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Abstract

Magnetic Resonance Imaging (MRI) can be used to assess anatomical structure, and its sensitivity 

to a variety of tissue properties enables superb contrast between tissues as well as the ability to 

characterize these tissues. However, despite vast potential for quantitative and functional 

evaluation, MRI is typically used qualitatively, in which the underlying tissue properties are not 

measured, and thus the brightness of each pixel is not quantitatively meaningful. Positron 

Emission Tomography (PET) is an inherently quantitative imaging modality that interrogates 

functional activity within a tissue, probed by a molecule of interest coupled with an appropriate 

tracer. These modalities can complement one another to provide clinical information regarding 

both structure and function, but there are still technical and practical hurdles in the way of the 

integrated use of both modalities. Recent advances in MRI have moved the field in an increasingly 

quantitative direction, which is complementary to PET, and could also potentially help solve some 

of the challenges in PET/MR. Magnetic Resonance Fingerprinting (MRF) is a recently described 

MRI-based technique which can efficiently and simultaneously quantitatively map several tissue 

properties in a single exam. Here, the basic principles behind the quantitative approach of MRF 

are laid out, and the potential implications for combined PET/MR are discussed.
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I. Introduction

MEDICAL imaging enables non-invasive assessment of structure and function within the 

body, aiding in clinical decision-making. Computed tomography (CT) and magnetic 

resonance imaging (MRI) have been ranked by physicians as the most important innovations 
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in modern medicine [1]. MRI provides excellent soft tissue contrast due to its ability to 

probe a variety of tissue characteristics. In a traditional scan, data acquisition parameters are 

selected to highlight a specific tissue property, such as T1, T2, diffusion, susceptibility, etc. 

The pixel intensity values in these images reflect a “weighting” by the property of interest, 

where tissues appear bright or dark relative to one another, based on the interplay of the 

particular value of the tissue property in that pixel with the specific MRI scan parameters. 

Such images are typically used to qualitatively assess the relationships between different 

regions in the image (i.e. hyper- or hypo-intense regions relative to surrounding tissue).

As shown by [2], while imaging has become a cornerstone in modern medicine, the use of 

qualitative images instead of quantitative maps of tissue properties can lead to subjective 

interpretations and contributes to uncertainty in diagnosis. Radiologist uncertainty, 

expressed often in “wishy-washy” reports, or “hedges,” remains the most common 

complaint about radiology. Conversely, the potential advantage of quantitative tissue 

property maps is that they could be used to objectively classify tissues and compare images 

over time and across patients, and remove some of the uncertainty that is pervasive in 

medical imaging. Quantitative imaging biomarkers could enable clinicians to make more 

objective diagnoses and accurately stage and monitor disease. Accurate quantitative property 

mapping also contributes toward the development of rapid, comprehensive diagnostic MRI 

exams. Different properties can provide complementary tissue information, so multiple 

quantitative properties may be combined to improve the diagnostic sensitivity and 

specificity. Furthermore, comprehensive MRI exams may reduce the need for biopsies 

because the quantitative metrics reflect the composition and function of the tissue.

While MRI can theoretically be used to measure a wide array of physical and physiological 

tissue properties, actual quantitative measurement of tissue properties is seldom performed, 

due to inherent inefficiencies in quantitative mapping experiments (multiple weighted 

images are needed for a single map). Approximations can be made to increase the speed of 

quantitative mapping, but these short-cuts can decrease the accuracy and precision of the 

results, reducing the utility of these measurements. Moreover, the lack of normative and 

clinical data makes it challenging for physicians to interpret these tissue property maps.

MR Fingerprinting (MRF) is a quantitative imaging platform that can be applied to map any 

property to which MRI is sensitive. MRF has been demonstrated to be a robust and rapid 

method for mapping T1 and T2, as well as other quantitative tissue properties, in multiple 

applications.

While MRI is an incredibly powerful tool for medical imaging, other modalities provide 

important and complementary information. Positron emission tomography (PET) is an 

imaging modality that involves injecting a radioactive isotope, or tracer, into a patient and 

measuring the gamma photons emitted as a product of the positron annihilation process to 

create images of activity in the body. The tracer fluorodeoxyglucose (FDG) is most 

commonly used due to the increased uptake in metabolically active tissue. Multiple other 

tracers are available and under development [3]–[5], though a discussion of these molecules 

is beyond the scope of this paper. Standardized uptake value (SUV) is a semi-quantitative 

tissue property derived from PET images, and represents the radioactivity in a voxel 
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normalized to the whole-body concentration of radioactivity. SUV is not truly quantitative 

due to inconsistencies in calculation and a variety of error sources [6]. However, using each 

patient as their own reference for SUV is still valuable for identifying lesions and tracking 

the response to treatment [7]. The metabolic information obtained with PET images is 

complementary to that from MRI images, and the use of the two modalities together allows a 

more complete assessment of tissue characteristics.

Despite the strengths of PET, this modality is seldom used alone. Due to the relatively low 

spatial resolution, a hybrid structural imaging protocol typically accompanies a PET exam. 

Integrated PET/CT scanners are widely available and commonly used in clinical 

applications. Integrated PET/MR imaging has been developed in recent years, and is being 

explored in the clinical setting.

Integrated PET/MR may enable physicians to better characterize tissues by combining the 

metabolic information provided by PET and the structural and functional information of 

MRI. However, the use of the two modalities together poses technical and clinical challenges 

that provide an opportunity for development in image acquisition and reconstruction 

technologies, attenuation correction, and in clinical integration of data from both modalities. 

For instance, MR images can be used for attenuation correction without the cost of 

additional radiation, but those methods typically rely on a limited set of standard attenuation 

coefficient values for broad tissue classes. It has been proposed that quantitative MRI 

methods, such as T2
∗ mapping, may improve the accuracy of attenuation coefficient 

calculations [8]. MRI can also be used to quantify motion during the PET exam [9], 

presenting opportunities for motion correction and more accurate PET images. Joint 

reconstruction of PET and MR images has been proposed [10], which takes advantage of 

underlying anatomical information in both modalities, particularly the soft tissue contrast 

available in MR images. Additionally, integrating PET and quantitative MRI data shows 

promising clinical utility [11], [12]. MRF allows simultaneous measurements of multiple 

properties efficiently and accurately, and thus may provide a pathway to addressing some of 

these challenges.

In this paper, we discuss the clinical and scientific implications of quantitative MRI, 

specifically MRF, and the future potential of combining MRF with PET/MR. In Section II 

we review the concept of MRF, and its utility in quantitative imaging. In Section III we 

describe recent developments in PET/MR and opportunities to integrate MRF. In Section IV 

we discuss some of the challenges to quantitative imaging and bringing these methodologies 

to clinical practice.

II. Quantitative MRI and Magnetic Resonance Fingerprinting

In recent years, there has been an increasing recognition that quantitative mapping of 

particular tissue properties can be clinically powerful. Diffusion coefficient [13] and tensor 

[14] mapping in numerous applications throughout the body [15]–[17] remain the most 

common clinically-used MR-based quantitative imaging techniques, but there have been 

critical technical and clinical application advances in fat fraction mapping [18], [19], MR 

elastography [20], quantitative susceptibility mapping [21], temperature mapping [22], and 
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perfusion mapping [23], among others. This growing body of work is indicative of a new 

approach to MRI, where quantitative tissue property information can be used to inform 

clinical decisions.

While T1 and T2 relaxation times are properties that are used to generate contrast in almost 

all MR images, these tissue properties are rarely mapped clinically, for reasons described 

below. However, the clinical utility of quantitative mapping of relaxation times is becoming 

increasingly evident. For example, cardiac T1 and T2 values have been shown to be useful in 

characterizing myocarditis, myocardial scar, and edema [24]–[28]. Relaxation time maps, 

particularly T1, can be acquired in a time-efficient manner using methods such as MOLLI 

[29] or SASHA [30]. T2
∗ mapping is commonly used in the liver to quantify iron content, and 

multi-echo gradient echo techniques allow for rapid, breath-held acquisitions [31]. In 

musculoskeletal imaging, T1ρ mapping is a valuable tool for characterizing cartilage [32].

Quantitative MRI is challenging due to inefficiencies and inaccuracy. Typically, multiple 

high quality images are needed in order to calculate a single quantitative property map. 

Attempts at reducing the duration of time-expensive quantitative methods in turn results in 

reduced accuracy and precision. MRF is a quantitative imaging method that grew out of an 

attempt at addressing some of the difficulties associated with relaxation time mapping [33], 

[34].

MRF is a technique for simultaneous measurement of multiple tissue properties using MRI 

[34]. The original experiment demonstrated that accurate measurements of relaxation time 

(T1), signal decay time (T2), and static field (B0) inhomogeneity could be performed 

simultaneously in a single rapid scan. The MRF data acquisition and image reconstruction 

approach is fundamentally different from traditional quantitative MRI techniques. The MRF 

experiment can be separated into two stages. First in the data acquisition stage, MR signals, 

termed “fingerprints”, are acquired using a rapid MRI pulse sequence with varying sequence 

parameters. Second, in the pattern matching stage, the fingerprint from each pixel is matched 

to atoms of a dictionary to determine the appropriate combination of tissue properties to 

assign to that pixel. A diagram of the basic structure of an MRF experiment is shown in Fig. 

1.

A. Data Acquisition

The goal of MRF is not to generate weighted images, but solely to measure tissue property 

values at every voxel. In MRF, the acquisition of time-consuming high quality “weighted” 

images which are typically required by quantitative MRI techniques is replaced by the rapid 

collection of low quality images. This approach to data acquisition enables more frequent 

sampling of the information rich, rapidly evolving signal which contains information about 

T1 and T2 relaxation. In order to distinguish fingerprints that arise from different 

combinations of tissue properties, the magnetization must be kept out of the “steady state” 

so that each additional data point collected provides new information, making signals from 

different combinations of tissue properties unique. To this end, the MRI pulse sequence 

parameters are varied as data are collected.
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The original MRF implementation used a balanced steady state free precession pulse 

sequence (bSSFP), along with varying repetition times (TR) and flip angles (FA) [34]. 

However, many different data acquisition schemes have been suggested for MRF. Fast 

imaging with steady-state precession (FISP or SSFP), proposed by Jiang et al. [35] is 

advantageous for MRF because it is insensitive to B0 inhomogeneity, but still sensitive to T1 

and T2. In [36], Assländer et al. used a pseudo steady-state free precession (pSSFP), which 

restores the spin echolike behavior of SSFP sequences in MRF to yield accurate property 

maps that are also robust to B0 inhomogeneity. Amthor et al. [37] proposed reducing the 

relaxation intervals between MRF repetitions to force the spins into a “stationary state”, 

reducing the scan time. To avoid errors due to motion, Hamilton et al. [38] used a FISP 

sequence for cardiac MRF, but divided the MRF experiment into blocks that fit within the 

diastolic phase of a heartbeat. Furthermore, Hamilton et al. [38] used small FA values (<15°) 

to minimize the effect of inhomogeneous B1
+ fields and included both T1 and T2 preparation 

pulses to improve sensitivity to those properties. Beyond these FA and timing modifications 

for cardiac MRF, Cohen et al. [39] and Sommer et al. [40] investigated methods for 

optimizing the pseudo-random FA and TR schedules in an MRF experiment. Cloos et al. 

[41] took a different approach by playing alternating, heterogeneous B1
+ fields with the 

transmit RF coil, leveraging their encoding capabilities to generate unique fingerprints.

The use of a spiral readout trajectory is common in MRF, due to its potential for efficient k-

space coverage and incoherent aliasing artifacts when undersampled. The need for noise-like 

artifacts stems from the assumption that such artifacts do not interfere with the pattern 

matching approach used to assign tissue properties to each pixel. However, nearly any 

trajectory can be used for MRF data collection, as long as the sampling pattern avoids 

coherent aliasing artifacts. Buonincontri et al. [42] have used a 3D Cartesian trajectory for 

data collection, with undersampling in ky-kz based on a Gaussian distribution, using an 

SSFP sequence. An echo planar imaging (EPI) readout and spoiled gradient echo sequence 

was proposed by Rieger et al. [43], which is faster than the undersampled Cartesian readout 

but not as efficient as the spiral trajectory. Cloos et al. [41] used a radial sampling pattern in 

which, with an undersampling factor of 50, a comparable scan time and spatial resolution to 

the spiral acquisition in [34] is achievable. Other trajectories, such as the rosette trajectory, 

have been proposed for the mapping of tissue properties beyond T1 and T2 due to the 

specialized properties of their point spread functions [44].

MRF can also be used to collect tissue property maps in 3D, but as the coverage increases, 

so does scan time. To accelerate volumetric imaging, undersampling can also be performed 

in the slice direction. Ma et al. [45] achieved whole brain coverage with spatial resolution of 

1.2 mm × 1.2 mm × 3 mm in 4.6 minutes using a slice-interleaved acquisition corresponding 

to an acceleration factor of 3 in the slice direction. Rieger et al. [46] used a slice-interleaved 

EPI readout, allowing for an acceleration factor of four in the slice direction.

Advanced imaging techniques have also been integrated into MRF experiments. Liao et al. 
[47] incorporated Cartesian GRAPPA and a sliding window reconstruction into their MRF 

experiment to accurately measure property maps using only 420 time points, with an 

acceleration factor of 3 in the slice direction. This approach enabled mapping with a 1.0 mm 
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isotropic resolution and full-brain coverage in 7.5 minutes. Simultaneous multi-slice (SMS) 

imaging has also been demonstrated to accelerate acquisition time, making volumetric 

coverage more feasible. Ye et al. [48] and Jiang et al. [49] both used a multiband factor of 2 

to speed up data collection for brain MRF. Incorporating slice-GRAPPA with the SMS-MRF 

proposed in [48] also allowed acceleration to a multiband factor of 3 [50].

The MRF framework has been adapted to measure tissue properties beyond those proposed 

in the original implementation, specifically relaxation times T1 and T2, proton density, and 

off-resonance frequency. The spoiled gradient echo sequence used in EPI-MRF by Rieger et 

al. [43], [46] allows for quantification of T2
∗ instead of T2, which is useful in measuring iron 

content and blood oxygenation level. Christen et al. [51] introduced MR vascular 

fingerprinting (MRvF), where they defined their fingerprints as the ratio of the MR signals 

acquired before and after administering an iron-based contrast agent. The tissue properties 

measured in this embodiment of MRF were cerebral blood volume, mean vessel radius, and 

blood oxygen saturation, which allowed the authors to characterize the microvasculature in 

the brain. They also extended this work to include water diffusion quantification, and 

demonstrated that this approach could be used to assess diffusion under pathological 

conditions in rats [52]. Su et al. [53] and Wright et al. [54] have both demonstrated how to 

modify an arterial spin labeling (ASL) experiment to leverage an MRF-like approach for 

perfusion mapping. MRF-ASL is capable of simultaneously quantifying several 

hemodynamic properties, including cerebral blood volume and perfusion, in addition to T1. 

Anderson et al. [55] used MRF to quantify the local concentration of two contrast agents 

based on their individual, known relaxation rates. Wang et al. [56] developed an MRF 

protocol to quantify the chemical exchange rate between phosphocreatine (PCr) and 

adenosine triphosphate (ATP) via creatine kinase, which provides metabolic information 

about tissues, particularly muscle. Their MRF experiment alternated excitation of the PCr 

and ATP, and they quantified the rate of ATP synthesis, the concentration ratio of PCr to 

ATP, as well as the T1, T2, and resonant frequency for each species. Recently, Cohen et al. 
[57] and Zhou et al. [58] proposed MRF methods for quantitative chemical exchange 

saturation transfer (CEST) imaging. The method of Cohen et al. [57] can be used to quantify 

the exchange rate, exchangeable proton volume fraction, and water relaxation times, and has 

been demonstrated in phantoms and rat brain tissue.

B. Pattern Matching

Instead of relying on curve fitting to calculate maps of tissue properties from the series of 

weighted images, tissue properties are extracted directly from the highly accelerated MRF 

data using pattern matching, as in [59]. After acquiring the MRF data, the signal timecourse, 

or “fingerprint”, for each voxel is compared to the atoms of a dictionary to determine the 

tissue properties for that voxel. To calculate these fingerprints, the acquired k-space data are 

first transformed into the image domain. As noted above, and shown in Fig. 1(A), the 

resultant images are highly undersampled and not valuable for providing standard 

anatomical information. In order to generate the fingerprint for each voxel, the complex-

valued image intensities are concatenated over time. An example of such a fingerprint can be 

seen in Fig. 1.

Ropella-Panagis et al. Page 6

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In order to extract the tissue property values from these fingerprints using pattern matching, 

a dictionary of all possible fingerprints is required. The dictionary describes the signal 

behavior, or fingerprint, for a specific combination of tissue properties given the application 

of a particular MRI pulse sequence. In the original MRF experiment, T1, T2, and off-

resonance frequency were included as factors which influence the signal behavior, and the 

Bloch equations were used to calculate the fingerprints for combinations of these properties. 

A total of 563,784 fingerprints were generated, forming the dictionary used in the work [34]. 

While Bloch equation simulations are often used to create MRF dictionaries, the Bloch-

McConnell equations and the extended phase graph formalism [35] have also been 

employed.

The acquired fingerprints and the dictionary are then compared to identify the tissue 

property combination to assign to each voxel. In the original MRF implementation, the 

vector dot product was used to determine the similarity between the acquired fingerprint for 

a given voxel and the simulated fingerprints in the dictionary. The dictionary atom that 

yielded the largest dot product was determined to be the best match, and the tissue properties 

used to simulate that dictionary fingerprint were assigned to that voxel. This process was 

repeated for each voxel in the image, and the result is the set of property maps for each of 

the modeled tissue properties.

As described in the previous section, the MRF framework has been adapted to quantify a 

number of properties beyond T1, T2, and off-resonance frequency. These approaches require 

different simulations to create the dictionary. For example, ASL MRF requires perfusion 

modeling [53], [54] and CEST MRF uses 2- and 3-pool exchange models [57].

In most cases, the MRF dictionary is only generated once for a specific pulse sequence and 

range of tissue properties. There are instances where the dictionary may need to be 

calculated for each experiment. These include cardiac MRF [38], where the sequence timing 

depends on the subject’s heartrate, and MRvF [51], where the signal depends on the dosage 

of contrast.

As the number of properties to be measured in an MRF experiment grows, so does the size 

of the dictionary. This can be problematic for both storing the dictionary as well as the time 

it takes to pattern match. McGivney et al. [60] developed a dictionary compression method 

in the time domain using the singular value decomposition (SVD). They demonstrated that 

the dictionary can be compressed to 10%-20% of the original length in the time domain, 

which offers an approximately 3-5 times reduction in matching speed without decreasing 

SNR or accuracy in the property maps. Another method to reduce matching time is fast 

group matching [61], which uses correlations in the dictionary to remove unlikely matches 

from the search process. Deep learning has been applied to MRF in the work by Cohen et al. 
[62], where a neural network was trained on simulated MRF data and subsequently used to 

reconstruct property maps with several orders of magnitude reduction in computation time.

An additional factor that affects the dictionary size is the range and intervals of the tissue 

properties for which the fingerprints must be modeled. The dictionary should include a 

representative set of the properties which could reasonably be expected in the tissue to avoid 

Ropella-Panagis et al. Page 7

IEEE Trans Radiat Plasma Med Sci. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biasing the resulting tissue property maps. The range of values should be large, and it is 

desirable to use small steps to improve the accuracy of the property maps. However, a large 

range in the properties along with fine intervals between the tissue property values may be 

impractical and possibly have diminished returns. One recently proposed solution to this 

issue is a low rank approximation method by Yang et al. [63], which uses polynomial fitting 

in the randomized SVD space of an MRF dictionary to interpolate property values from a 

coarse dictionary. This approach reduces the size of the dictionary and mitigates the 

problems associated with both small and large step sizes.

An assumption underlying the MRF experiment is that, despite the amount of noise and 

artifact present in the raw images, the pattern matching can discern the underlying signal 

timecourse and find the appropriate dictionary entry. This assumption must be carefully 

tested in simulation, phantom, and in vivo experiments prior to use. The accuracy and 

precision of the tissue property maps can be improved by optimizing both the pulse 

sequence design and the tissue property extraction algorithms. It is imperative that the pulse 

sequence yields signal timecourses with minimal spatio-temporal correlations which are free 

from coherent artifacts, and that the variation in sequence parameters creates sufficiently 

different fingerprints for different tissues. Several modifications to the pattern matching step 

can be useful in reducing the incoherent artifacts in the fingerprints. As the noise-like 

artifacts are reduced, the amount of data required for accurate property mapping, and thus 

the scan time, is also reduced. Some of these approaches, including work by Doneva et al. 
[64], Assländer et al. [65], and Zhao et al. [66], involve a low rank approximation of the 

MRF data which decreases the aliasing “noise”. Iterative approaches include multi-scale 

reconstruction by Pierre et al. [67], a maximum likelihood reconstruction by Zhao et al. [68], 

and accelerated iterative reconstruction for MRF (AIR-MRF) by Cline et al. [69]. A simpler 

mathematical approach is the sliding window reconstruction described by Cao et al. [70], 

which effectively offers the same result of reduced aliasing without the need for advanced 

reconstruction algorithms.

In the dictionary simulation process, confounding factors including the slice profile, B1
+

inhomogeneity, and intra-voxel dephasing are often ignored. The assumption that these 

factors do not contribute significantly to the signal timecourse may be valid for some pulse 

sequences, but not others. Several groups have addressed the impact of these potential 

confounders on the accuracy of MRF results in the brain [71], [72] and the heart [73]. These 

confounding factors can be estimated as part of the MRF dictionary, as in [42], [74], or 

measured separately, as in [75], [76]. Furthermore, it is typically assumed that a voxel will 

contain only one type of tissue and therefore only one set of tissue properties must be 

simulated in the dictionary for each pixel. However, a dictionary may misrepresent voxels 

exhibiting partial volume effects, where the signal timecourse may be better described by a 

combination of two or more dictionary entries (or an even more complex timecourse). 

McGivney et al. [77] developed a method for estimating multiple tissue components in a 

single voxel.

An important aspect of MRF, as with any quantitative imaging tool, is the repeatability of 

the method. While authors present accuracy measurements for novel MRF protocols in their 
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respective work, the repeatability of MRF is an open research topic [78] and is discussed 

further in Section IV.

C. Clinical Applications

The original MRF experiment was demonstrated in the brain, and this work demonstrated 

good agreement between the measured T1 and T2 values for gray matter and white matter 

and those reported in the literature [34]. While initial work on the clinical applications of 

MRF relaxometry has been most focused on the brain and prostate [43], [47], [52], [53], 

[77], [79]–[81], application of MRF to other body regions, such as cardiac, abdomen, breast, 

and musculoskeletal imaging, is feasible [38], [41], [76], [82].

1) Neuroimaging: Badve et al. [79] applied the original MRF protocol described in [34] 

to 56 normal volunteers. They noted regional tissue property differences that correlated with 

age and gender. Badve et al. [80] also examined T1 and T2 values in 31 patients with intra-

axial brain tumors. They found significant differences in the mean T2 values of solid tumor 

regions of lower grade gliomas and metastases (means of 172 ± 53 ms and 105 ± 27 ms, 

respectively; P = 0.004) and in the mean T1 values of peritumoral white matter around lower 

grade gliomas and glioblastomas (means of 1066 ± 218 ms, and 1578 ± 331 ms, 

respectively; P = 0.004). They also found that the mean T2 values of solid tumor gave the 

best separation between glioblastomas and metastases, with an area under the receiver 

operating characteristic curve (AUC) of 0.86 (95% CI, 0.69 −1.00; P < 0.0001). This study 

provides evidence for using T1 and T2 values to differentiate between disease states, and 

MRF is an efficient method for measuring these tissue properties simultaneously. Work by 

McGivney et al. [77] demonstrated the ability to separate different tissue components from 

single voxels within a brain tumor and in the peritumoral region. This study provides an 

extra layer of information about the composition of a tumor.

In the EPI MRF work by Rieger et al. [46], the authors tested their method on a patient with 

multiple sclerosis (MS). The patient’s MS lesion was visible on both T1 and T2
∗ maps, with 

higher values than the surrounding tissue.

Liao et al. [83] studied the impact of MRF T1 and T2 maps on the diagnostic rate of 

hippocampal sclerosis (HS) in patients with mesial temporal lobe epilepsy (MSLE). An MR 

protocol including fluid-attenuated inversion recovery (FLAIR), T1- and T2-weighted 

imaging, and two-dimensional MRF was performed in 33 patients with MSLE and 30 

healthy participants. Both the T1 and T2 values in HS lesions in patients were higher than 

those of normal hippocampal tissue of healthy participants (T1: 1361 msec ± 85 vs 1249 

msec ± 59, respectively; T2: 135 msec ± 15 vs 104 msec ± 9, respectively; P < .0001). The 

authors found that the diagnosis rate of HS using MRF was 96.9%, as compared to 69.7% 

with conventional MRI methods. The multiparametric MRF maps are more sensitive to the 

subtle tissue changes in the HS lesions, and could be a valuable clinical tool in diagnosing 

and treating epilepsy. Ma et al. [84] also used MRF to detect epileptic lesions. In four of 15 

total subjects, MRF T1 and T2 maps showed additional findings as compared to traditional 

weighted MR images. These additional findings were highly concordant with patients’ EEG 

results, suggesting that MRF may be a better tool for detecting epileptic lesions.
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Diseases related to blood flow may benefit from the rapid tissue characterization possible 

with MRF. Lemasson et al. [52] used the MRvF approach to measure blood volume fraction, 

vessel diameter, and blood oxygenation simultaneously in stroke and brain tumor mouse 

models. They found that MRvF could robustly distinguish between healthy and pathological 

brain tissue. One notable result is the distinctly different vascular fingerprint of one tumor 

model as compared to two others. Su et al. [53] applied their ASL-MRF protocol to three 

patients with Moyamoya disease. The patients showed longer bolus arrival times in stenotic 

tissue as compared to normal tissue (1310 ± 79 ms, and 933 ± 236 ms, respectively; P = 

0.028), which could not be detected with traditional ASL.

Future MRF work in the brain will require larger volumes of coverage in a clinically 

acceptable amount of time. The 3D methods described in Section II-A show that this is 

technically feasible, but patient data has yet to be published.

2) Prostate: Multi-parametric MRI is a valuable tool in diagnosing prostate cancer, so it 

is a logical application for MRF. Fig. 2 shows an example of MRF property maps in which 

prostate cancer is clearly distinguished from normal tissue. Yu et al. [81] developed a 

prostate MRI exam consisting of MRF for T1 and T2 measurement in addition to 

conventional apparent diffusion coefficient (ADC) mapping. The protocol was evaluated in 

140 patients suspected of having prostate cancer; 109 lesions were analyzed. A number of 

significant results were reported. In the differentiation between cancer and normal-appearing 

peripheral zone (NPZ), T1, T2, and ADC from cancerous lesions (means of 1628 ms ± 344, 

73 ms ± 27, and 0.773 × 10−3 mm2/s ± 0.331, respectively) were significantly lower than 

those from NPZ (means of 2247 ms ± 450, 169 ms ± 61, and 1.711 × 10−3 mm2/s ± 0.269) 

(P < 0.0001 for each). In the differentiation between prostatitis and NPZ, T1, T2, and ADC 

in prostatitis (means of 1707 ms ± 377, 79 ms ± 37, and 0.911 × 10−3 mm2/s ± 0.239) were 

significantly lower than those in NPZ (P < 0.0005 for each). Furthermore, ADC and T2 

produced the best separation between high- or intermediate-grade tumors and low-grade 

tumors (AUC = 0.83). The proposed combined MRF and ADC protocol took an average of 

12 minutes, as compared to 21 minutes for the standard clinical protocol. The results of this 

study show the potential for multi-parametric MR protocols to objectively characterize 

tissues and exemplifies the efficiency of MRF as a quantitative tool. There is significant 

ongoing work to extend this same approach to characterization of transition zone lesions, to 

verify and further develop relationships with targeted biopsy and against prostatectomy 

specimens.

3) Cardiac: Cardiac MRF presents the challenge of imaging a moving object. Hamilton 

et al. [38] demonstrated a cardiac-gated MRF sequence in normal volunteers. The T1 and T2 

values acquired with the cardiac MRF sequence were in good agreement with those acquired 

with traditional methods, but the MRF experiment only required 16 heartbeats for both T1 

and T2 measurements. The comparative methods required 17 heartbeats for T1 mapping and 

9 heartbeats for T2 mapping. Cardiac MRF was also demonstrated in heart transplant 

recipients by Coristine et al. [85], with good correlation to conventional property mapping 

techniques. The MRF technique could potentially be an efficient, non-invasive method for 
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assessing graft health. MRF is a promising tool for mapping relaxation times in the heart, 

but, as with most applications, will benefit from volumetric coverage.

4) Abdomen: Abdominal MRF presents similar challenges to cardiac MRF with respect 

to motion. Subjects may be instructed to hold their breath to eliminate respiratory motion, 

though patients have difficulty complying with breath-holds and the length of breath-holding 

also constrains exam time. Given the large field-of-view required for abdominal imaging, 

spatial resolution may suffer due to these limits. The presence of fat can also lead to 

inaccurate measurements. An abdominal MRF exam with an in-plane spatial resolution of 

1.9 mm was demonstrated by Chen et al. [76] in eight asymptomatic subjects and six 

patients with 20 focal liver lesions. The MRF sequence measures T1 and T2 simultaneously 

in a 19 second breath-hold. The measured T1 and T2 values in metastatic carcinoma (1673 

ms ± 331 and 43 ms ± 13) were significantly different from those in the surrounding liver 

parenchyma in patients (840 ms ± 113 and 28 ms ± 3; P < 0.0001 and P < 0.01, 

respectively). Measured T1 and T2 values in metastatic carcinoma were also significantly 

different from those in hepatic parenchyma in asymptomatic subjects (745 ms ± 65 and 31 

ms ± 6, P < 0.0001 and P = 0.021, respectively). As with the prostate work, this clinical data 

suggests that quantitative values can be used to objectively characterize tissue.

5) Breast: Previous studies have shown the value of T2 relaxation times in diagnosing 

and predicting outcomes for breast cancer. For example, Manton et al. [86] performed a 

prospective study on 16 women undergoing neoadjuvant chemotherapy for locally advanced 

breast cancer to study the ability to predict tumor response using quantitative MRI and MR 

spectroscopy methods. They found that a decrease in measured T2 early in the treatment 

period predicted treatment response in 69% of cases with 100% specificity and positive 

predictive value. Furthermore, the study by Tan et al. [87] showed the product of lesion T2 

and tumor volume after two treatment cycles of neoadjuvant chemotherapy is a good 

predictor of treatment response (positive predictive value = 95.5%, negative predictive value 

= 84.6%). MRF is a more efficient method for collecting T2 maps, with the option to 

simultaneously measure additional tissue properties. Recently, Chen et al. [82] developed a 

three-dimensional acquisition to quantify T1 and T2 values in the breast with a spatial 

resolution of 1.6 × 1.6 × 3 mm3. They applied the technique to 15 healthy females and 14 

females with breast cancer. Among the participants with invasive ductal carcinoma, T2 

relaxation times were significantly higher than those in healthy breast tissue (68 ms ± 13 and 

46 ms ± 7, respectively; P < 0.001). These results, in addition to the previous studies, 

support the use of MRF to measure relaxation times to aid in following breast cancer.

6) Alternate Quantitative Approaches: Certainly, MRF is not the only MR 

experiment to yield quantitative results. Furthermore, T1 and T2 alone may not provide the 

complex tissue quantification required for all applications. The rich literature in quantitative 

MR includes, but is not limited to, fields such as fat fraction measurements, flow and 

perfusion, diffusion, elastography, and multiple additional approaches to relaxometry. A 

review of these methods is beyond the scope of this manuscript, but these methods can also 

be used in addition to or in combination with an MRF approach for quantitative analysis.
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III. PET/MR

As described above, MRI can provide a multitude of information which can be used to 

characterize tissue. However, PET imaging offers complementary tissue information that is 

also valuable in a number of clinical applications. As quantitative MRI has emerged as a 

clinically viable approach to collecting MRI data, the combination of quantitative MRI and 

PET has been explored. While quantitative MRI information can be collected in many 

different ways, MRF is attractive for this purpose due to its ability to collect several different 

types of information in a single rapid scan. The following section describes how the 

combination of quantitative MRI, and specifically MRF, can be used to facilitate improved 

PET/MR.

A. Technical Challenges and Opportunities for PET/MR with MRF

A major challenge in PET/MR is accurate attenuation correction. Unlike CT, an MRI 

acquisition does not readily provide information needed for attenuation correction of the 

PET data. MRI does, however, provide the soft tissue contrast required to segment different 

tissue types. Attenuation correction in PET/MR is typically performed by segmenting the 

MR images and assigning attenuation coefficient values to different tissues [8]. One tissue 

that is particularly problematic to identify with MRI is bone, but ultra-short echo time (UTE) 

and zero echo time (ZTE) imaging can aid in its identification [88]. However, such an 

approach can be problematic, as the signal intensities from weighted images cannot be used 

to unambiguously assign tissue labels and attenuation coefficients, leading to errors in the 

PET reconstruction. In regions of insufficient attenuation information, PET data themselves 

can also be used in a joint estimation of attenuation and activity, as suggested by Rezaei et 
al. [89]. MR images can also be used to inform the reconstruction of PET images as an 

anatomical prior [90], [91] or in a joint reconstruction [10]. In the joint reconstruction 

proposed by Knoll et al. [10], mutual structural information is shared between the two 

modalities to improve reconstruction accuracy.

Quantitative MRI approaches can be used for more accurate tissue segmentation, as 

objective properties are available for tissue classification instead of relative gray scale image 

intensities. Relaxometry methods, including MRF, can readily provide differentiation 

between soft tissue types [92]. Fat-water separation, for which there has also been a 

proposed MRF experiment [93], can be used in separating fat from other soft tissues. The 

incorporation of a UTE or ZTE portion in the MRF scan, or simply using a second 

traditional scan, could provide the information needed to differentiate bone from air, 

yielding a comprehensive exam to accurately identify four different tissue types – fat, soft 

tissue, air, and bone. It has been demonstrated that T2* maps, which have been calculated 

using MRF, can be used for continuous attenuation coefficient calculations [8], allowing for 

more than four attenuation coefficient values and thereby improving attenuation correction 

accuracy. MRF is thus an ideal MRI acquisition for rapid and accurate tissue segmentation, 

which will lead to more accurate attenuation correction and thus more accurate PET images.

MRI has the potential to enhance PET exams in ways beyond attenuation correction. 

Simultaneous acquisition of PET and MR data enables motion correction in the PET image. 

Numerous motion measurement and correction techniques exist in MRI for cardiac motion, 
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respiratory motion, and bulk patient motion. If motion is tracked throughout the entire PET 

exam, the PET counts can be retrospectively corrected to improve the effective resolution of 

the images. One approach to motion correction involves estimating or modeling motion 

fields to correct the PET data [9]. Motion correction has proven useful for small lesions in 

regions that experience a lot of motion, such as the lungs [94]. Furthermore, simultaneous 

data acquisition results in automatically co-registered multimodality images, which is a 

much more challenging problem when PET and MR are performed as separate exams.

One can envision a comprehensive MRI sequence for PET reconstruction during the PET 

exam that would provide motion information as well as tissue characteristics. An MRF 

sequence would be an excellent candidate. The simultaneous T1 and T2 mapping would 

provide information for tissue segmentation and attenuation correction, and may also serve a 

clinical purpose. Such an MRF sequence would require the addition of a navigator for 

motion correction and, ideally, the ability to identify bone and other tissue composition.

B. Clinical Opportunities for PET/MR with MRF

Given the increasing number and types of quantitative MR technologies in use clinically, 

there is an opportunity to combine these quantitative data streams from MR with both 

laboratory testing and other modalities, with PET chief amongst them. As noted above, PET 

has inherent advantages in quantitative analysis and in providing information that often MRI 

alone cannot. Integrated PET/MR with MRF has the potential to provide a rich quantitative 

space for sophisticated tissue characterization.

An important research topic that needs to be explored is the optimal combination of 

quantitative PET and MRI protocols to yield synergistic results. The individual exams, 

including the PET tracer and MRI sequences, must be designed to answer specific clinical 

questions. Moreover, the time of the exam must be limited, as with standard MRI exams, for 

efficiency purposes.

A recent review of current clinical PET/MR applications can be found in [95], but we will 

examine a few that could benefit from an MRF approach here.

1) Neuroimaging: FDG PET has become an invaluable tool in assessing primary brain 

tumors, but whether there is increased value in an integrated PET/MR exam is undecided. In 

a recent study by Hojjati et al. [96] comparing PET/MR, DSC perfusion MRI, and PET/CT 

in differentiating radiation necrosis from tumor recurrence in 24 glioblastoma multiforme 

patients, the authors found that PET/MR with perfusion MRI provides the best diagnostic 

utility (AUC = 1.0). In a study by Yoon et al. [97], however, FDG-PET and multi-parametric 

MRI showed high concordance rates in differentiating high and low grade gliomas but little 

to no value added in using the two in combination. MR vascular fingerprinting [51], [52], 

MRF relaxometry with proven neurological applications and utilization [77], [79], [80], 

[83], and MRF-ASL [53], [54] all hold promise for combination with PET for this important 

application.

PET/MR also has the potential to be a valuable tool for dementia patients. PET imaging is 

sensitive to neurodegenerative processes, whereas MRI exams can provide information 
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related to atrophy, iron deposition, and diffusion [98]. The modalities provide 

complementary information to potentially improve the differential diagnosis of dementias. 

As MRF may be used to provide the required T1, T2, T2*, and ADC measurements in a 

single rapid scan, this approach would be ideal for collecting PET/MR data in these patients.

2) Prostate: The role of MRF in characterizing prostate cancer aggressiveness and 

differentiation from mimics has been discussed above. With the development of prostate-

specific PET tracers, there is potential for improvement with the combined PET/MR exam. 

In a study by Eiber et al. [11], 66 patients underwent simultaneous 68Ga-PSMA HBED-CC 

PET/MR prior to prostatectomy. The sensitivity of PET/MR in detecting prostate cancer was 

significantly higher than that of the multi-parametric MRI exam (95% CI for difference in 

sensitivities, 21–45; p < 0.001). Furthermore, in localization of prostate cancer, the AUC 

was significantly higher for PET/MR than for multi-parametric MRI (Δ0.147; 95% CI, 

0.081–0.213; p < 0.001). A study by Park et al. [99] used dualtime-point 68Ga-PSMA-11 

PET/MR imaging to study 33 men with intermediate- or high-risk prostate cancer. The 

authors reported that cancer was identified in all patients using the PET images, but only in 

29 patients using the multi-parametric MR images. They also suggested that the combined 

PET/MR imaging allowed for better localization of the cancer due to the higher spatial 

resolution of the MR images. Combining prostate MRF with PET imaging could possibly 

improve sensitivity, specificity, and localization of prostate cancer.

3) Cardiac: PET imaging has been validated for the accurate assessment of myocardial 

viability and myocardial perfusion [100]. Cardiac T1 and T2 values, which can be mapped 

using MRF [38], have been shown to be associated with inflammation and myocarditis [24], 

[25], myocardial scar [26], [101], [102], fibrosis [27], [103], and edema [28], [104]. MRF 

property maps would contribute high-resolution structural and functional information to the 

PET/MR exam, yielding richer diagnostic information. In two myocarditis case studies 

[105], [106], FDG-PET was used to identify regions of active inflammation, increasing the 

sensitivity of PET/MR to inflammatory process. Some of the benefits of an integrated 

PET/MR exam include the motion correction and high resolution imaging provided by MRI. 

For example, an efficient free-breathing acquisition and reconstruction method by Munoz et 
al. [107] yields improved image sharpness in the myocardium and coronary arteries. The 

two modalities offer complementary information, in terms of structure versus function as 

well as anatomical location. The combination of MR angiography and cardiac MRF with 

structural MR images and PET perfusion information holds the potential for a very powerful 

cardiac imaging tool.

4) Abdomen: PET/MR imaging in the liver has shown to be particularly useful in 

diagnosing liver metastases. Brendle et al. [12] investigated the diagnosis of metastatic 

colorectal cancer lesions, and found that using PET/MR with diffusion-weighted MRI and 

ADC mapping was more accurate than the individual modalities themselves. In particular, 

the highest diagnostic accuracy of the combined PET/MR exam was recorded when 

detecting liver metastases. PET/MR with diffusion weighted MRI and ADC mapping was 

superior to PET/CT, and the addition of PET to the MRI exam increased specificity. 

Kirchner et al. [108] examined the value of PET/MR in detecting and characterizing solid 
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tumors and metastases in the liver. They reported that an exam consisting of FDG-PET and 

MRI with liver-specific contrast phase yielded the highest accuracy for classifying lesions as 

malignant or benign. However, they did not find a significant difference in the diagnostic 

confidence of the PET/MR exam as compared to MRI with liver-specific contrast phase 

alone. Quantitative MRI could potentially contribute complementary information to better 

characterize and diagnose liver lesions. Kong et al. [109] obtained maximum SUV values 

and ADC values in 41 patients with hepatic tumors and found SUV to be negatively 

correlated with ADC. They also noted that different tumor types had different metabolic and 

diffusion characteristics, possibly reflecting the underlying tumor biology. It is also possible 

that T1 and T2 values, which have been measured using MRF and shown to increase in 

metastatic lesions [76], could provide additional information about tumor composition. An 

obvious advantage of an integrated PET/MR exam in the abdomen is motion correction and 

registration. If accurate motion estimation were integrated into the MRF acquisition, then 

both the PET images and property maps would be motion-corrected and co-registered.

5) Response to Treatment: Evaluation of tumor response to treatment using MRI 

typically involves Response Evaluation Criteria in Solid Tumors (RECIST) [110], which 

tallies the number of lesions and their sizes to assess response. Morphological assessment 

has limitations: it does not necessarily reflect the composition of the tumor, and waiting for 

notable size changes may cost valuable time. Both PET and quantitative MRI methods show 

promise for assessing tumor response. In a study of 378 patients with cervical cancer [111], 

post-therapy metabolic response, as measured by FDG-PET, predicted progression-free 

survival just three months after chemoradiation. MRI studies in mice have shown that T1 

may be an indicator for tumor response to chemotherapy [112], [113]. Integrated PET/MR 

exams may provide comprehensive, quantitative metrics sufficient for assessing response to 

treatment before size-related changes for RECIST assessment are evident. Earlier response 

evaluation would allow for earlier treatment adaptations. Furthermore, the quantitative 

metrics that reflect the metabolic activity and composition of the tumor may be valuable in 

initial treatment planning.

Wang et al. [114] performed FDG-PET/MRI exams on 13 patients with pancreatic ductal 

adenocarcinoma before and four weeks after chemotherapy began. They were classified as 

responders or nonresponders according to RECIST using CT exams 8-12 weeks after 

treatment initiation. Results showed that at the four-week mark, responders had a higher 

mean reduction in tumor size than nonresponders, but the difference was not statistically 

significant (20.87% ± 17.86% and 3.4% ± 3.4%, respectively; p = 0.11). However, the 

responders did have significant differences compared to nonresponders in the reduction of 

metabolic tumor volume (MTV) (87.7% ± 13.6% and 47.8% ± 21.2%, respectively; p = 

0.003), reduction of total lesion glycolysis (TLG) (89.5% ± 11.1% and 50.9% ± 24.5%, 

respectively; p = 0.006), and increase in mean ADC values (40.2% ± 12.1% and 7.5% ± 

15.8%, respectively; p = 0.004). Responders also had a greater reduction in maximum SUV 

as compared to non-responders, although only approaching significance (46.6% ± 25.8% 

and 18.0% ± 19.7%, respectively; p = 0.066). These results are mirrored in a study by 

Sarabhai et al. [115], which included 8 patients with cervical cancer. From integrated FDG-

PET/MR exams before and 2-6 weeks after the end of treatment, ADC values, perfusion 
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parameters from DCE-MRI, and metabolic PET parameters were measured. Seven of the 

eight patients were classified as responders and demonstrated an increase in ADC values, 

reduction in SUV, and decrease in certain perfusion parameters. One interesting finding was 

one patient was mis-identified as a partial responder according to RECIST, but using PET 

data was correctly classified as a complete responder as confirmed with histopathology.

Quantitative imaging has the potential to improve prediction and classification of response to 

treatment over traditional morphological assessments. MRF will likely be beneficial by 

providing an efficient method for accurately quantifying a number of tissue properties to 

characterize tumors within a richer quantitative space.

IV. Open Needs in Quantitative Imaging

There are numerous opportunities for MRF and PET imaging to work synergistically in both 

the technical aspects and clinical applications of integrated PET/MR. Quantitative MRI 

could potentially improve attenuation correction and improve tissue characterization for 

identifying and monitoring disease. While there is certainly evidence to support the use of 

quantitative MRI, and MRF in particular, outside of PET/MR, there still exist major hurdles 

before it will be widely accepted in practice.

A major need, and a place of considerable ongoing effort, is multi-scanner standardization, 

and in the future, multivendor standardization. One important and on-going challenge to 

quantitative MRI is that the values measured may differ significantly when using different 

MRI scanners (from different vendors, with different software, hardware, and/or 

postprocessing tools. The inability to replicate these measurements over time and on 

different MRI scanners precludes the use of these quantitative metrics as biomarkers for 

disease. Two major proponents of quantitative imaging standardization are the Quantitative 

Imaging Biomarker Alliance®(QIBA®) and the National Institute of Standards and 

Technology (NIST). Both of these organizations have developed phantoms for multi-

scanner, multi-site comparisons of DCE-MRI, T1, T2, and diffusion, among other metrics 

[116], [117]. Numerous other companies have been involved in developing phantoms for 

quantitative MRI methods, such as fat fraction, R2
∗, and diffusion tensors [118]–[122]. 

Accuracy and repeatability are integral to the success of quantitative imaging to study 

disease across populations and over time.

In the same vein as standardization, precision and accuracy of individual modalities is 

important for integrated modalities such as PET/MR. Quantitative PET imaging hinges on 

accurate attenuation correction. The quantitative maps that can be generated with MRF 

could be used to improve MRI-based attenuation correction approaches, thereby improving 

the accuracy of quantitative PET measurements.

Another open need in quantitative imaging is the determination of best practices for 

comprehensive exams which maximize value for clinicians and patients. With the growing 

development of quantitative imaging, protocols will need to be edited based on the reason 

for the imaging study. As we have described in the Clinical Applications sections, certain 

properties are only useful in a select number of situations. Further research must be done to 
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balance the amount of valuable quantitative information with imaging exam time. Efficiency, 

accuracy, and added-value must all be considered.

V. Summary

Quantitative imaging protocols are powerful clinical tools that can reduce subjectivity and 

uncertainty in medical imaging. MRF is a one such tool for quantitative MRI, attractive 

because of its flexibility, efficiency, and the potential to quantify multiple interesting 

properties simultaneously. PET/MR is a hybrid imaging modality that already combines the 

metabolic information from PET with an abundance of structural and functional information 

from MRI. The potential to combine quantitative MR approaches such as MRF with PET for 

improved image reconstruction informed by the MR acquisition, more accurate attenuation 

correction, and improved clinical tissue characterization are areas of ongoing investigation 

and hold significant promise for future development.
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Fig. 1. 
Basic components of an MRF experiment. An MRF sequence is designed to quantify a set of 

properties, such as T1, T2, and M0. The MRF sequence yields highly undersampled images, 

used to construct the timecourse, or fingerprint, for each voxel. The value at a single voxel 

for all images in the series are concatenated to form the timecourse for that voxel. Sequence 

parameters are also used to generate dictionary atoms. The time courses from the 

undersampled images and the dictionary atoms are compared using a matching algorithm, 

which provides tissue property values for every pixel in the image. Variations of the 

elements in (A) are discussed in Section II-A and those in (B) are discussed in Section II-B.
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Fig. 2. 
Property maps from a prostate MRF study. T1 map (A) and T2 map (B) are both in units of 

milliseconds. High grade prostate cancer in the peripheral zone (Gleason score = 8), 

indicated by the striped arrow, has much lower T1 and T2 values as compared to the normal 

peripheral zone, indicated by the solid white arrow.
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