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Abstract

The loss of nigrostriatal dopaminergic neurons containing neuromelanin underlies the motor 

symptoms of Parkinson’s disease. Neuromelanin accumulation into autophagic lysosomes is 

evidence of ongoing cytosolic dopamine stress in these neurons during normal aging. The 

formation of neuromelanin is likely neuroprotective, as oxidation of cytosolic dopamine to 

quinones and aldehydes, as reviewed here, can produce a host of neurotoxic sequela. In addition 

to sequestration of dopamine and its metabolites in autophagic lysosomes, the uptake of dopamine 

into monoaminergic neurons mediated by vesicular monoamine transporter-2 (VMAT- 2), prevents 

dopamine oxidation. Dopamine is stable in monoaminergic vesicles due to their low pH, and 

thus overexpression of VMAT-2 may provide a target for potential neuroprotective therapy in 

Parkinson’s disease.

Dopamine Synthesis and Accumulation in Synaptic Vesicles

Dopamine is required for the normal regulation of motor activity. Dopamine is synthesized 

by tyrosine (4-hydroxyphe-nylalanine) conversion to L-3,4- dihydroxyphenylalanine (L-

DOPA) in a reaction catalyzed by the tyrosine hydroxylase. Tyrosine hydroxylase uses 

one oxygen atom to hydroxylate the carbon atom at position 3 in tyrosine to produce the 

catechol structure (hydroxyl groups in positions 3 and 4 of L-DOPA). L-DOPA is converted 

to dopamine in the cytosol by aromatic L-amino acid decarboxylase, which uses pyridoxal 

phosphate as a cofactor [1–6]. One important feature of dopamine synthesis in neurons is 

the rapid uptake of cytosolic dopamine into monoaminergic vesicles catalyzed by vesicular 
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monoamine transporter-2 (VMAT-2; SLC18A2), which physically and functionally interacts 

with enzymes responsible for DA synthesis [7].

Dopamine is stored in synaptic vesicles for neurotransmission, where it is stable due to the 

low pH. Dopamine uptake into monoaminergic vesicles catalyzed by VMAT-2 is coupled 

to an H+-ATP dependent proton pump localized in monoaminergic vesicle membranes. 

The pumping of protons into the monoaminergic vesicles reduces the pH, generating an 

environment of around pH5, where dopamine is stable and cannot oxidize to o-quinones [5–

10]. Dopamine is released from synaptic vesicles during neurotransmission, and particularly 

in the striatum, the dopamine transporter (DAT) takes up dopamine from the extracellular 

space to replenish synaptic vesicle stores for subsequent rounds of neurotransmission. 

Interesti-ngly, DAT, VMAT-2 and synaptogyrin-3 have been suggested to form a complex 

that could prevent oxidation of free dopamine in the cytosol [11] [Figure. 1].

The basis for selective death of specific neuronal populations in neurodegenerative 

diseases remains unclear. Parkinson’s disease (PD) is a synucleinopathy characterized by 

a preferential loss of dopaminergic neurons containing neuromelanin in the substantia nigra 

(SN), whereas neurons of the ventral tegmental area (VTA) that do not contain neuromelanin 

are quite spared until the late stage of PD. Using intracellular patch electrochemistry to 

directly measure cytosolic dopamine (DAcyt) in cultured midbrain neurons, we confirmed 

that elevated DAcyt and its metabolites are neurotoxic and that genetic and pharmacological 

interventions that decrease DAcyt provide neuroprotection. L-DOPA increased DAcyt in 

SN neurons to levels 2–3-fold higher than in VTA neurons, a response dependent on 

dihydropyridine-sensitive Ca2+ channels, resulting in greater susceptibility of SN neurons 

to L-DOPA-induced neurotoxicity. DAcyt was not altered by α-synuclein deletion, although 

dopaminergic neurons lacking α-synuclein were resistant to L-DOPA induced cell death. 

Thus, an interaction between Ca2+, DAcyt and α-synuclein may underlie the susceptibility 

of SN neurons in PD, suggesting directions for multiple therapeutic targets [12].

Dopamine metabolism to quinones

While dopamine is stable inside synaptic vesicles, cytosolic dopamine can autoxidize and 

be neurotoxic [12]. Dopamine can oxidize to dopamine ortho(o)-quinone, which cyclizes 

to aminochrome with a rate of s−1 as dopamine o-quinone is stable at a pH lower than 

2 [13, 14]. Aminochrome is the most stable o-quinone because its rearrangement to 5,6-

indolequinone has a rate of 0.06 m−1, and likely polymerizes after reaction with proteins 

to form the pigment neuromelanin [15] [Figure 2]. Dopamine oxidation, its reaction with 

proteins and lipids that form neuromelanin pigment inside autophagic-lysosomal organelles 

occurs during normal aging as neuroprotective process [16–18]. Neuromelanin accumulation 

in dopamine neurons of human SN can be visualized by MRI during aging, and in PD 

neuromelanin loss can be imaged [1, 17, 19–21]. However, o-quinones formed by dopamine 

oxidation can be neurotoxic, as dopamine o-quinone forms adducts with proteins including 

ubiquitin C-terminal hydrolase-L1, Parkinson protein 7, mortalin/GRP75/mthsp70 and actin, 

in cell cultures [22]. Dopamine oxidation also produces an adduct with parkin [23]. 

Accumulation of cytosolic or extraneuronal DA and subsequent oxidation to quinone species 

can induce nonspecific modifications on proteins. These processes require the presence of 
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redox active metals such as iron and copper, both abundant in dopaminergic brain areas. 

The reaction between dopamine quinone species and proteins occurs on specific amino acids 

according to the reactivity order, cysteine >> histidine > lysine [24].

The dopaminochrome structure is unclear and it is unknown if its structure corresponds 

to one of the two other o-quinones reported, that is aminochrome or 5,6-indolequinone. 

Dopaminochrome has absorption maxima at 303 and 479 nm [25], but the structure has 

not been determined by NMR, while aminochrome has absorption maxima at 280 and 

475 nm and its structure has been confirmed by NMR [26]. It is therefore possible that 

dopaminochrome corresponds to 5, 6-indolequinone or an unidentified o-quinone.

Aminochrome is also potentially neurotoxic, due to a host of potential mechanisms, 

like inducing alpha-synuclein aggregation to neurotoxic oligomers [27, 28], mitochondria 

dysfunction by decreasing mitochondrial membrane potential and ATP levels [29–34], 

autophagy dysfunction [35–37], increased lysosome pH [38, 39], disruption of cytoskeleton 

architecture [26, 40], inhibition of axonal transport of monoaminergic vesicles to the 

terminals in the striatum [34], decreased dopamine release [34], neuroinflammation [38, 

39], proteasome dysfu-nction [43, 44], and endoplasmic reticulum and oxidative stress [45].

The 5,6-indolequinone has also been reported to form adducts with alpha-synuclein in 

studies performed with NMR[15], having toxic effects similar to those of aminochrome 

previously described. Dopaminochrome induces neurotoxicity in cells, with a slow and 

progressive loss of dopaminergic neurons after intranigral injection and it has been reported 

to form adducts with alpha-synuclein [46–50].

Dopamine metabolism to aldehydes

Free dopamine in cytosol is degraded through oxidative deamination catalyzed by 

monoamine oxidase to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is oxidized to 

3,4-dihydroxyphenylacetic acid by aldehyde dehydrogenase-1 [5, 6] [Figure 2]. Two forms 

of aldehyde dehydrogenase are expressed in human SN (1 and 2), but only aldehyde 

dehydrogenase-1 expressed in the cytosol is decreased in PD patients [51–53] and roles 

for it have been proposed in the degeneration of the nigrostriatal system [54–56].

Intracerebral injection of DOPAL into the SN and the VTA induced loss of tyrosine 

hydroxylase positive staining [57]. DOPAL induces alpha-synuclein aggregation in vitro 

and in animals when injected into the SN [58]. Additionally, divalent metal ions can enhance 

DOPAL-induced aggregation of alpha-synuclein [59]. DOPAL induces aggregation of alpha-

synuclein by generating dicatechol pyrrole adducts with lysine [60]. DOPAL-induced alpha- 

synuclein oligomers inhibit the formation of mature amyloid fibrils. DOPAL affects alpha-

synuclein function by disturbing its interaction with lipid membranes and its role in the 

regulation of synaptic vesicle traffic in neurons. DOPAL-induced alpha-synuclein oligomers 

induce dopamine leakage in a cellular model and in an in vitro model of synaptic vesicles 

[61–63].

Inhibition of VMAT-2 by reserpine increases the level of DOPAL in PC12 cells, contributing 

to apoptosis [55].
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Accumulation of cytosolic o-quinones into neuromelanin

The conversion of dopamine to neuromelanin requires the formation of dopamine o-quinone, 

aminochrome and 5,6-indolequinone sequentially in the cytosol. The oxidation of dopamine 

is catalyzed by iron, which is abundant in SN dopaminergic neurons, and is then bound 

into neuromelanin pigment during its biosynthesis [17]. As above, these o-quinones can 

be neurotoxic and induce the loss of dopaminergic neurons of the nigrostriatal system in 

PD if not efficiently removed. However, healthy seniors have viable dopaminergic neurons 

that contain high levels of neuromelanin. This apparent paradox can be explained by the 

existence of two enzymes that play a neuroprotective role against quinone toxicity in 

dopa-minergic neurons. DT-diaphorase, which is expressed in both dopaminergic neurons 

and astrocytes, prevents the neurotoxic effects of aminochrome by reducing aminochrome 

with two electrons to leukoaminochrome. Leukoaminochrome can rearrange its structure 

to form 5,6-dihydroxyindole, which can oxidize to one of the direct precursors of 

neuromelanin 5,6-indolequinone. These quinones can react with aggregated proteins to form 

adducts that undergo further reactions to generate neuromelanin pigment that immobilize 

potentially toxic dopamine-derived compounds along with metals, several proteins and 

lipids inside specific autolysosomes [16]. DT-diaphorase prevents aminochrome induced 

mitochondrial dysfu-nction [29–31], alpha-synuclein aggregation to neurotoxic oligomers 

[27,28], proteasome dysfunction [43], lysosome dysfunction [39], cytoskeleton architecture 

disruption [26] and cell death [64]. The other neuroprotective enzyme is glutathione 

transferase M2–2 (GSTM2), which can detoxify dopamine o-quinone and aminochro-me 

by conjugating these o-quinones with glutathione [65–67]. GSTM2 is produced only 

in astrocytes, but these cells secrete GSTM2 that dopaminergic neurons accumulate in 

their cytosol, protecting neurons from the neurotoxic effects of dopamine o-quinone and 

aminochrome [68–70].

Protective Roles of VMAT-2

VMAT-2 activity decreases the level of free cytosolic dopamine by sequestering it into 

synaptic and other secretory vesicles where it remains stable and can be used for 

neurotransmission. VMAT-2 expression has long been known to be neuroprotective, as it 

was originally cloned due to its role in protecting cells from MPP+ toxicity [71], and it 

also protects dopamine neurons from ampheta-mine neurotoxicity [72] and L-DOPA toxicity 

[12], presumably by decreasing cytosolic amphetamine and dopamine levels in the cytosol 

and preventing the formation of the toxic metabolites discussed above.

It has been suggested that the ventral SN neurons accumulate the most neuromelanin 

pigment because they have lower VMAT-2 expression, while the midbrain dopaminergic 

neurons of VTA, which produce larger amounts of dopamine, have more vesicular storage 

capacity for action potential-induced release of the neurotransmitter and then lower levels 

of neuromelanin [73]. This idea is supported by the observation that overexpression of 

VMAT-2 prevents neuromelanin biosynthesis [74].

Analysis of dopamine storage vesicles from the PD striatum revealed a significant 

decrease of VMAT-2 expression in patients’ caudate and putamen nuclei in comparison 
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to control brains [75]. It therefore appears plausible that overexpression of VMAT-2 in 

dopaminergic neurons of the nigrostriatal system could provide a gene therapy aimed 

at preventing dopamine oxidation-induced neurotoxicity (Figure 2). In support of this 

hypothesis, it was suggested that variability in VMAT-2 promoter region may reduce the 

risk of developing PD, so that increased VMAT-2 levels may confer protection against the 

disease [76]. Additionally, targeted manipulation of VMAT-2 expression in PD patients 

could also improve the efficacy of dopamine derived from L-DOPA administrations, 

increasing dopamine availability for neurotransmission in the surviving nigrostriatal 

neurons. Therefore, future interventions on VMAT-2 may be a viable therapeutic approach 

to address both dopamine deficits in neurotransmission and dopamine-derived neurotoxicity.
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Figure 1: Dopamine synthesis and uptake.
There are two sources of dopamine in dopaminergic neurons. (i) Synthesized dopamine. 

Dopamine is synthesized in the cytosol of dopaminergic neurons where the amino 

acid tyrosine is hydroxylated by the enzyme tyrosine hydroxylase, forming L-DOPA. 

Subsequently, L-DOPA is converted to dopamine by the aromatic L-amino acid 

decarboxylase. However, these reactions do not produce free dopamine in the cytosol, 

since it has been reported that VMAT-2 forms a complex with the aromatic L-

amino acid decarboxylase and tyrosine hydroxylase. VMAT-2, expressed on the surface 

of the monoaminergic vesicles, immediately transports dopamine into these vesicles. 

Monoaminergic vesicles have a low pH because they have an H+-ATPase that pumps 

protons inward, generating an acid environment where dopamine accumulates without 

Segura-Aguilar et al. Page 10

Clin Pharmacol Transl Med. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



risk of oxidation because it is completely stable. (ii) The other source of cytosolic 

dopamine is by reuptake via DAT to the cytosol. Interestingly, DAT has been suggested 

to form a complex with synaptogyrin-3 and VMAT-2 that immediately transports imported 

extracellular dopamine towards the monoaminergic vesicles, preventing the existence of free 

cytosolic dopamine and its autoxidation to neurotoxic o-quinones.
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Figure 2: Neuroprotection in dopaminergic neurons.
The presence of free dopamine in the cytosol is a risk, because during the oxidation of 

dopamine to neuromelanin (through a multi-step biosynthetic mechanism that involves 

iron-catalyzed oxidation, polymerization and reaction with proteins and lipids), or in its 

degradation catalyzed by monoamine oxidase (MAO in the Fig.), neurotoxic o-quinones can 

be generated. Therefore, VMAT-2 is the first line of neuroprotection against the neurotoxic 

effects of dopamine oxidation. VMAT-2 protects dopaminergic neurons by transporting 

dopamine towards the monoaminergic neurotransmission vesicles. Dopaminergic neurons 

are likely exposed to dopamine-derived damage when levels of VMAT-2 are not high 

enough to limit free dopamine and its autoxidation occurs in the cytosol. In this case 

neuromelanin biosynthesis provides an additional means to limit dopamine toxicity through 

a neuroprotective mechanism. There are two enzymes that prevent the neurotoxic effects 

of dopamine o-quinone and aminochrome in dopaminergic neurons. The enzyme DT-

diaphorase catalyzes the two-electron reduction of aminochrome to leukoaminochrome, 

then leading to formation of neuromelanin precursors and the enzyme GSTM2, which can 

inactivate both dopamine o-quinone and aminochrome by conjugating these o-quinones with 

glutathione. GSTM2 is expressed only in human astrocytes, which secrete this enzyme. 

Dopaminergic neurons are able to internalize GSTM2 into the cytosol, where this enzyme 

conjugates these o-quinones with glutathione which undergo further degradation forming 

other probable precursors of neuromelanin pigment.
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