure 1, Table I). In general, 

fibroblasts secrete ECM proteins, such as collagen, for cellular support, scaffolding, and 

repair. A retrospective study of histologic sections from non-pathologic human ovaries from 

167 women ages 17–79 carried out with the goal of describing the morphology of various 

types of stromal cells identified five types of fibroblast-like/interstitial stromal cells (Reeves, 

1971). While recent human single-cell RNA-sequencing studies (e.g., Fan et al., 2019) 

confirm the presence of multiple stromal cell clusters, a comprehensive and complete 

characterization of stromal cell types throughout the ovary is lacking. The distribution and 

subtypes of stromal cells will likely differ with their location in the ovary (e.g. cortex vs. 

medulla). The stromal cell distribution is also likely to be affected by cyclic structural 

changes, as follicles grow and ovulate, and corpora lutea develop. Changes are also evident 

over the reproductive lifespan, including increases in fibrotic collagen as demonstrated in 

aging murine and primate ovaries (Briley et al., 2016; Wang et al., 2020). Some possible 

cellular markers that have been identified include COUP-TFII and/or ARX (Hummitzsch et 
al., 2013; Rotgers et al., 2018). Other studies have used DCN and LUM to identify 

populations of human theca/stroma cells (Fan et al., 2019). Higher expression in some of the 

human cells considered to be stroma was demonstrated for markers PDGFRA, DCN, 

COL1A1, COL6A1, STAR, and/or CYP17A1 (Wagner et al., 2020). A different study 

delineated nonhuman primate ovarian stroma by expression of TCF21, COL1A2, and/or 

STAR (Wang et al., 2020). For these incompletely characterized stromal cell types, careful 

ontology, further marker identification, and attention to nuances of regionality and steroid 

production are critical next steps (Table I).
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Extracellular Matrix (ECM) Components

Structure & Definition—The ECM is composed of fibril- and network-forming proteins, 

proteoglycans, and glycosaminoglycans, the composition of which is unique to each tissue 

(Figure 1, Table I). Cells secrete soluble ECM components to the extracellular compartments 

where cell-secreted enzymes such as lysyl oxidase (LOX) crosslink the ECM precursors into 

large networks (Theocharis et al., 2016). These matrices regulate cellular functions including 

adhesion, migration, and proliferation through cell receptor interactions, 

mechanotransduction, and cell interaction with ECM-sequestered growth factors (Taipale 

and Keski-Oja, 1997).

Several reviews have covered the extensive list of ECM components that exist broadly in 

tissues and specifically in the ovary; most notably, collagen types I, III, IV, and VI, 

fibronectin, and laminin (Berkholtz et al., 2006; Irving-Rodgers and Rodgers, 2006). 

Collagens I and III have been shown to be distributed in concentric layers connected by 

bundles in human cortical stroma (Lind et al., 2006). A recent proteomic study examining 

the ECM of the human ovarian cortex revealed that collagens comprise nearly half of the 

ECM proteins and associated factors, the most dominant of which was collagen VI, a 

basement membrane-anchoring ECM protein (Ouni et al., 2019). Another recent proteomic 

study examined ECM compositional differences between porcine cortex and medulla, 

showing increased expression of collagen I, agrin, elastin microfibril interfacer 1, and 

fibronectin in the cortex compared to the medulla (Henning et al., 2019). These proteomic 

studies both identified over 80 ECM and ECM-associated proteins, in categories of 

collagens, glycoproteins, proteoglycans, ECM-affiliated proteins, ECM regulators, and 

secreted factors (Henning et al., 2019; Ouni et al., 2019).

Many studies of ECM have focused on matrix within follicles during development. Follicles 

have a unique pericellular matrix called the basal lamina, composed primarily of laminin and 

type IV collagen stabilized by nidogen and perlecan which separates the granulosa and theca 

cell compartments (Irving-Rodgers and Rodgers, 2006). As follicles grow, they continuously 

remodel the basal lamina to allow for expansion of the follicle as granulosa cells proliferate. 

Granulosa cells have been shown to produce the major components of the basal lamina, 

although theca and other cells in the ovarian stroma may contribute to basal lamina 

deposition in later stages (Rodgers et al., 1999). The basal lamina also plays a role in 

mediating granulosa cell growth and antrum formation through growth factor sequestration 

and signaling. Perlecan in the basal lamina is able to bind growth factors and is charge- and 

size-selective, serving as a barrier to diffusion of growth factors between the granulosa and 

theca cell compartments, allowing the follicular fluid and basal lamina to become reservoirs 

of factors to promote healthy folliculogenesis (McArthur et al., 2000).

Mechanics—The ovary has two major compartments which differ in their ECM 

composition and structure – a stiff cortex where primordial follicles reside in dormancy, and 

a less dense medulla where antral follicles vigorously remodel the ECM through proteolytic 

degradation as they reach preovulatory stages. Decellularized human and bovine ovarian 

tissue reveals radially-aligned collagen fibers in the cortex, lending to its increased stiffness, 

whereas the medulla is composed of a network of pores with anisotropic collagen fibers, 
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suggesting differences between cortical and medullary ECM-producing stromal cells 

(Laronda et al., 2015; Chiti et al., 2018). The prominence of ovarian cortical and medullary 

regionalization can differ across species, and is notably reduced in rodent ovaries when 

compared to human ovaries (Jiménez, 2009). The mechanical properties of these regions 

have important roles in mechanotransduction for the follicles as they activate and develop. 

Primordial follicle dormancy has been shown to be regulated by the Hippo signaling 

pathway, where rigidity of the ovarian cortex inactivates yes-associated protein (YAP) and 

transcriptional coactivator with PDZ-binding motif (TAZ) to inhibit growth (Kawamura et 
al., 2013). Follicle activation can be initiated with disruption of the Hippo signaling 

pathway, for example when follicles are isolated from the cortex, further illustrating the 

importance of ECM mechanical properties in maintenance of the follicular reserve 

(Kawamura et al., 2013). After activation, early stage follicle growth and survival is still 

dependent on a stiff matrix, as has been shown in vitro (Hornick et al., 2012). As follicles 

grow, they require a softer matrix for expansion as provided by the medullar region of the 

ovary, and in vitro studies have shown improved growth, survival, and steroidogenesis of 

later stage follicles in permissive matrices (West et al., 2007; West-Farrell et al., 2009).

Function: Signaling and Remodeling—ECM components play a large role in 

regulating cell functions through both direct and indirect signaling. Fibronectin and laminin 

contain integrin-binding sequences (most notably Arg-Gly-Asp, or RGD) which allow cells 

to directly interact with the ECM and initiate signaling cascades for proliferation and 

differentiation as follicles develop (Monniaux et al., 2006). ECM also has an indirect role in 

signaling as it acts as a reservoir of growth factors and cytokines and mediates their 

presentation to cells both when they are bound and when they are released upon ECM 

degradation. ECM is a dynamic structure in tissues, continuously being remodeled by the 

cells which reside in it through matrix metalloproteinases (MMPs), tissue inhibitors of 

matrix metalloproteinases (TIMPs), and plasminogen activators (McIntush and Smith, 

1998). Follicles and other ovarian stromal cells secrete these enzymes to soften the 

surrounding ECM and allow for follicular expansion, and in this process cytokines and 

growth factors bound to the ECM are released. Several growth factors known to be key 

regulatory molecules in folliculogenesis including fibroblast growth factor, transforming 

growth factor beta, platelet derived growth factor, hepatocyte growth factor, and insulin-like 

growth factor have ECM-binding motifs or can be sequestered within the ECM through 

binding factors such as follistatin (Logan and Hill, 1992). In this way, ECM remodeling is a 

mechanism by which growth factor bioavailability can be mediated or disrupted in some 

pathological conditions (McIntush and Smith, 1998). If dysregulated, ECM degradation may 

also trigger pathogen-free inflammation. For example, hyaluronan is a glycosaminoglycan 

that forms low molecular weight fragments during turnover, which have been shown in 

cultured murine stromal cells to increase the secretion of type 2 inflammatory cytokines and 

activate genes involved in eosinophil recruitment, while also leading to adverse effects on 

cultured follicles (Rowley et al., 2020).

At the final stages of follicular maturation the ECM again plays an important role in 

ovulation. Follicles are stimulated by the LH surge to produce large amounts of MMPs and 

plasminogen activator to degrade the ECM at the apical region of the follicle (Curry and 
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Smith, 2006). This process is further amplified by the release of tumor necrosis factor-alpha 

(TNF-a) from the degraded ECM to promote collagenase production and apoptosis of 

ovarian epithelial cells (Curry and Smith, 2006). The weakened cellular and ECM 

components at the apical region, along with pressure from the follicular fluid and increased 

vascular pressure, facilitate follicular rupture and expulsion of the oocyte into the 

periovarian space (Matousek et al., 2001).

KEY AREAS FOR FURTHER RESEARCH AND FUTURE PERSPECTIVES

Understanding the origins of the theca cells

The theca cell layer is divided into the theca interna, with cytoplasmic lipid droplets 

characteristic of its role in steroid production, and the theca externa, which is a mix of 

fibroblasts and smooth muscle cells that are more contiguous with the broader ovarian 

stroma (reviewed in Young and McNeilly, 2010; Richards et al., 2018). The relationship 

between the supporting cells of the ovarian stroma and the theca cells has not been 

definitively established, although it is generally agreed that the theca cells originate at least 

in part from stromal cells (Young and McNeilly, 2010; Rotgers et al., 2018).

Murine theca cells have been shown to arise from two types of progenitors: Wt1-positive 

cells in the fetal ovary and Gli1-positive cells migrating from the mesonephros adjacent to 

the ovary (Liu et al., 2015). Near birth, desert hedgehog and Indian hedgehog paracrine 

signals from granulosa cells appear to prompt expression in undifferentiated stromal 

progenitor cells of the theca lineage marker Gli1. Microarray analysis suggested differences 

based on theca progenitor population, with increased steroidogenesis in the mesonephros-

derived Gli1-positive cells (Liu et al., 2015). The steroidogenic androgen-producing theca 

cells may arise from the mesonephros derived progenitors, while the theca fibroblasts, 

perivascular smooth muscle cells, and possibly the interstitial ovarian cells may arise from 

the ovarian WT1+ progenitors (Richards et al., 2018).

Additional undifferentiated stromal cell progenitors (possibly positive for Lhx9, Mafb, 
Coup-tfII, and Arx) may yield a nonsteroidogenic stromal cell population, possibly 

expressing Coup-tfII and Arx. Overlapping expression of COUP-TFII and ARX in the same 

population of cells has not been established (Rotgers et al., 2018). Sonic hedgehog signaling 

has been shown to regulate expression of COUP-TFII, which was identified in murine theca 

interna cells and in mesenchymal cells around the corpus luteum (Krishnan et al., 1997; 

Takamoto et al., 2005). COUP-TFII is likely expressed in steroidogenic cells, as 

haploinsufficient female mice demonstrated altered reproduction function, including reduced 

expression of steroidogenic enzymes needed for progesterone synthesis and reduced 

vascularization (Takamoto et al., 2005). Three populations of somatic cell precursors have 

been demonstrated in murine fetal ovaries, marked by mutually exclusive expression of 

COUP-TFII and the granulosa cell markers FOXL2 and LGR5 (Rastetter et al., 2014). 

Mutually exclusive FOXL2 and COUP-TFII expression was also seen in early fetal human 

ovaries, with COUP-TFII expression in the stromal cell population. Several 46,XX SRY-
negative children with mutations in the gene encoding COUP-TFII were virilized, with 

testicular tissue confirmed in one child, suggesting a “pro-ovary” and “anti-testis” role for 

COUP-TFII in developing human female gonads (Bashamboo et al., 2018).
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A transgenic mouse study suggests the presence of at least two steroidogenic cell types for 

ovarian theca and interstitial gland cells. In postnatal mouse ovaries, only a portion of the 

steroidogenic theca and interstitial gland cells expressed enhanced green fluorescent protein 

(EGFP) as a reporter of the fetal Leydig enhancer (FLE) of the Nr5a1 gene (SF-1). SF-1 

regulates expression of steroidogenic CYP genes. In testes, the FLE differentiates fetal from 

adult Leydig cells. In these ovaries only approximately 16% of the SF-1 postive cells were 

positive for EGFP, suggesting at least two cell populations (Miyabayashi et al., 2015).

A transcriptome analysis of the bovine ovarian stroma found that populations isolated by 

laser microdissection were similar between general interstitial stroma and what they labeled 

as pre-theca cells (stroma adjacent to preantral follicles). They combined them for the 

purpose of analysis, and the subsequent stroma was found to be different from both the 

tunica albuginea and the theca interna (Hummitzsch et al., 2019). The theca interna of small 

antral follicles had an upregulation of genes associated with steroid hormone and cholesterol 

synthesis as compared to the stroma (Hummitzsch et al., 2019).

Of note, the concept of theca interstitial cells (TICs) has been used as a catch-all for the 

residual ovarian tissue husk once follicles had been punctured (Tingen et al., 2011; Tian et 
al., 2015). When cultured, theca interstitial cells from mouse ovaries take on a fibroblast-like 

appearance that is distinct from granulosa cells (Tian et al., 2015). The heterogeneity of the 

TICs has been noted, with a reported shift in populations over a 12-day co-culture with 

follicles. At the beginning of the culture, the population contained predominantly lipid 

droplet-containing cells resembling theca cells as well as fibroblast-like cells, whereas the 

cells were mainly macrophages by day 12 (Tingen et al., 2011). This transition in cell 

phenotype may be due to differential survival in culture of the different starting cell 

populations, emphasizing that TICs are not a homogenous grouping.

Further understanding the stromal compartment may aid in better identification of theca 

progenitors (Figure 2). Additionally, studies using mixed populations of TICs may benefit 

from greater categorization of these non-follicular populations to aid in interpretation and 

reproducibility of findings.

Stromal cell hormone production and responsiveness

Some of the ovarian stromal cells are capable of steroid hormone production and contain 

hormone receptors. For instance, estrogen receptor alpha and beta have been identified in the 

cytoplasm and nucleus of bovine interstitial cells, which were described as oval cells with 

lipid droplets and vacuoles that were distinguishable from fibroblasts (Kenngott et al., 2016). 

Progesterone receptor alpha has been identified in stromal cells and interstitial cells of 

pregnant and post-partum rabbit ovaries (Abd-Elkareem, 2017). Interstitial cells with 

features of steroid production have been documented in early gestation in the human fetal 

ovary (Konishi et al., 1986). Postmenopausal ovarian stromal cells have been postulated to 

produce androgens, although a study of in vitro isolated postmenopausal human stromal 

cells found that the predominant population had negligible expression of a key steroidogenic 

enzyme in the androgen biosynthesis pathway, CYP17A1, and did not appear to have 

significant steroidogenic potential (Jabara et al., 2003). Additionally, they found that 

transcripts for certain steroidogenic enzymes (STAR, CYP11A1, and HSD3B) were much 
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less abundant in the in vitro isolated stromal cells than in theca cells, with the exception of 

STAR which had more transcript abundance in stromal cells than in fibroblasts (Jabara et al., 
2003). In contrast, localization of CYP17A1 shifted from exclusively the theca interna in 

control mice to patches in the interstitial stroma in DHT-treated mice, supporting a potential 

role for the stroma in androgen production following certain perturbations (Candelaria et al., 
2019). Single-cell RNA sequencing studies have also demonstrated subpopulations of 

stromal cells expressing CYP17A1 and STAR (Wagner et al., 2020; Wang et al., 2020). 

Although stromal cells have demonstrated varied hormone production and responsiveness, 

definitive characterization of these dynamics and their functional significance remains to be 

established (Figure 2).

Pathological ovarian stromal changes: polycystic ovary syndrome as an example

Polycystic ovary syndrome (PCOS) has been defined by the Rotterdam Criteria (2004) as 

two of the three characteristics – hyperandrogenism, oligo or amenorrhea, and follicular 

cysts as noted on ultrasound (The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus 

workshop group., 2004). Polycystic ovarian morphology includes the following features – 

thickening of the tunica albuginea, ovarian stromal hyperplasia, stromal cell luteinization, 

and large cystic antral follicles (Hughesdon, 1982). The thickness of the cortical stroma is 

increased by one third and the subcortical stroma by five-fold (Hughesdon, 1982). In 

detailed ultrasound assessment, women with PCOS were found to have significantly 

increased ovarian volume, stromal volume, and stromal peak blood flow velocity as 

compared to controls (Buckett et al., 1999). In contrast, no difference was found in ovarian 

stromal blood flow between women with PCOS and a control group explicitly excluding 

patients with low ovarian reserve (Younis et al., 2011). The ratio of ovarian stromal area to 

total ovarian area (S/A) by ultrasound was a good predictor of hyperandrogenism in lean 

Italian women with PCOS, with increased ovarian vascularization and blood flow noted in 

PCOS patients as compared to controls (Battaglia et al., 2012), and S/A ratio has been 

proposed as a method to refine the Rotterdam PCOS classification (Belosi et al., 2006). In 

contrast, the S/A ratio was found to have limited predictive value as a PCOS diagnostic in 

reproductive-aged Thai women with PCOS (Leerasiri et al., 2015). Another study found 

increased ovarian stromal area with PCOS, but was unable to demonstrate a relationship 

between stromal area and PCOS hormonal characteristics (Kaleli et al., 1998). Ovarian 

angiogenesis dysfunction including increased ovarian stromal vascularization, lower 

impedance to flow (Alcázar and Kudla, 2012), and alterations in angiogenic factors levels in 

PCOS, have been further reviewed elsewhere (Di Pietro et al., 2018), with possible 

implications that restoration of appropriate vessel formation could improve folliculogenesis 

and ovulation. Inflammation-related gene expression was downregulated in the ovarian 

stroma and upregulated in granulosa cells for PCOS women as compared to controls, 

although the downregulation in the stroma may have been affected by a reduced abundance 

of leukocytes in the PCOS stroma as measured by CD45 mRNA levels (Schmidt et al., 
2014). A reduction in theca-associated activated/memory T lymphocytes has also been seen 

in PCOS ovaries as compared to controls, without notable differences in macrophage or 

neutrophil levels across multiple ovarian compartments (Wu et al., 2007). Broadly, PCOS 

may impact stromal volume, tunica albuginea thickness, stromal luteinization, 
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vascularization, blood flow, inflammation and immune cell distribution, although the causes 

and functional impacts of these stromal changes have not been fully elucidated.

Hyperandrogenism, one of the common aspects of PCOS, has been shown to drive certain 

stromal alterations. For instance, in transgender men given exogenous testosterone therapy, 

increases were noted in tunica albuginea collagenization, stromal hyperplasia, and stromal 

luteinization with clusters of luteinized stromal cells (Spinder et al., 1989; Ikeda et al., 
2013), as well as increased stromal androgen receptor staining (Chadha et al., 1994). 

Multiple cell types in polycystic ovaries may produce androgens, as immunohistochemistry 

revealed the presence of steroidogenic enzymes for androgen synthesis in follicular theca 

cells, luteinized stromal cells, hilar cells, and sporadic non-luteinized stromal cells (Kaaijk et 
al., 2000). Mice treated with dihydrotestosterone (DHT) also demonstrated stromal changes, 

including less dense, hyperplastic, and lipid-filled stroma when compared to age-matched 

controls. These mice also had an overexpression of multiple genes in the mechanically-

separated stroma between controls and DHT-treated mice (Candelaria et al., 2019). This 

included increased Vcam1 expression (which may impact vascular and immune responses) 

in thecal and stromal cells, while theca-specific androgen receptor knockout mice 

(ThARKO, Cyp17a1-iCre, ARf/f mice) demonstrated a lack of DHT-induced Vcam1 
elevation (Richards et al., 2018; Candelaria et al., 2019). ThARKO mice were also shown to 

retain much of their reproductive function, including cyclicity and fertility as compared to 

controls when treated with DHT (Ma et al., 2017). For mice with DHT-induced stromal 

changes, superovulation rescued at least some of the abnormal stromal morphology 

(Candelaria et al., 2019).

Several changes occur in the ovarian ECM in polycystic ovary syndrome. The cortex and 

basal laminas of follicles thicken and become more collagenous with reduced 

glycosaminoglycan content (Salvetti et al., 2003). A comparison of human PCOS to control 

ovaries in both the follicular and luteal phases revealed significantly lower pro-collagen IV 

expression compared to control ovaries, and this decrease in collagen IV was postulated to 

contribute to premature luteinization (Oksjoki et al., 2004). PCOS patients tend to have 

increased MMP-9 secretion as well, which may be related to the inability of follicles to 

undergo normal atresia (Dambala et al., 2019).

Stromal contribution to artificial ovary technology

The term ‘artificial ovary’ typically references an ovary constructed using a combination of 

ovarian follicles (or hormone-producing cell types) within a supportive scaffold (Figure 2). 

The creation of an artificial ovary as a means of fertility preservation and endocrine support 

has been a persistent challenge from biological and engineering perspectives as follicle 

development requires a complex symphony of soluble signals and mechanical cues, some of 

which may derive from the ovarian stroma.

Co-culture of follicles with stromal feeder cells has shown promise for providing the key 

soluble factors to promote growth of early stage murine follicles in vitro (Tingen et al., 
2011). With regard to directly sourcing ovarian stromal cells, ideal collection strategies may 

differ between stromal cells and follicles. Human stromal cells have been shown to be better 

preserved after vitrification than slow freezing, with slow freezing increasing necrosis and 
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collagen bundle disruption in the stromal cells, while follicles were similarly preserved in 

both vitrification and slow freezing (Keros et al., 2009). Isolating human stromal cells from 

fresh medullary tissue was shown to be superior to isolation from ovarian cortex in slow 

frozen and fresh samples, and led to increased cell yield, better viability, and improved 

vascularization when encapsulated in fibrin and implanted in the peritoneal pockets of nude 

mice (Soares et al., 2015). For xenograft models, the importance of transplanting stromal 

endothelial cells has been demonstrated (Dath et al., 2011). Isolated human ovarian cortical 

stromal cell suspensions containing stromal endothelial cells yielded well-vascularized and 

organized grafts after one-week implantations in mice, in contrast to grafts depleted of 

stromal endothelial cells, which were smaller, necrotic, and poorly vascularized (Dath et al., 
2011).

It is also challenging to develop a supportive scaffold that fully recapitulates the ovarian 

ECM. Multiple three-dimensional hydrogel culture systems such as alginate, fibrin, and 

poly(ethylene glycol) (PEG) aim to recapitulate the mechanical properties of the ovarian 

environment to maintain the spherical structure of follicles and allow for their expansion; 

however, these systems are lacking the biological functionality of ECM and the ability to 

sequester growth factors (Luyckx et al., 2014; Smith et al., 2014; Kniazeva et al., 2015; Kim 

et al., 2016; Chiti et al., 2018; Rios et al., 2018). Several groups have attempted to restore 

the biological function of ECM in these artificial ovaries by encapsulating follicles in ECM 

matrices such as Matrigel or decellularized tissues (Scott et al., 2004; Laronda et al., 2015). 

Unfortunately, these matrices do not include all of the components present in native ovarian 

ECM and also face challenges in translation in regard to availability of tissue and batch-to-

batch variability.

While each of these systems incorporates key components necessary for follicle growth, 

there is yet to be a system that truly mimics the ovarian microenvironment in both 

complexity of cell populations and extracellular matrix composition which can be translated 

for clinical use. Part of this limitation relates to scarcity of knowledge as it pertains to the 

cell types and functions of the ovarian stroma.

Identification of ovarian stromal cells

The multiple populations of cells referred to as stromal cells are incompletely characterized 

and categorized, leading to confusion across studies that report findings about stromal cells 

without further identification (Figure 2). Regional differences (e.g. cortex vs. medulla) likely 

influence the distribution and subtypes of stromal cells. Immunofluorescent imaging using 

known markers for follicular or stromal cells has advanced our understanding of the ovarian 

stroma, including the delineation of at least two distinct populations of steroidogenic theca 

and interstitial gland cells in postnatal murine ovaries, as well as the identification of at least 

three different somatic cell lineages in murine fetal ovaries (Rastetter et al., 2014; 

Miyabayashi et al., 2015). With developments in single-cell sequencing technologies to 

complement these detailed imaging studies, we may soon have the ability to better 

characterize the cells commonly called stromal cells and refer to them with more precise 

names as we understand their individual roles in physiologic and pathologic processes.
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Single-cell RNA-sequencing experiments have already made progress in identifying major 

ovarian cell types, transition stages, and markers for cell identification. These studies have 

significantly contributed to mapping the signatures of human and murine oocytes and 

granulosa cells from multiple follicular stages (Zhang et al., 2018). Yet, data about the 

ovarian stroma remain elusive and comparatively scarce. An investigation of somatic cells 

only in the inner cortex was performed in women undergoing fertility preservation 

procedures, detecting five clusters of granulosa cells, five clusters of theca and stromal cells, 

two clusters of smooth muscle cells, three clusters of endothelial cells, and four clusters of 

immune cells (Fan et al., 2019). They confirmed the presence of adaptive immune cells 

including T lymphocytes, Natural Killer cells, and B lymphocytes, as well as innate immune 

cells including monocytes and macrophages. This study also identified upregulation of the 

complement system (including C1R, C1S, and C7) by theca and stromal cells as a potential 

contributor to ovarian tissue remodeling (Fan et al., 2019). A subsequent single-cell analysis 

of the human ovarian cortex reported six clusters, including oocytes, granulosa cells, 

immune cells, endothelial cells, perivascular cells, and stromal cells. They classified a 

majority of cells (83%) as stroma, noting shared expression of mesodermal lineage markers 

(PDGFRA, DCN), ECM proteins (COL1A1, COL6A1), as well as expression of STAR and 

CYP17A1 by some cells in the stromal cluster. Although they isolated many stromal cells, 

their study mainly focused on discerning whether cells isolated using the Abcam DDX4 

antibody were oogonial stem cells (Wagner et al., 2020). A single-cell transcriptomic study 

of ovarian aging in nonhuman primate ovaries identified seven ovarian cell types, including 

oocytes, granulosa cells, stromal cells, smooth muscle cells, endothelial cells, Natural Killer 

T cells, and macrophages (Wang et al., 2020). The stromal cell cluster specifically expressed 

TCF21 and COL1A2, with some cells in the stromal cluster expressing high levels of STAR 
(Wang et al., 2020). A time series single-cell RNA sequencing study was performed for cells 

labeled with the gonadal somatic cell marker Nr5a1 (steroidogenic factor 1, SF-1) in the 

developing mouse ovary from E10.5 to postnatal day 6. Four distinct populations, including 

early progenitors, stromal progenitors, pre-granulosa cells, and postnatal granulosa cells 

were identified from their sequencing. Using their time series, they analyzed cell conversion 

from early progenitors to both the stromal progenitor lineage (E13.5) and the granulosa cell 

lineages (E11.5-E12.5) (Stévant et al., 2019). These studies are supported by precise 

immunofluorescent characterization of at least three somatic cell populations in fetal mouse 

ovaries, including COUP-TFII-positive possible pre-theca progenitors, LGR5-positive 

cortical granulosa cell progenitors, and FOXL2-positive medullary granulosa cell 

progenitors (Rastetter et al., 2014). Although single-cell sequencing studies allow for greater 

granularity in understanding the nuance of different ovarian cellular populations, including 

the stroma, it remains important to continually reflect on the possible limitations of any 

starting cellular populations (e.g. inner cortex only), with the overall goal of broadening our 

understanding of the entire ovarian microenvironment.

Future perspectives

As the majority of ovarian research studies focus on the ovarian follicles, a thorough 

understanding of the components and functions of the ovarian stroma is an active area of 

current research. The support provided by the ovarian stroma is essential for three-

dimensional follicular maintenance and the integration of signals to support folliculogenesis. 
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The stromal compartment is heterogeneous and analyses using bulk methods or gross 

dissection may lose the granularity that could be observed between low density specialized 

cellular populations. In addition to precise immunohistochemical and immunofluorescent 

studies for specific stromal cell population identification and lineage tracing, single-cell 

sequencing studies will continue to allow for more in-depth analysis of physiologic and 

pathologic changes occurring to specific cell types that might otherwise be grouped together. 

These sequencing studies must be conducted with critical reflection on the specifics of the 

origin of the sequenced cells. Greater understanding and careful ontology of the different 

populations of stromal cells would reduce ambiguity between studies. Further study 

integrating phenotypic changes in specific stromal cellular populations with functional 

changes would also help determine how changes in the ovarian stroma occur over time and 

may interact with folliculogenesis, position, and hormone production.
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Figure 1. 
Components of the Ovarian Stroma. Central diagram of a human ovary (adapted from Gray, 

1918) surrounded by boxes highlighting different ovarian stromal components including 

(clockwise from top center): immune cells including macrophages, dendritic cells, 

neutrophils, eosinophils, mast cells, B & T cells, and Natural Killer (NK) cells; incompletely 

characterized stromal cells (including fibroblast-like, spindle-shaped, and interstitial cells); 

stem cells; extracellular matrix (ECM) components; surface epithelium and tunica 

albuginea; rete ovarii and hilar cells; and blood vessels, lymphatic vessels, and nerves. Made 

using ©BioRender - biorender.com.
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Figure 2. 
Ovarian Stroma Key Areas for Further Research. Includes (clockwise from left): theca cell 

origins, hormone signaling, pathology, artificial ovary, and cell-type identification. Made 

using ©BioRender - biorender.com.
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