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Abstract

Admixture mapping is based on the hypothesis that differences in disease rates between 

populations are due in part to frequency differences in disease-causing genetic variants. In 

admixed populations, these genetic variants occur more often on chromosome segments inherited 

from the ancestral population with the higher disease variant frequency. A genome scan for disease 

association requires only enough markers to identify the ancestral chromosome segments; for 

recently admixed populations, such as African Americans, 1,500–2,500 ancestry-informative 

markers (AIMs) are sufficient. The method was proposed over 50 years ago, but the AIM panels 

and statistical methods required have only recently become available. Since the first admixture 

scan in 2005, the genetic bases for a range of diseases/traits have been identified by admixture 

mapping. Here, we provide a historical perspective, review AIM panels and software packages, 

and discuss recent successes and unexpected insights into human diseases that exhibit disparate 

rates across human populations.
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INTRODUCTION

A major goal of human genetics is to identify genetic variation predisposing to complex, 

common human diseases. Genome-wide-association scans (GWAS) have led to the 

discovery of thousands of alleles associated with human diseases and traits (31), but GWAS 

are costly and, because of the large number of single nucleotide polymorphisms (SNPs) 

analyzed, incur a stiff statistical penalty (61). This is problematic because of the growing 

realization that most common-risk alleles have small effect sizes while alleles with large 

effect sizes tend to be much less frequent (37). To have the power to identify small to 

moderate effect requires thousands of cases and controls (Table 1). Admixture mapping 

provides an attractive and more powered alternative to GWAS for gene discovery in admixed 
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populations for a subset of diseases/traits that are differentially distributed in the ancestral 

(parental) populations (49). The idea is straightforward—the genetic variation causing the 

disease/trait of interest will be more frequent on chromosome segments derived from the 

parental population with the higher disease/trait incidence.

In this review, we provide only a brief overview of the theoretical basis and statistic methods 

for admixture mapping as these have been expertly treated by others (41, 43, 69, 72, 85). 

Instead, we provide a comprehensive review of admixture mapping software programs, the 

development of admixture panels, applications, and successes in the 5-year span marking the 

passage from an elegant theoretical approach to a powerful gene mapping application with 

several notable successes.

HISTORICAL PERSPECTIVE

The human diaspora that has occurred in the last 400–600 years has resulted in gene flow 

between previously separated human subpopulations (Figure 1). Meiotic crossover in 

admixed populations leads to a mosaic of chromosomal segments derived from one or the 

other ancestral (parental) subpopulation (Figure 2). The duration, direction, and rate of gene 

flow between two populations influence the proportion of admixture and the length of 

chromosomal segments derived from the ancestral populations, which will vary among 

individuals. In admixed populations where gene flow commenced within the last several 

hundred years (e.g., African Americans or Hispanics), linked alleles will show extended 

linkage disequilibrium (LD) relative to the ancestral populations.

Using the admixture linkage disequilibrium (ALD) generated in recently admixed human 

populations to assign the traits to linkage groups was first proposed by Rife in 1954 (59), but 

it took nearly 4 decades for the approach to gain serious attention. In 1988, Chakroborty & 

Weiss (13) renewed interest in ALD to map genes by positing a classical linkage approach 

analogous to family or hybrid animal studies that exploits long range LD to limit the number 

of markers required for genome-wide coverage. This was followed by a flurry of theoretical 

papers in the 1990s (11, 41, 60, 72); these early pioneers advanced various statistical 

strategies and methods, all of which were based on the association between a marker allele 

and trait to assign genes to a linkage group—a method Stephens et al. (72) termed mapping 

by admixture linkage disequilibrium (MALD).

In 1998, McKeigue (42) proposed an alternative approach to disease gene localization that 

tested for the linkage of the disease or trait with parental ancestry at each locus, defined as 0, 

1, or 2 allele copies inherited from the ancestral populations. McKeigue named this 

approach admixture mapping because it is based on the association of local chromosomal 

ancestry with the disease rather than on LD between the marker and phenotype (Figure 3). It 

was quickly appreciated that admixture mapping could be applied to case-control studies by 

comparing locus-specific ancestry at each ancestry-informative marker (AIM) between cases 

and controls. Hoggart et al. (32) and Montana & Pritchard (45) showed through simulations 

that the extent of ancestry at each locus could also be compared to genome-wide average 

ancestry for a case-only study design (32, 45). They demonstrated that for rare diseases, an 

affected-case-only design is highly efficient and better powered than a case-control design. 
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A statistical deviation in local ancestry away from the genome-wide average could be used 

to identify a peak region of interest. In studies where both cases and controls are available, 

most investigators elect to calculate both a case-control statistic quantifying the difference in 

ancestry between cases and controls, and a case-only statistic comparing the extent of 

ancestry at each locus to the genome-wide average. Like hybrid or family linkage studies, a 

moderate number (≈1,500–2,500) of ancestry-informative markers is needed for the initial 

genome-wide scan, followed by fine mapping with additional markers to identify the causal 

allele (49). Further, Patterson has shown that admixture mapping has the power to detect 

association with relatively modest odds ratios with 2,500 or fewer cases (Figure 4); this 

offers an advantage over standard GWAS results because it uses far fewer markers and thus 

has a much more modest correction for multiple comparisons.

The development of the theoretical approach to using ancestry to map genes by McKeigue in 

1998 was followed rapidly by the development of statistical methods, panels of AIMs for 

admixture typing, and software programs, many of which became available by 2004. The 

successful application of admixture mapping rapidly followed the publication of well-

designed Latino and African genotyping panels of AIMs (16, 50, 70). Admixture mapping 

has come of age and is now being applied to a wide range of traits and diseases for which it 

is hypothesized that the differences in disease rates across populations are due to population-

specific frequency differences of the causal variant(s).

THE PROCESS OF ADMIXTURE

Gene flow between reproductively isolated populations results in chromosomal admixture 

with contributions from each contributing ancestral population. The gene flow can be a 

single event in time or continuous over many generations. The gene flow results in the 

temporary generation of long haplotype blocks, which includes polymorphic variants, 

derived from one or the other ancestral population (Figure 2). These blocks of alleles in 

ALD are extremely extended in the first few generations following introgression, but the LD 

segments become progressively shorter by recombination with increasing generations. The 

length of haplotype segments derived from each of the ancestral parent populations is a 

function of both the number of generations since the initial admixture event and the duration 

of gene flow.

In recently admixed populations, the extent of ALD is intermediate between ancestral 

populations in which recombination has occurred over hundreds of thousands of generations 

and families in which recombination has occurred in only a few generations. The alternative 

fixation of the FY− allele of the Duffy antigen receptor for chemokines (DARC or FY) in 

African populations and the FY+ allele in European populations were used to empirically 

track ALD between the FY locus and neighboring markers in African Americans. ALD was 

found to extend across a 30-cM region, centered on the FY locus, but was strongest for a 

flanking interval of 5–10 cM (Figure 5) (35). These results are in agreement with other 

studies that indicate similar-sized regions of ALD (49). Using a set of 3,011 AIMs spanning 

the genomes of African Americans, Patterson and colleagues estimated that strong ALD 

extends on average for approximately 17 cM (49), indicating an average of six to seven 

generations of admixture (49, 70). These findings of extended ALD in the recently admixed 
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African American population provided empirical support for the practical application of 

admixture mapping.

ADMIXED POPULATIONS

Although gene flow and resulting admixture have occurred throughout human history, it is 

the relatively recent gene flow between continental populations that is currently most 

amenable for admixture mapping. The forced diaspora of Africans to the Americas in the 

sixteenth century has resulted in two-way admixture between Africans and Europeans in the 

United States (Figure 1). On average, African Americans have gametes that are 

approximately 80% African derived and 20% European derived (49, 58). Of course, for any 

single individual, African ancestry may vary from 100% African derived to 1% (44, 47, 48, 

51). Admixture has also occurred between the Spanish and Amerindians as a result of the 

Spanish conquest and colonization of the New World over three centuries, beginning with 

the 1492 discovery of the New World. In a survey of ancestry estimates of Latino 

populations from California (Los Angeles), Mexico, Brazil, and Columbia, the Latino 

populations from Mexico and Los Angeles had approximately 50% European ancestry and 

40% North American Amerindian, whereas Latinos from Brazil and Columbia had 71% 

European ancestry; average African ancestry ranges from approximately 4% in Mexicans to 

10–11% in South American Latinos (Table 2) (53). Other surveys of Latino ancestry indicate 

considerable heterogeneity among regions, with a range of 33–95% European ancestry, 0–

58% Native American, and 0–29% West African; the proportions show regional and 

geographic variation (8, 10, 16, 36) as well as differences in ancestry associated with 

socioeconomic status (24).

Unique admixed populations are the sotermed Cape Colored residing in the western Cape of 

South Africa (50) and the Uyghurs of west China (81, 82). The Cape Colored population is 

genetically heterogeneous, with admixture contributions from the isiXhosa, Europeans, 

South Asians, and Indonesians. Since the isiXhosa are themselves admixed, with major 

ancestry contribution from the Bantu and to a lesser degree from the Bushman (San), the 

South African Cape Colored are at least five-way admixed (50). Zinjiang territory in far west 

China straddles the Silk Trade route connecting East Asia with Central Asia and Europe. 

Studies by Xu & Jin (82) found that the Uyghurs, representing 50% of the population of the 

Xinjiang Uyghur Autonomous Region in northwest China (>9.4 million), have significant 

amounts of European ancestry, estimated at approximately 50%. Assuming a single pulse of 

admixture, STRUCTURE estimates the Asian–European admixture occurred 2,080–2,720 

years ago (104–136 generations), whereas ADMIXMAP dates the event to 1,680–2,400 

years ago (84–120 generations). The length of the chromosomal regions derived from East 

Asian and European populations averages 2.4 cM and 4.1 cM, respectively; therefore, it will 

take approximately tenfold as many AIMs for genome-wide coverage. Other populations 

where recent admixture has been documented are the Australian Aboriginals (63) and the 

Pacific Island populations (e.g., Hawaii, Norfolk Island) (28, 29, 40). These populations 

offer unique opportunities to identify genes associated with medical conditions or 

physiological traits that differ across populations.
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With increasing knowledge gained through resequencing and high-density genotyping arrays 

of diverse populations, we anticipate the identification of more admixed populations and 

finer grained discernment for both inter- and intracontinental ancestry contributions. To date, 

high density, genome-wide admixture mapping panels have been constructed only for 

African Americans, Latino/Hispanics, and Uyghurs (Table 3)—populations with 

intercontinental ancestry mixtures. Within-continent admixture can also be exploited for 

gene mapping; the 1,000 Genomes Project and International HapMap Project will no doubt 

identify a subset of SNPs that is differentiated among intracontinental populations (e.g., 

northern and southern Europeans) to construct fine-grained admixture maps for these 

admixed populations.

Two-way admixture between continental populations has been modeled and applied to 

admixture studies, but three-way admixture is not uncommon, particularly among Latinos/

Hispanics, who may have ancestral contributions from northern, central, or southern Native 

Americans, Africans, and Europeans. Further, as observed in the Cape Colored population in 

the western Cape of South Africa, gene flow may occur between continental groups (e.g., 

African Americans), within continental groups (e.g., isiXhosa in South Africa), or in 

combination (e.g., Cape Colored ethnic group in South Africa). Current statistical methods 

and panels for ancestry-informative markers are optimized for two-way admixture between 

continental groups. However, as discussed below, tools for distinguishing recent and ancient 

admixture, as well as fine-grained intracontinental admixture, are being developed.

METHODS AND PROGRAMS

Here, we give a brief conceptual review of the general algorithmic approach to inferring 

chromosomal ancestry and of using this inference to estimate the likelihood that a genomic 

region is associated with disease (Table 3). Zhu gives an extensive review of the 

mathematical issues of admixture mapping (85).

The proposal of McKeigue to infer the ancestry of stretches of chromosome was the starting 

point for practical use of admixture mapping (42). The accuracy of inference of ancestry for 

a single locus is strictly set by the allele frequency difference between the two ancestral 

populations; for the extremely rare case of an allele with a fixed difference [fixation index 

(Fst) = 1] between populations, the allele in an admixed individual must be inherited from 

the populations carrying that allele. This is key to McKeigue’s proposal; however, this 

inference becomes rapidly less certain as the frequency difference [delta (δ)] becomes 

smaller. By considering the ancestry of chromosomal segments rather than that of individual 

loci, one takes advantage of the fact that, as long as the average distance between tested loci 

is less than the average distance of recombination fragments between the admixed 

populations, adjacent markers will have a significantly greater-than-chance likelihood of 

being on the same segment.

This tendency is exploited by the hidden Markov model (HMM) algorithms that form the 

basis of the ancestry calculations (42, 49). Considering a chromosome in an admixed 

individual, by assumption, each locus is inherited from one of the ancestral groups. 

However, we actually observe only the allele, not the ancestry. Starting from a particular 
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locus, if we proceed in one direction down the chromosome, we encounter successive tested 

loci. Between one locus and the next, there may or may not have been a recombination event 

since the original population admixture events. If there was a recombination event, the 

ancestry of the loci switches. We assume the chance of crossover between any two loci is 

independent of the presence or absence of recombination between previous loci (this is not 

strictly true biologically but is a reasonable approximation). With this assumption, the 

succession of ancestries along the sequence of loci forms a Markov process; that is, the 

chance that locus n is of African ancestry depends on whether locus n−1 is African or 

European, and on the likelihood of recombination between n−1 and n, but not on the 

ancestry of any of the earlier loci. Because we cannot actually observe the ancestry of the 

loci, this is a hidden Markov model.

What we actually observe are the genotypes at the loci. Knowing the overall ancestry of the 

individual, and the likelihood of recombination between successive loci, we may calculate 

probabilities of different sequences of ancestries of the loci. If we know the ancestral allele 

frequencies at each locus, we know the probabilities of observing a given allele at each 

locus, given a specific sequence of ancestries (Figure 6). It is now a computationally 

intensive, but tractable, problem to infer the probability of a given sequence of ancestry, 

given the observed sequence of alleles. The programs diverge in the mathematical approach 

to this inference of ancestries from genotypes, with one group using a Markov chain Monte 

Carlo (MCMC) algorithm (22, 32, 45, 49) and a second group using maximum-likelihood 

inference (Table 3) (73, 86). The output of these inferences is an estimate of whether an 

individual has zero, one, or two chromsomes inherited from a particular ancestry, at a given 

point on the chromsome (Figure 7).

The common assumption in these programs is that the loci are not in linkage disequilibrium 

in any of the ancestral populations. This assumption is required if we assume that the 

probability of a particular allele at locus n is determined totally by the ancestry of that locus. 

Conversely, if there is LD in an ancestral population between locus n and locus n−1, and if 

the two loci both have that ancestry, then the allele frequency at locus n is also a function of 

the allele present at locus n−1, by the definition of LD.

SCORING DISEASE ASSOCIATION

If there is in fact a detectable ancestry-associated disease association due to genetic 

variation, there will be a peak around the disease locus in the calculated fraction of ancestry 

from the ancestral population at greater risk for the disease group. A measure of the strength 

and statistical significance of this peak is needed; available software programs supply 

several alternative but fairly equivalent measures. For case-only data, all of these measures 

involve a comparison of the proportion of ancestry from the ancestral population with higher 

frequency of the risk allele, at a putative disease associated marker, compared with the 

genome average or average over unrelated sections of the genome. A straightforward 

example is the Z score statistic used in both ADMIXPROGRAM and MALDsoft (45, 86), 

which for a case-only design compares the difference between the calculated proportion of 

ancestry at the marker m and the overall proportion of ancestry, with the variance in the 

proportion of ancestry:
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ZC m =
pd m − pd unl

σ pd m ,

where ZC (m) is the Z score for the marker; pd (m) and pd (unl) are, respectively, the 

calculated proportions of ancestry from the risk population at the marker and at an unlinked 

region of the genome; and σ ( pd (m)) is the variance of the calculated proportion of ancestry 

at the marker. Z scores for case-control designs are calculated in an analogous manner. 

Alternative approaches (ANCESTRYMAP, ADMIXMAP) calculate a likelihood ratio for 

the probabilities of the calculated proportion of risk population ancestry at the marker, 

comparing the probability under the assumption that the marker is linked to a disease locus 

with the probability under the assumption that the marker is unlinked (32, 49).

NEWER SOFTWARE ANALYSIS PROGRAMS

Part of the original motivation for developing admixture mapping was economizing on 

genotyping; it was not anticipated how rapidly typing ∼1M SNPs per individual would 

become standard. Thus the methods described above rely on several thousand SNPs, which, 

to be optimally informative, are chosen to have large frequency differences between the 

ancestral populations and, for simplicity in the HMM calculation, should not have 

significant LD between markers in the ancestral populations. However, there are 

fundamental reasons why typing a dense set of markers, e.g., from a standard GWAS panel, 

intrinsically provides more information for ancestry determination. Above all, such a panel 

makes information on short-range haplotypes from the ancestral populations available; these 

are powerful for ancestry estimation as, although it is extremely rare for an allele of a single 

polymorphism to be unique to a continental population, it is quite common for a specific 

haplotype to be unique to a population.

Allowing ancestral LD between markers implies relaxing the Markov model assumption, 

since with LD the genotypes within a single inherited block follow their own Markov model; 

thus the genotype probabilities are a function of the previous genotype as well as of the 

hidden Markov model. Thus such approaches have been referred to as Markov hidden 

Markov Models (MHMMs) (85). These algorithms must deal with the substantially 

increased complexity of considering the multiple haplotype states within each ancestral 

population in addition to the multiple ancestral populations. As of this writing, to our 

knowledge, none of these programs (listed in Table 3) include a disease-association 

calculation; rather, the programs output estimated ancestral population frequencies across 

the genome, which can be applied by the user to association analysis.

ANCESTRY-INFORMATIVE MARKERS FOR ADMIXTURE MAPPING

Ancestry informative markers are genetic polymorphisms that differ in allele frequencies 

between the ancestral populations. Although any marker can be used [e.g., single tandem 

repeats (STRs), single nucleotide polymorphisms (SNPs)], the most often employed are 

biallelic SNPs; SNPs are abundant, evenly spaced across the genome, and readily genotyped. 

Table 4 summarizes genome-wide AIM panels informative for ancestry between continental 
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populations. Admixture panels comprise markers with high information content for ancestry 

determination that are evenly spaced for genome-wide coverage. The optimal density of the 

panel is determined by the length of the ALD blocks, which is in part determined by the 

number of generations since the admixture event—increasing generations lead to a decay of 

ALD and restoration of linkage equilibrium that result in shorter ALD blocks. Shorter ALD 

blocks or more complex ancestry (e.g., threeor four-way admixture ancestry) will require a 

higher density of markers to differentiate chromosome ancestry transition due to meiotic 

crossover events. The key requirement for admixture mapping panels is a set of genetic 

markers that provides information at each locus of the ancestry origin of the allele. In 

addition, the markers need to be distributed across the genome, to be independent (i.e., not in 

LD with each other), and dense enough to provide resolution of the ancestry transition from 

one ancestral chromosomal state to the other.

A number of methods can be used to determine the information content of a marker or a set 

of markers. Generally, markers are selected based on their large differences, or delta (δ), in 

allele frequency between the ancestral populations. Alleles with an Fst = 1 provide maximal 

information, but such highly differentiated markers are the exception. Usually, a fixation 

index (Fst) > 0.5 is considered sufficient for ancestry differentiation. The information content 

of markers for distinguishing two ancestral populations can be quantified by any of six 

methods: the absolute allele frequency difference (δ) between the two population samples; 

Fst, a measure of intra- and interpopulation; variation the Shannon information content 

(SIC); the Fisher information content (FIC); pairwise Kullback–Leibler divergence; and the 

informativeness for assignment (In) (62, 85). A comparison of the six methods by Rosenberg 

et al. (62) indicates that the measurements are highly correlated, although In may perform 

slightly better.

A major challenge in marker selection is genetic heterogeneity that may exist among 

populations contributing to the ancestral parental population—this can be reduced by testing 

AIMs in several subpopulations and selecting SNPs that have low information content (e.g., 

Fst < 0.05 in pairwise comparisons among North and South American Amerindian 

populations) (53). In contrast to the relative homogeneity of Europeans and West Africans, 

Amerindian populations are more genetically diverse (53, 70). It should be noted that 

admixture maps constructed to date are for admixture mapping in populations where the 

founding ancestral populations are continental populations—African and European or 

Amerindian and European. It should also be possible to use admixture mapping for 

continental subpopulations using the same principles; however, large SNP databases will be 

required to select SNPs that differentiate between two closely related founder populations 

since the allele frequency differences are estimated to be on average much lower compared 

to intercontinental [e.g., among African (17, 77) or Amerindian populations (16, 53)] allele-

frequency differences.

The first admixture panel comprised 744 STRs for admixture mapping in African American 

and Hispanic (Latino) populations (68). This admixture map was superseded in 2004 by a 

high-density admixture map for African Americans (70). The development of the first high-

density SNP map illustrates the challenges of SNP selection for ancestry informativeness, 

prior to the publication of the first phase of the International HapMap Project in 2007 (2). A 
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total of 450,000 SNPs from various public and private sources were queried to obtain a 

subset of nonredundant markers with concordant physical and genetic (De-Code) positions 

and known frequencies in Europeans and Africans. The “best” SNPs were selected using a 

computer program written to choose SNPs that were evenly spaced across the genome and 

that were maximally informative for ancestry at each locus along the genome. Using an 

iterative greedy algorithm, SNPs were selected to add the most information to SNPs that had 

already been selected. That is, some information may already be provided by previously 

selected SNPs in the 8-cM window of the candidate gene; new markers were added only if 

they provided additional information as determined by the SIC. Additional criteria for each 

added SNP were that it had to be at least 50 kb from its nearest neighbor; the estimates of 

frequencies from databases were adjusted to account for sampling fluctuation that might 

inflate differential frequencies; and the estimates of frequencies were adjusted by 

transforming all SNPs so they were 7% closer to 0.5. This prompted the program to select 

markers for the map close to even the most informative SNPs—thereby insuring power even 

if genotypes were missing.

Once the SNPs were selected, they were genotyped on European Americans, African 

Americans, sub-Saharan Africans, and Mexican Americans. The validated SNPs were 

included on the final mapping panel if they (a) genotyped successfully in West African and 

European American parental populations; (b) conformed to Hardy–Weinberg equilibrium in 

the parental populations; (c) had a minimum level of informativeness (SIC > 0.035), out of a 

maximal of 0.709 at the DARC null (FY−) locus; and (d) were similar in frequency for 

intracontinental populations. In addition, SNPs were eliminated if they were spaced <50 kb 

from each other or if they were in LD in the parental populations. The final map comprised 

3,011 AIMs with a 1.2-cM spacing and 70% informativeness for distinguishing between 

African and European origins of chromosomal segments. Illumina now has a commercially 

available product for admixture mapping, with 1,509 ancestry-informative SNPs for 

admixture studies in African Americans, developed in collaboration with the Reich and 

Patterson group (26, 49).

A second-generation, high-density map for African Americans was published in 2006 (77) 

using extensive SNP (∼4 million) genotypefrequency data obtained for Asians from Beijing 

(BEI) and Tokyo (CHB), West African Yoruba from Ibadan, Nigeria (YRI), and CEPH 

Europeans (CEU) by the International HapMap Project first and second phases (2, 25, 75) 

for initial SNP selection. Over 300,000 SNPs showing a high degree of allele frequency 

differences between YRI and CEU, with Fst > 0.25 and Fisher’s information content (FIC) > 

1.0, were selected for further evaluation. The FIC identified SNPs that were particularly 

informative where one parental population (African) contributed substantially more than that 

of the other population (European) in the admixed African American population. Using the 

FIC values, >5,000 SNPs from the original 300,000 were selected by choosing a maximum 

of 4 SNPs in a 2-Mb window, with a minimal distance of 100 kb between SNPs, and by 

eliminating SNPs that either provided redundant information or were difficult to genotype. 

This set of selected HapMap SNPs was further tested on two populations of West Africans 

(Bini and Kanuri), as well as the HapMap CEU and an independent set of Europeans, for 

differences in FIC, Fst, delta (δ), and allele frequencies to identify and remove SNPs that 

showed heterogeneous allele frequencies within continental populations or that were not in 
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Hardy–Weinberg equilibrium in the parental populations. The final SNP set comprised 4,222 

SNP AIMs. This admixture map included only SNPs that were separated by a minimum of 

100 kb, but the SNPs were not eliminated if they were in LD with each other. It has been 

proposed that LD between SNPs might result in false-positive signals. The results of 

simulations using case-only and case-control algorithms for the effects of LD between SNPs 

with ADMIXMAP, STRUCTURE, and MALDSOFT (Table 3) indicated that 

ANCESTRYMAP was more sensitive to false-positive peaks of excess ancestry with a case-

only design, but all programs were robust against false positive ancestry signals using case-

control algorithms (77).

Both the Smith et al. (70) and the Tian et al. (77) African American admixture mapping 

panels were constructed using SNP rather than microsatellite markers and rigorous criteria 

for SNP selection. The Tian et al. panel had a larger SNP pool for AIM selection; this 

permitted the group to select SNPs that were close to fixation in West Africans by first 

choosing SNPs with high FIC rather than high Fst values, thereby increasing the 

informativeness in African American subjects where the individual admixture was 20:80 

European: African (77). It should be noted that the Tian et al. panel provides a very dense 

map with 4,222 SNP AIMs and also a less dense map of 2,000 SNP AIMs; the 4,222 AIMs 

are reported to extract >60% and >70% of the admixture information for more than 98% and 

90%of the genome, respectively, whereas information extraction with the 2,000 AIMs was 

decreased. At 80% ancestry information, the 4,222 AIMs provided coverage for more than 

60% of the genome compared with only 35% for the 2,000 AIMs. The use of denser SNP 

panels may be more informative for diseases with small ethnicity/ancestry risk ratios (77).

Latinos/Hispanics in the United States and throughout Latin America are largely a mix of 

European and Native American ancestry, resulting from European colonial rule from the 

fifteenth to nineteenth century, and in some regions include a variable degree of African 

ancestry (53, 64, 66). The ancestry of Latino/Hispanic populations also shows considerable 

regional differences due in part to historical differences in the extent of European and 

African immigration, the density of Native American populations, and the duration of gene 

flow (64, 66). Hence, the admixture of Latinos/Hispanics may be twoor three-way, with 

varying degrees of ancestry contribution from Native Americans, Europeans, and Africans. 

Added challenges to designing Hispanic/Latino SNP panels are that the Native American 

populations are genetically heterogeneous (12, 16, 18, 70) and have considerably greater 

linkage disequilibrium than other populations (18). Attesting to the interest of gene 

discovery for high-frequency conditions (notably type 2 diabetes and metabolic syndrome) 

that occur more often in Native Americans and Hispanic/Latinos compared with their 

European counterparts (Table 4), three SNP admixture maps were published in a single 

volume of the American Journal of Human Genetics (38, 53, 76). Although each of the 

panels differs in selection criteria and targeted Hispanic/Latino populations, they make the 

application of admixture mapping to this diverse population practical.

The Mao et al. panel comprises 2,120 SNPs, with high-frequency differences between 

Native American and European populations and an average intermarker genetic distance of 

1.7 cM. The SNPs were selected from the Affymetrix GeneChip Human Mapping 500-K 

array used to obtain genotypes for population samples from Europeans, MesoAmericans 
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(Mexico) comprising Maya and Nahua, and South Americans comprising Aymara/Quechua 

(Boliva) and Quechua (Peru). The primary criteria for SNP selection were maximizing allele 

frequency differences between Amerindians and Europeans and minimizing the allele 

frequency differences, or delta (δ), among the Native American populations, making the 

panel appropriate for admixture mapping in two-way admixed populations throughout the 

Americas.

The Tian et al. SNP panel for Mexican American admixture mapping (76) is similar to the 

Mao et al. panel (38) in that the markers were selected to differeniate between Amerindian 

and European ancestries. The AIMs were selected from over 400,000 SNPs chosen from the 

gene-centric 100-K Illumina array, the 317-K Human Hap array (that utilized HapMap data 

to select haplotype-tagging SNPs), and a set of 20,000 selected on their high Fst > 0.25 

values between East Asians and Europeans in the International HapMap Project. Because of 

the shared ancestry between Asians and Amerindians, these SNPs were enriched for 

ancestry information content. Two Amerindian populations, Pima (Arizona) and Mayan 

(Guatemala), were used to eliminate the subset of SNPs that differentiated only one 

Amerindian group from Europeans. The final panel of 8,144 SNPs had an Fst > 30 (mean = 

0.48), with all but 3 separated by a minimum of 50 kb. A subset of this panel (5,287 SNPs) 

was shown to discriminate between Europeans and Amerindians from South America, 

indicating that it, like the Mao et al. panel, would be broadly useful for admixture studies of 

disparate Hispanic/Latino populations.

It is not uncommon for Hispanics/Latinos to have African ancestry. Price et al. (53) designed 

an SNP admixture panel that differentiates Amerindian ancestry from both European and 

African ancestry. SNPs were identified that had similar allele frequencies between Africans 

and Europeans but substantially different allele frequencies in Amerindians; a small amount 

of African ancestry was unlikely to be powered for disease-gene detection but might be 

sufficient to inflate signals if African and Amerindian alleles had similar allele frequencies 

(53). By decreasing the complexity introduced by three-way admixture, the panel can be 

usefully analyzed using currently available admixture software programs developed for two-

way admixture. The panel is also robust for both North and South American admixed 

populations in which Amerindian ancestry increases or decreases risk of disease. The 

investigators were careful to select markers that reduced within-Amerindian differentiation 

by using six populations from Central and North America and six from South America. A 

particular and unique strength of this panel is that the complexity of three-way ancestry is 

controlled by the selection of SNPs having similar allele frequencies between Europeans and 

Africans (53).

GENE DISCOVERY BY ADMIXTURE MAPPING

In the fall of 2005, the first two genome-wide admixture studies were reported in Nature 
Genetics for hypertension and for multiple sclerosis in European Americans (56, 84). Five 

years later, admixture scans have been conducted for a range of traits and diseases that have 

different rates in Europeans, Latinos, and African Americans (Table 5). Admixture mapping 

has been successfully applied to discrete disease phenotypes [prostate cancer (9, 26) and 

nondiabetic kidney disease (33, 34)] and quantitative traits [e.g., interleukin 6 and IL6 
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soluble receptor levels (57), lipid levels (5, 6), obesity (14, 15), and white blood cell counts 

(46, 55)], as well as hypertension (83, 84), type 2 diabetes (21, 33), breast cancer (23), and 

peripheral arterial disease (67). Because of the extensive length of ALD, it was widely 

predicted that the admixture scan, like family linkage studies, would coarsely map a region 

of interest, and extensive fine mapping would be needed to identify a disease gene and its 

causal variation. However, in practice, admixture mapping has been remarkably adaptable to 

fine mapping. Reich et al. (57) provided the proof of principle that admixture mapping could 

effectively be used to fine-map a gene or causal variant. By adding SNPs to the 95%-

credible interval identified in the admixture scan, SNP associations with the disease or trait 

that are above and beyond the admixture ancestry association can be identified. Highly 

significant, validated associations using this approach have now been reported for 

nondiabetic kidney disease in the region of MYH9 (34), low white blood cell counts due to 

neutropenia with the DARC FY− null promoter mutation (33), and IL-6 and IL-6-soluble 

receptor levels to a causal, functional allele of the IL-6 receptor gene (57). Without 

European–African admixture, the identification of the DARC promoter allele (−46 T > C) 

association with white blood cell counts (WBCs) would have been difficult if not impossible 

as the alternative alleles are close to fixation in each ancestral population. The FY− mutation 

abrogates DARC expression on erythroid cells by disrupting the binding site for the GATA1 

erythroid transcription factor—homozygotes for the mutation are protected against 

Plasmodium vivax malaria. The null mutation (−46C) is nearly fixed in sub-Saharan Africa, 

whereas the alternative wildtype allele (−46T) is fixed outside of Africa (78). The 

association of increased European ancestry with high WBC and African ancestry with low 

WBC due to benign neutropenia was critical to finding the association (46, 55).

Admixture mapping also provides information about the contribution of nongenetic, 

sociocultural factors and genetic factors in major U.S. health disparities, e.g., hypertension 

(71), kidney disease (19), prostate cancer (27), and early onset, invasive breast cancer (1, 

23). Each of these common diseases, causes of considerable morbidity and mortality, is 

more frequent in African Americans compared to their European American counterparts. 

Although it is hypothesized that the increased burden of these diseases is multifactoral—that 

is, a combination of genetic and environmental factors—ancestry mapping may provide 

clues to the relative contribution and the effect size of genetic factors contributing to the 

differential risk. If excess global African ancestry is noted across the entire genome in the 

affected group relative to the control group but there is no significant rise in local ancestry at 

a particular locus, this may point to a stronger role for sociocultural factors (e.g., access to 

health care, diet, or lifestyle) that may be tracking ancestry (20, 30). Deo et al. (20) 

conducted a well-powered admixture scan using a robust set of AIMs for hypertension. This 

study, consistent with another (74), indicates that hypertensive cases tend to have higher 

African ancestry compared to normotensive controls. However, there were no significant or 

suggestive increases in local chromosomal African ancestry using either a case-only or case-

control statistic using the ANCESTRYMAP program. The Deo group was able to eliminate 

98% of the genome for harboring genetic variation with OR > 1.7 associated with 

hypertension by exclusion mapping. While this does not exclude multiple small-effect genes 

contributing to the hypertension in persons of African ancestry, it does suggest that there are 

no large-effect genes that explain the disparate risk. This finding is consistent with the 
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research of Gavlee et al. (30) and others indicating that sociocultural factors such as racial 

and cultural identity may play an important role in this health disparity. However, the 

proportion of this epidemiological difference that can be ascribed to genetic or 

environmental factors is unknown.

On the other hand, there is a genetic basis for the predilection of prostate cancer, nondiabetic 

kidney disease, and lower white blood counts due to benign neutropenia in African 

Americans. African American men in the United States have the highest incidence and 

mortality from prostate cancer in the world—the risk is 1.6-fold higher in African 

Americans compared with European Americans. An admixture scan identified a region of 

increased African ancestry in the 8q24 region in younger African American men with 

prostate cancer, a region previously implicated by a linkage study of Icelanders with prostate 

cancer and replicated in African Americans (3). The Freedman et al. (26) study estimated 

that African ancestry at the 8q24 region explains as much as 49% of prostate cancer 

incidence in the African American population. African American women are more likely to 

present with aggressive breast cancer tumors that do not express estrogen or progesterone 

receptors (ER−PR−) whereas European women generally present with ER+PR+ tumors that 

are more responsive to treatment (4, 52). An admixture scan of African American women 

with breast cancer found an overall increase in European ancestry in women with ER+PR+ 

tumors and with localized tumors. Unlike prostate cancer, there were no genome-wide-

significant associations with African or European ancestry at any specific locus and breast 

cancer, hormone receptor status, or grade. The increase in European global ancestry with 

localized tumors and ER+ status positively suggests that differences in breast cancer risk are 

unlikely to be due to large-effect genetic variation (OR > 1.5) but may be due to population 

differences in multiple small- to moderate-effect genetic variants and/or population 

differences in nongenetic factors (e.g., parity, age of menarche onset, physical activity) (7, 

23). The resolution of the role of ancestry in breast cancer risk will require larger population 

sizes and inclusion of more patients with ER−/PR−breast cancer tumors to detect smaller 

effect-size associations.

It has long been recognized that African Americans are at increased risk for chronic and end 

stage renal disease. HIV-associated nephropathy (HIVAN) is rarely observed in individuals 

not of African descent, and focal segmental glomerulosclerosis (FSGS) is fourfold higher in 

African Americans compared with European Americans. End stage renal disease due to any 

cause is also threefold higher in African Americans. It has long been hypothesized that this 

disparity was due to genetic risk factors. Two independent studies, one using biopsy-proven 

HIVAN and FSGS as outcomes and the other nondiabetic end stage kidney disease, 

identified peak of excess African ancestry on chromosome 22. Subsequent association 

analysis identified risk alleles in MYH9 on chromosome 22 as strongly associated with 

HIVAN, FSGS, and nondiabetic end stage renal disease (OR = 5, 4, 2.2, respectively) after 

correcting for local ancestry. Although the causal allele has not yet been identified, the 

associated markers occur with high frequency in African Americans (60%) and are 

infrequent or absent in other populations. The attributable risk for HIVAN and FSGS is 

100% and 70%, respectively, thus the increased risk of major forms of kidney disease in the 

African American population has a strong genetic basis.
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SUMMARY

These studies attest to the utility of admixture mapping to quantify the contributions of 

ancestry to many traits and diseases that are disparate across populations. Although most of 

the applications to date have been in African Americans, admixture mapping holds promise 

for identifying the role of genetics and ancestry for conditions such as metabolic syndrome, 

type 2 diabetes, obesity, and gallbladder disease with higher incidence in persons of 

Amerindian ancestry compared to Europeans (39, 79, 80). Patterson and colleagues (49) 

have shown that the power for admixture mapping was robust for ancestry ranging from 10–

90% and can detect disease associations for diseases on either the majority or minority 

ancestry with near equal power (Figure 8) (49). As shown in Figure 9, human cancers also 

have disparate rates in diverse populations. Since these diseases are complex, the relevant 

diseases and traits are those for which the disparate rates are not fully explained by 

environmental factors. However, ancestry may also be tracking environmental influences 

such as socioeconomic status, access to health care, and sociocultural factors that influence 

complex diseases—the identification of excess global parental ancestry in an affected group 

in the absence of a local spike in parental ancestry in the affected group suggests the 

importance of nongenetic (i.e., cultural and environmental) factors correlated with ancestry. 

These insights are critical to developing public health policies and interventions to reduce 

the disease burden of complex diseases due to environmental factors and to improve clinical 

outcomes for diseases with a biological basis through rational-based drug development, 

personalized drug therapies, and genetic screening.
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Figure 1. 
Major migrations and diasporas, 1400–1800, that are sources of important admixed 

populations for admixture mapping.
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Figure 2. 
Schematic pattern of chromosomal ancestry resulting from a moderate number (~8–20) of 

generations since a two-way admixture event. Starting with the second generation, 

recombination produces chromosomal blocks of different continental ancestries. The present 

day admixed population has a varying extent of overall ancestry and has blocks of ancestry 

that vary in size both because of the random nature of recombination and because the 

original chromosomes have been subject to recombination for different numbers of 

generations.
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Figure 3. 
Schematic of the pattern of chromosomal admixture around a disease locus. We suppose the 

disease is inherited from the majority ancestry population (dark green), with the minority 

ancestry population shown in light green. The graphs show the percentage of ancestry 

derived from the dark green segment of chromosome. (a) In the region of the disease locus 

(yellow bar), there is an excess of majority ancestry blocks among cases, revealed as a spike 

in a graph of average ancestry for cases along the chromosome. The orange bar indicates the 

location of the disease gene. (b) Among population controls, the distribution of ancestry 

blocks is random across the chromosome. The spike of ancestry can be quantified either by 

comparing case ancestry with control ancestry at the same location or by comparing peak 

case ancestry with average case ancestry across all chromosomes.
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Figure 4. 
Number of samples required to detect a disease or trait locus with perfect information on 

ancestry and the same proportions of two-way ancestry in each parent. The sample number 

needed to detect an association in African Americans is estimated by averaging the power 

for a given risk model and the percentage of ancestry over the percentages of ancestry seen 

in African Americans (European ancestry ~20 ± 12%). In practice, the power is robust for 

ancestry ranging from 10–90%. From Reference (49).
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Figure 5. 
The extent of admixture linkage disequilibrium (ALD) around the Duffy Antigen Receptor 

for Chemokines (DARC or FY) gene. The alternative fixation of the FY allele in sub-

Saharan Africa and the FY+ allele in European populations is an extreme example of 

differentiation between two continental populations; however, it does allow the tracking of 

ALD between the FY alleles and 17 neighboring markers. The x-axis shows the position of 

the neighboring markers relative to the DARC locus and the y-axis shows the strength of the 

associations with the DARC allele. The gray dotted line represents a corrected probability of 

0.05. Adapted from Reference (35).
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Figure 6. 
Example of the influence of underlying chromosomal ancestry on observed genotype. For 

simplicity, we suppose we are viewing a single chromosome (X chromosome or autosomal 

chromosome with known phase). Observation of the genotype at a locus allows a 

probabilistic inference of the ancestry of the locus; e.g., for locus n, the observed allele 1 is 

more likely to have come from an A chromosome than from a B chromosome (here, for 

simplicity, allele 1 is always the more frequent allele in ancestral population A). Where 

recombination has occurred since the admixture event, the chromosomal ancestry switches, 

so there is a succession of blocks of alternating ancestry. The observed alleles will 

probabilistically follow the allele frequencies from the underlying ancestral population of 

that chromosomal block. The task is to use knowledge of the ancestral allele frequencies, 

proportion of A and B ancestry, and amount of recombination (a function of the genetic 

distance between the loci and the time since admixture) to infer the succeeding blocks of A 
and B ancestry from observation of the genotypes.
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Figure 7. 
Ideal output from a chromosomal ancestry inference program: ancestry for an autosomal 

chromosome pair from an individual (a) and from a second individual (b). For each point 

along the chromosome, the program indicates whether 0, 1, or 2 chromosomes carry the 

specified ancestry (light green). Realistically, programs indicate the probability of carrying 

0, 1, or 2 chromosomes from the specified ancestry; in favorable cases, the program predicts 

the ancestry with near certainty.
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Figure 8. 
Results of the admixture mapping genome scan for combined kidney diseases focal 

segmental glomerulosclerosis (FSGS) and HIV-associated nephropathy (HIVAN), which are, 

respectively, fourfold and 60-fold more frequent in African Americans than in European 

Americans. The sharp peak of African ancestry among cases occurs in the region of MYH9 
on chromosome 22. The inset shows the close up of the peak, and the localization of the 

association to a 95% credible interval of ~3 Mb. Also shown are genome-wide and peak 

(LOD) scores for several calculations; genome-wide LOD scores greater than 2 are 

considered significant. Adapted from Reference (34).
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Figure 9. 
Relative frequencies of cancers in African Americans and European Americans. Cancers 

with significant differences in frequency (red or green) are potential targets for admixture 

mapping. Data were extracted using SEER software using U.S. cancer incidence from 2000–

2005, age adjusted using 2000 census results as the standard. Incidence rates were calculated 

separately for European (EA) and American Americans (AA) for the number of cases per 

100,000 person years.
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Table 4

Admixture mapping panels

Number of AIMs Ancestral populations Reference

Latinos

1,649 SNPs Amerindian versus European and African 53

5,287 SNPs Amerindian versus European 76

2,010 SNPs Amerindian versus European 38

African Americans

744 STRs European versus African/Asian 68

3,011 SNPs European versus African 70

4,222 SNPs European versus African 77

1,509 SNPs European versus African (Illumina) 26, 49, 70

East Asian Uyghurs

8,150 SNPs East Asian versus European 82
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