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Abstract

Alzheimer’s disease and related dementias lack effective treatment or cures and are major public 

health challenges. Risk for Alzheimer’s disease and related dementias is partially attributable to 

environmental factors. The heavy metals lead, cadmium, and manganese are widespread and 

persistent in our environments. Once persons are exposed to these metals, they are adept at 

entering cells and reaching the brain. Lead and cadmium are associated with numerous health 

outcomes even at low levels of exposure. Although manganese is an essential metal, deficiency or 

environmental exposure or high levels of the metal can be toxic. In cell and animal model systems, 

lead, cadmium, and manganese are well documented neurotoxicants that contribute to canonical 

Alzheimer’s disease pathologies. Adult human epidemiologic studies have consistently shown 

lead, cadmium, and manganese are associated with impaired cognitive function and cognitive 

decline. No longitudinal human epidemiology study has assessed lead or manganese exposure on 

Alzheimer’s disease specifically though two studies have reported a link between cadmium and 

Alzheimer’s disease mortality. More longitudinal epidemiologic studies with high-quality time 

course exposure data and incident cases of Alzheimer’s disease and related dementias are 

warranted to confirm and estimate the proportion of risk attributable to these exposures. Given the 

widespread and global exposure to lead, cadmium, and manganese, even small increases in the 

risks of Alzheimer’s disease and related dementias would have a major population impact on the 

burden on disease. This article reviews the experimental and epidemiologic literature of the 

associations between lead, cadmium, and manganese on Alzheimer’s disease and related 

dementias and makes recommendations of critical areas of future investment.
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INTRODUCTION

Dementia is characterized by impairment in at least one cognitive domain, including 

memory, language, perception, attention, social cognition, and executive function [1, 2]. 

Globally, 50 million people are currently estimated to have dementia, and this number is 

expected to reach 152 million in 2050 [3]. Dementia involves a heterogeneous cluster of 

disorders including frontotemporal lobe dementia, vascular dementia, and Lewy body 

dementia. Alzheimer’s disease (AD) is a prevalent form of dementia, implicated in 70% of 

dementia cases [4]. Despite urgent need and tremendous research efforts, pharmacological 

trials for AD have struggled [5]. Treatment is complicated by neuropathologic changes 

observed many years prior to symptom onset [6]. Particularly when treatment is challenging, 

risk factor characterization is essential [7]. Risk for AD and related dementias is attributable 

to genetic and environmental factors [8].

Identification of modifiable environmental risk factors can substantially impact prevention 

and treatment for AD and related dementias. Many environmental chemicals are long known 

to be neurotoxic [9], particularly in laboratory models and in humans during 

neurodevelopment. In human populations, assessment of likely environmental factors during 

the risk window before disease manifestation is challenging due to the potentially long 

latency period of disease (Fig. 1). Environmental AD and related dementia studies often 

examine exposures at the time of clinical symptom onset, though relevant exposures may 

have occurred years or decades prior, or possibly even during early life. Evidence for 

environmental chemical neurotoxicity in older adults is accumulating and furthering our 

“understanding (of) the impact of the environment to advance disease prevention” is a major 

component of the National Institute of Aging’s key strategic plan to treat and prevent AD by 

2025 [10].

Among environmental factors, the roles of heavy metals such as lead, cadmium, and 

manganese are particularly of interest, given widespread population exposure. Lead and 

cadmium are notable metals for their neurotoxic effects even at low levels of exposure 

encountered in the general population. Manganese is an essential trace metal required for 

normal physiological functions including neuronal health, but it is toxic at low levels or in 

excess. Understanding the roles of these heavy metals in the etiology of AD and related 

dementias is critical. In the current article, we review the experimental and epidemiologic 

literature of lead, cadmium, and manganese and their associations with AD and related 

dementias. We focus on these three metals in this review because neurotoxicity of these 

metals is attributed to environmental contamination. Reviews for other potential candidate 

elements, such as zinc, iron, and copper, can be found elsewhere [11, 12].
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LEAD (PB) AND ALZHEIMER’S DISEASE

Lead introduction

Lead overall health effects—Lead is responsible for approximately 1% of the global 

burden of disease [13], including permanent effects on childhood intelligence and behavioral 

problems [14], although there is evidence that this is underestimated [15]. In US children 

under 5 years of age, there are annually 22,947,450 intelligence quotient points lost due to 

lead exposure at an estimated cost of $50 billion [16]. In older adults, lead exposure is 

associated with an increased risk of amyotrophic lateral sclerosis [17], Parkinson’s disease 

[18], hearing loss [19], age-related cataracts [20], glaucoma [21], and other chronic 

conditions. Specific to this review, lead exposure is associated with accelerated cognitive 

decline and dementia.

Current lead exposure levels—Lead exposure is a historic and current problem. Lead 

toxicity was observed as early as 370 BC [22], and more recently in the Flint, Michigan 

community [23]. The US Centers for Disease Control and Prevention (CDC) established a 

reference level of 5 μg/dL blood lead for children and pregnant women; however, a safe level 

of blood lead has not been identified and evidence-based levels of concern have continued to 

lower [16]. Approximately 500,000 children ages 1–5 years in the US have levels exceeding 

the reference [24], particularly concentrated in cities and low socioeconomic areas [25].

Lead exposure sources—The removal of lead from paint and gasoline is a major public 

health success [26], though lead’s persistence in soil, dust, and built environments make 

abatement from our lives and environments difficult [27]. Despite US legislative efforts to 

minimize lead exposure, lead is still used in multiple industrial applications, including 

automobile lead-acid storage batteries [27]. Common lead exposure sources vary by age and 

geographic location. Housing build prior to 1970 may have paint containing lead, 

contributing to house dust, which adults and children inhale [28]. Local residents have 

higher body burden of lead due to contamination of air and soil [29]. Globally, high lead 

levels are associated with electronic waste recycling, lead mining, and smelting [30]. 

Children ingest lead dust due to frequent hand to mouth behavior. Older homes may also 

have leaded pipes or solder in their plumbing, which adults and children ingest through 

water. Industrial lead smelters and trash incinerators release lead into the local atmosphere 

as a by-product. Lead exposure remains widespread world-wide and domestically, with the 

primary routes of exposure being through inhalation or ingestion.

In older adults, the primary source of lead exposure can be endogenous. Excretion of lead is 

relatively slow, and accumulation is common [31]. During early and middle life, lead is 

sequestered in the bones, where it replaces calcium in the hydroxyapatite structure [32]. The 

skeleton contains 70–95% of the body burden of lead where lead can remain for decades 

[32], which can be exploited for exposure assessment research. Adults experiencing loss of 

bone mass via osteoporosis release lead into the bloodstream. In older adults, 40–70% of 

blood lead can be attributed to previous body stores [32]. Lead that entered the body during 

previous periods of high exposure can become biologically active decades later.
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Lead transport to the brain and into neuronal cells

Lead absorption into the bloodstream and travel to the brain—Once lead enters 

the body, it is absorbed into cells and tissues. Inhaled lead particles cause local damage in 

the lungs. Depending on particle size, 30–40% can be absorbed into the bloodstream [31]. 

Adults only absorbs 10–15% of ingested lead, though pregnant women and children absorb 

50% of ingested lead [31]. Individual level factors, such as diet (low iron, calcium, 

phosphorus, or zinc) and genetic polymorphisms (delta-aminolevulinic acid dehydratase and 

hemochromatosis genes) influence the intestinal absorption rate [33]. Organic lead is 

absorbed by the skin, and this route is most often observed in occupational settings [31]. 

Lead primarily enters the bloodstream through absorption at the lungs, gastrointestinal tract, 

or dermal surfaces (Fig. 2).

Lead transport into cells—Absorbed lead circulates in the bloodstream. Lead enters 

cells by hijacking divalent metal transporters, designed to carry essential metals such as iron 

and copper [34]. Lead crosses the placental barrier and lead can be detected in infant cord 

blood at similar levels to maternal blood [35]. The blood-brain barrier (BBB) physically 

separates the brain from water soluble compounds in the bloodstream and transport is tightly 

regulated. Lead crosses the BBB by substituting for calcium [36] and accumulates in the 

brain. Lead can also influence the blood cerebrospinal fluid barrier [37]. Lead is distributed 

in the bloodstream, which is transported to the brain.

Experimental studies linking lead treatment and Alzheimer’s disease

Lead treatment and general neurotoxicity—Lead is a known neurotoxicant causing 

non-specific brain disruption (Fig. 3). First, lead is a redox-inactive metal that causes 

oxidative stress by depleting thiols and damaging the antioxidant defense system [38]. 

Excessive oxidative stress results in endoplasmic reticulum stress, mitochondrial damage, 

and ultimately apoptosis of neurons [36]. Neurons experience excitotoxic damage from 

overactivation by calcium associated with lead exposure [36]. Lead disrupts homeostatic 

levels of essential metals and alters normal metal signaling [34]. These actions together 

result in neuroinflammation [36]. Similar damage occurs to support cells, such as 

oligodendrocytes, microglia, astrocytes, and cerebrovascular endothelial cells [36]. Lead 

exposure causes epigenetic changes and changes in epigenetic regulators in the brain and 

brain regions [39–41], which may mediate latent effects of early life lead exposure. Lead 

induces oxidative stress, endoplasmic reticulum stress, neuroinflammation, apoptosis, 

epigenetic changes, excitoxicity, and essential metal disruption in the brain.

Lead treatment and dysregulation of Alzheimer’s disease pathways—AD 

mechanisms and symptoms are observed in animal models with lead treatment. Lead effects 

vary by species, timing, dose, and duration of exposure, though impairments related to AD 

are consistent. In general, model animals treated with lead have elevated brain levels of 

amyloid-β protein precursor, amyloid-β (Aβ), and tau as well as altered learning and 

memory behaviors.

Mouse and rat studies identified the timing of susceptibility and molecular targets of lead 

exposure. C57BL/6J mice exposed to 0.2% lead acetate from post-natal day (PND) 1–20 had 
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altered miRNA expression that targeted epigenetic mediators at 6 months of age [42] and 

elevated tau protein and mRNA levels at 7 months of age [43]. Similar effects were not 

observed with adult lead treatment [43]. Mice exposed to lead acetate had variable results on 

the Morris water maze based on the developmental timing of exposure [44]. Male rats 

treated with 50mg/kg lead acetate via intraperitoneal injection at 8–9 weeks of age had triple 

Aβ1–40 levels in the choroid plexus and lower RNA and protein levels of low-density 

lipoprotein receptor-1 [45]. Rats of both sexes exposed to lead in the maternal drinking 

water PND1–30 had poorer performance on tests for learning, short term memory, and long 

term memory, which correlated with reduced number of synapses in the hippocampus and 

higher tau expression Rats of both sexes exposed to very low levels of lead (0.1%) in the 

maternal drinking water PND1–21 had increased tau protein in the forebrain and cerebellum 

and tau hyperphosphorylation, which caused cytoskeleton stability impairment and neuronal 

dysfunction [46]. Early life lead exposure in mice and rats resulted in impaired memory and 

AD-relevant pathology.

Transgenic AD susceptibility mice treated with lead are used to test for gene by environment 

interactions. Amyloid precursor protein (APP) transgenic mice treated with 50 mg/kg lead 

acetate oral gavages for 6 weeks had elevated Aβ1–40 and Aβ1–42 in the cerebrospinal fluid, 

cortex, and hippocampus, corresponding with impaired spatial learning on the Morris water 

maze test [47]. Microtubule associated protein tau (MAPT) transgenic mice treated with 

0.2% lead acetate water during PND 1–20 had lead-related altered expression of MAPT and 

miR-34c, an miRNA that targets MAPT [48]. MAPT transgenic mice similarly treated with 

early life lead had decreased gene expression of APP at PND 20 and at PND 50 had 

increased miR-106b, an miRNA targeting APP, and decreased APP protein expression [49]. 

MAPT transgenic mice given a 10-fold lower dose treatment (0.02% lead acetate) during 

PND 1–20 were aged, and in midlife (PND 350) no differences were observed with 

treatment, but APP gene expression, protein expression, and Aβ levels were elevated in late 

life (PND 600) [50]. With later life lead treatment (exposed from 18 to 20 months of age) no 

effects on APP gene expression, protein expression, and Aβ levels were observed [50]. Lead 

treated mice performed poorly on the Morris water maze test at 7 months of age, only when 

the MAPT gene was knocked out [51]. Mice with both genetic susceptibility and lead 

treatment had exacerbated AD pathology in early life and latent effects in late life.

A unique long-term exposure model of lead in monkey has provided the strongest evidence 

for AD related neurodegeneration. Female Macaca fascicularis were exposed from PND1–

400 to 1.5 mg/kg/day lead acetate and sacrificed at age 23 [39]. The aging primates exposed 

to lead exhibited overexpression of APP, Aβ, and enhanced pathologic neurodegeneration 

[39]. In the same cohort, early life lead exposure was associated with elevated tau mRNA, 

tau protein, its transcriptional regulators (Sp1 and Sp3), and site-specific tau 

hyperphosphorylation [52]. Early life lead exposure has a lagged effect on AD related 

molecular pathways in older life.

Epidemiologic studies of lead exposure and Alzheimer’s disease

Postmortem brain lead concentrations in Alzheimer’s disease—Postmortem 

brain tissues from AD cases and controls can be compared for overall and region-specific 
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levels of metals. Frontal cortex and ventricular fluid were microwave digested and metal 

concentrations measured using inductively coupled plasma mass spectrometry (ICP-MS) 

[53]. No differences in lead concentration were observed between AD cases (n = 14) and 

controls (n = 14) in either tissue [53], though controls were older than cases and age is well 

known to be associated with lead levels. By design, postmortem tissues are collected 

following disease development and any metal differences may be a cause or a consequence 

of disease.

Epidemiologic studies of lead exposure and cognitive decline, dementia, and 
Alzheimer’s disease—Properties of the lead biomarker matrix are important factors for 

study design and interpretation. Common tissues used for lead measurement and their 

respective rate of decay in the body are blood (30 day half-life), patella bone (10–15 years 

half-life), and tibia bone (10–30 years half-life) [54]. Associations may differ based on 

timing and type of the measurements. In early and mid-life, blood lead is expected to reflect 

exogenous exposure, while in late-life, blood lead can be attributed to release of sequestered 

endogenous bone lead. Epidemiologic associations may differ based on timing and type of 

the exposure biomarker measurements.

Exposure to lead is associated with neurodegeneration in cross-sectional human 

epidemiology studies [55] (Table 1). In a small matched case-control study of clinically 

confirmed AD, occupational exposure to lead was associated with a slightly higher, but not 

statistically significant, odds of AD (odds ratio = 1.12, 95% Cl: 0.63–2.00) [56]. This 

suggestive observation inspired population-based studies in larger samples to investigate 

related outcomes. Among men (mean age 66.8 years) in the Veteran’s Affairs Normative 

Aging Study (NAS), tibia bone lead was associated with poorer cognition, particularly 

pattern memory and spatial reasoning [57]. The tibia lead association replicated in a larger 

NAS sample and similar findings were extended to patella lead and blood lead [58]. Soon 

after, in the Baltimore Memory Study of men and women age 50–70 years, tibia lead was 

reported to be associated with concurrent lower cognition, while blood lead was not 

associated with cognition [59]. Lead exposure measured in blood, tibia bone, and patella 

bone was associated with clinically diagnosed amyotrophic lateral sclerosis in a matched 

case-control study [60], as well as Parkinson’s disease in a large case-control study [18], 

suggesting that lead exposure may be associated with multiple neurodegenerative processes 

and may not be specific to AD or dementia.

Epidemiology evidence is strengthened by the use of longitudinal studies to assess temporal 

relationships between exposure and disease. In the NAS when at least two Mini-Mental 

State Exam (MMSE) scores were available, one interquartile range (IQR) (20 μg/g of bone 

mineral) higher patella bone lead concentration was associated with 0.24 points lower 

MMSE scores (95% CI: −0.44, −0.05) [61]. In a follow-up NAS analysis of up to 5 repeated 

cognitive measures over 18 years, an IQR higher level of patella lead was associated with 

0.016 points lower MMSE score per year (95% CI: −0.032, −0.0004) [62]. Importantly, 

these differences in MMSE reflect cognitive performance and do not indicate clinical 

significance. Clinical cases of AD in Québec in a retrospective ecological study had higher 

levels of lead in soil at their birthplace residences relative to municipal averages [63]. 

Longitudinal studies of lead and cognitive decline or AD require replication across study 
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populations, but they suggest early-life or midlife lead exposure is associated with faster 

rates of cognitive decline.

Current epidemiologic studies of lead exposure are limited in the reach of their exposure 

measures [64]. Adult bone lead estimates of cumulative lead stretch into mid-life. The brain 

has periods of particular vulnerability to toxicants and exposure during vulnerable periods 

may increase risk of AD. Newer exposure methods include tooth lead, where through 

targeted laser ablation, timing of metal exposure can be pinpointed [65], including exposures 

that occur in early life [66]. Future clinical studies of AD may incorporate lead exposure 

measures. AD is the most common form of dementia in late life, representing 70% of 

dementia cases [4]; however, diagnosis requires specific clinical or pathological 

characteristics. Many lead exposure studies were conducted in population-based samples 

and a large study sample would be required to observe enough cases to rigorously test AD’s 

association with lead exposure.

Lead summary—Lead exposure is widespread due to current and previous industrial uses. 

Lead is ingested, inhaled, or dermally absorbed and then it travels in the bloodstream and 

can cross the BBB. Lead is a potent neurotoxicant causing non-specific brain disruption, 

resulting in oxidative stress, endoplasmic reticulum stress, mitochondrial damage, 

excitotoxicity, altered homeostatic metal signaling, inflammation, and ultimately neuronal 

apoptosis. In animal models, lead treatment causes AD-related pathology including changes 

in AβPP, Aβ, and tau, as well as memory deficits. In older adults, lead exposure is 

associated with lower cognitive status and longitudinal declines in cognition. To assess lead 

exposure risk on AD specifically, prospective evidence in human clinical samples is needed.

CADMIUM (CD) AND ALZHEIMER’S DISEASE

Cadmium introduction

Cadmium overall health effects—Cadmium has no essential physiologic function in 

humans and is classified as a Group-I carcinogen by the International Agency for Research 

on Cancer [67]. Long-term exposure to low-level cadmium increases risks for kidney 

damage, osteoporosis, hypertension, lower lung function, and diabetes [68]. Recently, 

cadmium has emerged as a neurotoxicant, although evidence in humans is still limited.

Current cadmium exposure levels—Most people are exposed to cadmium, and 

exposure is most commonly measured in blood and urine biosamples. Blood cadmium levels 

represent current exposure (approximately 75 days [69–72]), while urine cadmium levels 

represent cumulative exposure (10–15 years [73]) due to long-term retention in the kidneys 

[74, 75]. In the general population (≥1 year of age), the geometric mean blood level of 

cadmium is 0.32 μg/L and the geometric mean urine level (≥6 years of age) is 0.19 μg/g 

creatinine (0.19 μg/L) [76]. Cadmium levels are generally higher in women than men as low 

iron increases cadmium absorption, and cadmium levels are higher in smokers than non-

smokers [74, 75].

Cadmium exposure sources—Cadmium is a bluish-white metal naturally found in the 

earth’s crust and cadmium is environmentally persistent. Anthropogenic sources of cadmium 
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include mining and refining, combustion of fossil fuels, waste incineration and disposal, and 

the manufacture and application of phosphate fertilizers [75]. Diet is the primary cadmium 

exposure source [68] and cigarette smoking is another important source for non-smokers and 

smokers. Ingestion of contaminated foods and inhalation of air cadmium are major routes of 

exposure.

Cadmium transport to the brain and into neuronal cells

Cadmium absorption into bloodstream and travel to the brain—Cadmium 

exposure from inhalation and ingestion sources interfaces with gastrointestinal tract and lung 

(Fig. 2). Cadmium is taken up by these tissues and enters the bloodstream. Under normal 

conditions, only small amounts of cadmium can cross the BBB in adults [77]. The choroid 

plexus, a component of the blood-cerebrospinal fluid barrier, restricts blood toxicant access 

to the cerebrospinal fluid and maintains internal central nervous system homeostatic 

environment [78]. The choroid plexus is the main site of cadmium accumulation in the brain 

[78].

The olfactory nervous system may be a direct transport pathway of cadmium to the brain 

and therefore, bypassing the BBB. Cadmium concentrations in the olfactory mucosa and 

olfactory bulbs increased with intranasal instillation of cadmium in mice [79]. Increased 

concentrations of cadmium in the olfactory bulbs led to reductions in odorant-evoked 

neurotransmitter release from the olfactory nerve and axonal projections from the olfactory 

epithelium to olfactory bulbs [80]. Cadmium-treated mice showed lower performance in 

hippocampus-dependent spatial learning and memory and olfactory memory [81]. Cadmium 

directly passes into the central nervous system through the olfactory system causing 

persistent, irreversible damage by inhibiting adult neurogenesis in the hippocampus and 

olfactory bulb.

Cadmium transport into cells—The transport systems for divalent essential elements 

play a role in the cellular uptake of cadmium. Calcium, iron, and zinc transport systems 

(e.g., divalent metal transporter-1 (DMT1), calcium transporter-1, and calcium channels), 

transport cadmium [82]. Intestinal absorption of cadmium primarily occurs through DMT1 

and depends on the body stores of other metals, especially iron. Iron deficiency increases 

intestinal absorption of cadmium through DMT1 [83]. DMT1, calcium transporters, and zinc 

transporters are expressed in neurons and vascular endothelial cells of the brain [84, 85].

Experimental studies linking cadmium treatment and Alzheimer’s disease

Cadmium treatment and general neurotoxicity—Toxicological studies support 

underlying biological mechanisms by which cadmium exerts neurotoxic effects. Direct 

effects through oxidative stress, neuroinflammation, and apoptosis in neuronal cells are well 

defined. Cadmium may also induce neurotoxicity by changing permeability of the BBB and 

interacting with other neurotoxicants, leading to Aβ aggregation and tau neurofibrillary 

tangle production. Pathogenic processes following cadmium exposure result in cognitive 

impairment and AD pathology (Fig. 3).
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Cadmium is a redox-inactive metal that indirectly induces oxidative stress [38]. Cadmium 

has a high affinity for sulfhydryl group of thiols, such as glutathione and metallothionine 

[86]. Acute high-level exposure or long-term persistent low-level exposure interferes with 

the antioxidant defense system [87]. Cadmium induces oxidative stress in neuronal cells [86] 

and brain endothelial cells [88]. At low cadmium doses, glutathione detoxification is 

activated. At higher doses, with continued oxidative stress glutathione depletion occurs. 

Cadmium causes oxidative stress-dependent neuroinflammation and impaired 

neurodevelopment in young rats, enhanced with exposure to mixtures of lead, cadmium, and 

arsenic [89]. Rats treated with N-acetyl cysteine, a medication typically used to increase 

glutathione levels following acetaminophen overdose, had toxic effects of cadmium 

reversed, including memory deficits, increased thiobarbituric acid reactive substances (a 

marker of lipid peroxidation), and decreased hippocampus, cerebellum, and hypothalamus 

acetylcholine esterase activity [90]. Cadmium treatment induced brain oxidative stress and 

treatment with an antioxidant ameliorated cadmium neurotoxicity.

Cadmium-induced oxidative stress initiates neurodegeneration signaling pathways, such as 

mitogen-activated protein kinase (MAPK), protein kinase B (Akt), mammalian target of 

rapamycin (mTOR), and CD95/APO-1 (Fas)/Fas Ligand (FasL)-mediated mitochondrial 

apoptotic pathways, leading to neuronal apoptosis [91–93]. These signaling pathways are 

essential for growth, proliferation, and survival of neurons and are central in synaptic 

plasticity and learning and memory formation in the brain [94].

Metallothionein and trace metals also play a role in cadmium neurotoxicity via signaling 

pathways. Metallothionein, a low-molecular-weight sulfhydryl-rich metal-binding protein, 

can protect against cadmium toxicity by binding free cadmium ions within cells [95]. 

Metallothionein-III is downregulated in the brain of AD patients [96]. Insufficient 

production of metallothionine-III by prolonged exposure to cadmium causes neuronal 

apoptosis [97]. Cadmium exposure disrupts intracellular calcium homeostasis and increases 

extracellular calcium influx, triggering neuronal apoptosis via activation of MAPK and 

mTOR signaling pathways [98]. Cadmium also impairs the cerebral microvascular 

endothelium and increases permeability of the BBB, disrupting brain ion balance and 

nutrient uptake [99]. Cadmium treatment induces oxidative stress, neuroinflammation, and 

apoptosis in neuronal cells.

Cadmium treatment and dysregulation of Alzheimer’s disease pathways—
Animal studies support biological links between cadmium exposure and Aβ aggregation and 

tau neurofibrillary tangle accumulation [100]. Treatment with 2.5 mg Cd/kg/day in drinking 

water in APP/presenilin-1 (PS1) transgenic mice increased Aβ1–42, reduced α-secretase 

protein expression, and reduced soluble AβPPα (sAβPPα) [101]. Cadmium-treated mice 

showed deteriorated learning and memory abilities and senile plaque depositions in the 

brain. Cadmium-related learning and memory deficits may be attributed by inhibition of α-

secretase and promotion of the amyloidogenic AβPP processing (AβPP metabolism through 

the β-secretase pathway), which in turn leads to Aβ1–42 accumulation and senile plaque 

deposition [101, 102].

Bakulski et al. Page 9

J Alzheimers Dis. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cadmium treatment in vitro induced aggregation of the third repeat (R3) fragment of the 

microtubule-binding domain of tau [103]. R3 is critical in the nucleation of the tau filament 

formation process [104]. Cadmium forms Cd-tau dimers by binding to the nitrogen atoms of 

imidazole groups of histidine residues, affecting the nucleation step on tau aggregation 

[103]. The static electric strike of cadmium ion to the surrounding R3 peptide chains can 

prompt conformation conversion and enhance interactions with the R3 dimers, leading to 

enhanced aggregation through the elongation step [103]. Cadmium treatment increases Aβ 
production and tau tangles.

Cholinergic neuron toxicity is another potential cadmium-AD pathway. Cadmium exposure 

increases cell death on cholinergic neurons, leading to alterations in acetylcholinesterase and 

degeneration of basal forebrain cholinergic neurons [105]. Memory deficits seen in AD is 

associated with the loss of cholinergic neurotransmission due to degeneration of cholinergic 

neurons in the basal forebrain [106]. In SN56 cholinergic murine neuroblastoma cell line 

model of the basal forebrain, cadmium treatment induced apoptosis, mediated by blockade 

of muscarinic M1 receptors (related to memory loss in rats and humans), overexpression of 

neurotoxic acetylcholinesterase-S, downregulation of neuroprotective acetylcholinesterase-

R, and increased Aβ and tau protein levels.

Epidemiologic studies of cadmium exposure and Alzheimer’s disease

Postmortem brain cadmium concentrations in Alzheimer’s disease—There are 

limited studies that examined the associations between cadmium exposure and AD in human 

populations. A study using postmortem brain tissues found that AD brain tissues had higher 

concentrations of cadmium (hippocampus: 0.547 g/g dry weight (d.w); cerebral cortex: 

0.518 g/g d.w.) compared with age-matched control brain samples (hippocampus: 0.472 g/g 

d.w; cerebral cortex: 0.496 g/g d.w.) in an Eastern Canada sample but not in a United 

Kingdom sample [107]. In a recent study using postmortem brain samples from AD patients 

and nondemented elderly controls, cadmium concentrations in the frontal cortex were lower 

in AD cases (20 ng/g) than in controls (30 ng/g) [53]. This finding should be interpreted 

with caution because AD patients (mean age = 78 years) were younger than nondemented 

controls (mean age = 88 years). A meta-analysis including 8 studies covering 405 AD 

patients and 424 control subjects found that circulating concentrations (either whole blood, 

serum, or plasma) of cadmium were significantly higher in AD (standardized mean 

difference = 0.62 (95% CI, 0.12, 1.11) versus controls) [108]. This same meta-analysis 

reported that circulating lead concentrations were lower in AD patients. Again, it should be 

noted that the findings from postmortem brain tissues are subject to confounding by AD risk 

factors, especially age.

Epidemiologic studies of cadmium exposure and cognitive decline, dementia, 
and Alzheimer’s disease—Epidemiologic studies linking cadmium exposure to AD 

risks (prevalence or incidence) have rarely been conducted due to methodologic challenges 

such as lack of relevant exposure data, low incident rate or prevalence, and late onset (Table 

2). Instead, a few studies have examined cognition as an early indicator of future AD risks 

and they consistently report an association between cadmium exposure and decreased 

cognitive function in older adults [109–111]. A cross-sectional study with 2,068 older adults 
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from the US National Health and Nutrition Examination Survey (NHANES) 2011–2014 

showed a significant association between cadmium exposure measured in whole blood 

(median = 0.35 μg/L) and lower cognitive function [111]. An earlier NHANES study 

(NHANES-3) reported an association between urinary cadmium, a longer-term biomarker of 

cadmium exposure, and a measure of attention and perception (Symbol Digit Substitution 

Test) only among never smokers, but not in the entire population [109].

A possible link of cadmium and AD in human populations has been supported by two 

studies examining incident AD mortality. In NHANES 1999–2004 cycles, participants in the 

top quartile of blood cadmium (>0.6 μg/L) had an adjusted hazard ratio of 3.83 (95% CI, 

1.38, 10.6) compared with those in the lowest quartile (≤0.3 μg/L) [112]. Urinary cadmium, 

a longer-term biomarker of cadmium exposure, was associated with a 58% higher rate of AD 

mortality per 0.51 μg/L increase in urinary cadmium [113]. Both studies were limited by 

underestimation of AD cases and possibly low power (i.e., high false positive) due to low 

mortality rate (1.1–1.3% AD risk over mean 7.5 follow-up years [113]). Competing risk is 

another challenge in mortality studies, where highly exposed individuals are more likely to 

die from other causes before having a chance to die of AD.

Cadmium summary—Cadmium exposure primarily occurs through dietary and cigarette 

sources. Inhaled cadmium can enter the brain through the olfactory bulb. Cadmium can also 

enter the brain through the blood cerebrospinal fluid barrier. In animal models in the brain, 

cadmium causes oxidative stress, neuroinflammation, and neuronal apoptosis. Cadmium also 

induces neurotoxicity by changing permeability of the BBB, causing Aβ aggregation and 

producing tau neurofibrillary tangles. In human aging studies, cadmium may be associated 

with decreased cognitive function and clinical AD specifically. However, the 

pathophysiologic link between environmental cadmium exposure and AD is limited given 

the uncertainty in cadmium transport to the brain.

MANGANESE (MN) AND ALZHEIMER’S DISEASE

Manganese introduction

Manganese overall health effects—Manganese is the fifth most abundant metal in the 

environment and the twelfth most abundant element overall on earth [114]. It is an essential 

trace metal required for proper growth and physiological processes, such as bone growth, 

blood clotting, immune response, carbohydrate metabolism, and brain function [115]. 

Manganese is a cofactor for normal cell function enzymes, including arginase, pyruvate 

carboxylase, glutamine synthetase, and manganese superoxide dismutase (MnSOD; SOD2). 

Despite the importance of manganese in human health, excessive manganese is neurotoxic, 

and exposure to high levels of manganese may accumulate in the brain, causing an 

irreversible parkinsonian syndrome known as manganism [116–118]. Exposure to high 

levels of manganese results in impaired cognitive function and contributes to the 

pathogenesis of AD [119].

Current manganese exposure levels—Adequate adult intake of manganese is 1.8 mg 

per day for women, and 2.3 mg for men [120]. Manganese exposure can be measured in 

several different specimen types. Normal range for manganese levels in the general 
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population is 4–15 μg/L in blood, 1–8 μg/L in urine, and 0.4–0.85 μg/L in serum, though the 

usefulness of urine and serum manganese as biomarkers for exposure is limited [121, 122]. 

Blood manganese levels have a half-life of approximately 40 days [123] and are higher with 

female sex, younger ages, and Asian origins [124, 125].

Manganese exposure sources—Diet is the primary source of manganese in the general 

population. Manganese is abundant in plant-based foods, including whole grains, rice, nuts, 

and leafy vegetables. Animal foods, including meat, fish, poultry, eggs, and dairy, lack this 

nutrient [126]. Daily intakes of manganese typically range from 2 to 6 mg, of which ~1–5% 

is normally absorbed [127]. Due to the dual role of manganese as an essential nutrient and a 

potent toxicant, whole-body manganese levels are tightly controlled by regulating intestinal 

absorption and excretion of the metal through homeostatic mechanisms [128]. Thus far, 

manganese toxicity from high dietary manganese intakes in humans has not been reported 

[129].

Manganese toxicity classically results from elevated exposure levels in drinking water or air. 

Manganese is widely used in industrial processes and commercial products. Excessive 

occupational exposure to manganese is most common in mining, welding, ore processing, 

dry battery manufacture, and organochemical fungicide use [130–133]. Manganese toxicity 

can also arise from an impaired or under-developed excretion system, including in patients 

receiving total parenteral nutrition therapy [134, 135], patients with hepatic encephalopathy 

[136], and abusers of ephedrone (methcathinone) [137].

Manganese transport to the brain and into neuronal cells

Manganese absorption into the bloodstream and travel to the brain—
Manganese can be absorbed and transported into various body tissues, including brain. 

Dietary manganese is absorbed from the intestine, and it can cross the BBB. The blood-

cerebrospinal fluid barrier may also be a major interface for brain manganese uptake [138]. 

Airborne manganese can be absorbed through the pulmonary system into the systemic 

circulation or through the olfactory nervous system into the brain. The nasal-brain pathway 

circumvents the BBB and allows for direct contact with the brain; thus airborne manganese 

exposure has been a major concern for neurotoxicity [139]. While three major routes, 

through the BBB, cerebrospinal fluid, or nasal-brain pathways, transport manganese to the 

brain, the mechanisms by which manganese is absorbed and distributed in the brain are not 

well understood.

Manganese transport into cells—The essential, yet toxic, nature of manganese 

necessitates precise homeostatic mechanisms to maintain appropriate manganese body 

levels. While several transporters are involved in the transport of manganese into or within 

the brain, most of them also transport other essential metals, such as iron and zinc, and have 

not been rigorously tested in physiological contexts.

Recent genetic studies revealed that three metal-ion transporters are essential in maintaining 

manganese homeostasis: solute carrier family 30, member 10 (SLC30A10), SLC39A14, and 

SLC39A8. Loss-of-function mutations in SLC30A10 were reported in patients with elevated 

manganese levels in blood, manganese accumulation in the liver and brain, and 
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parkinsonism [140–142]. Slc30a10-deficient mice hyperaccumulate manganese in the blood, 

liver, and brain [143]. SLC30A10 is a cell surface-localized manganese efflux transporter, 

and parkinsonism-causing mutations block its intracellular trafficking and efflux activity 

[144, 145]. Similarly, mutations in SLC39A14 were reported in patients with high 

manganese levels in blood and accumulations of manganese in the brain, but not in the liver, 

and with juvenile-onset dystonia-parkinsonism [146]. Slc39a14-deficient mice [147–149] 

recapitulate these human phenotypes, including manganese accumulation in the brain, but 

not in the liver [147–149]. On the other hand, loss-of-function mutations in SLC39A8 were 

reported in patients with severe manganese deficiency in the blood [150–152]. Slc39a8-

inducible global knockout and liver-specific knockout mice also showed abnormally reduced 

manganese levels in the blood and in multiple tissues [153]. SLC39A8 is a cell-surface 

manganese import transporter, and that disease-associated mutations abrogated its uptake 

activity [154]. Taken together, SLC30A10, SLC39A8, and SLC39A14 are required for 

maintaining manganese levels, but their roles in brain manganese homeostasis and transport 

remain largely unknown.

Manganese and iron are similar in atomic masses, radii, and electron structures, and they 

share transport mechanisms. DMT1 is the primary manganese importer [155–157]. Belgrade 

rats deficient in DMT1, however, showed the same concentration of manganese in the brain 

as wild-type rats [158], suggesting that DMT1 may not be the major brain transporter of 

manganese. Dietary iron deficiency increases the expression of DMT1 in rat olfactory 

epithelium, resulting in elevated blood manganese after a single dose of intranasal 

instillation of radio labeled 54Mn [159]. Dietary iron deficiency increases manganese uptake 

through upregulation of DMT1 and potentiates apoptosis in the olfactory bulb in rats and 

human neuronal cell line [160]. The iron exporter ferroportin can also export both iron and 

manganese from the cell [161, 162]. Flatiron mice deficient in ferroportin have impaired 

manganese metabolism [163] and accumulate manganese and other metals, including iron in 

the brain [164]. Ferroportin exports manganese, in addition to iron, and is protective against 

manganese-induced toxicity and oxidative stress in dopaminergic SH-SY5Y cells [165]. 

Neurons may acquire manganese through transferrin uptake mechanisms [166]. DMT1 

transports divalent metals such as Fe2+ and Mn2+, but the transferrin-transferrin receptor 

(Tf-TfR) system is involved in the uptake of trivalent metals such as Fe3+ and Mn3+ [167, 

168].

Experimental studies linking manganese and Alzheimer’s disease

Manganese exposure and general neurotoxicity—Manganese-induced neurotoxicity 

has been well studied. Underlying mechanisms include oxidative stress, mitochondrial 

dysfunction, autophagy dysregulation, accumulation of intracellular toxic metabolites, and 

apoptosis [169–171]. Mitochondria play critical roles in aging-related neurodegenerative 

diseases, including AD [172]. Mitochondrial dysfunction is involved in the pathogenesis of 

AD via mitochondrial reactive oxygen species production [173, 174]. Manganese 

accumulates in the brain mitochondria, although the efflux is very slow [175, 176]. MnSOD 

is a potent antioxidant enzyme located in the mitochondria. MnSOD activity declines during 

the aging process [177]. Excess manganese can impair MnSOD activity, thus increasing 
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reactive oxygen species production and eventually leading to mitochondrial dysfunction 

[178].

Manganese and dysregulation of Alzheimer’s disease pathways—In addition to 

general neurotoxicity from manganese exposure, manganese is involved with AD pathology. 

To examine a causal relationship between oxidative stress and Aβ pathology, partially 

MnSOD deficient mice (one allele of MnSOD knockout) were crossed mice overexpressing 

a doubly mutated human APP [179]. Partial deficiency of MnSOD induced oxidative stress, 

and increased brain Aβ levels and Aβ plaques [179]. In contrast, MnSOD overexpression 

improved resistance to Aβ, slowed plaque formation or increased plaque degradation, and 

markedly attenuated the AD phenotype [180]. Furthermore, the APP/PS1 mouse model has 

an age-dependent accumulation of Aβ in the brain and an accelerated decline in 

mitochondrial function associated with a decrease in MnSOD activity [181]. These studies 

suggest close relationships between manganese induced mitochondrial dysfunction and 

oxidative stress in AD pathophysiology.

Manganese specifically binds to ligands in the N-terminus of Aβ1–40, as demonstrated in 

Aβ/micelle studies using Mn2+ ions as paramagnetic probes [182], similar to Cu2+ and Zn2+ 

ions [183, 184]. A weak binding affinity between Mn2+ ions bind to the N-terminus of 

Aβ1–40 in the millimolar to micromolar range was confirmed using nuclear magnetic 

resonance spectroscopy [185]. The discovery of additional metal Mn2+ ion binding to Aβ 
revealed more complex AD metal chemistry than the previously well-defined role for Cu2+ 

and Zn2+ ions in AD. High levels of manganese induce Aβ-related neurotoxicity in both 

cultured neurons and rodent brains [186]. Mouse N2a neuroblastoma cells stably expressing 

both wild-type PS1 and Swedish mutant APP (APPsw) treated with manganese led to dose-

dependent neurotoxicity and increased Aβ levels [186]. Moreover, high levels of manganese 

induced Aβ-related cognitive impairment in the APP/PS1 mouse model of AD [186]. This 

study further demonstrated the possible mechanisms related to impaired Aβ degradation; 

high manganese reduces expression of two major enzymes involved in Aβ degradation, 

neprilysin and insulin degrading enzyme, without altering AβPP expression [186]. 

Furthermore, manganese chelator reduced the concentration of manganese in the brain, and 

it restored the cognitive function of the AD model along with decreased Aβ peptides in the 

AD model, suggesting manganese chelation therapy as a possible strategy for the 

intervention of AD pathogenesis [186]. In addition, exposure to manganese can cause tau 

hyperphosphorylation [187], which may lead to the formation of neurofibrillary tangles, one 

of the key clinical structure changes in AD. Manganese has an affinity for Aβ and exposure 

to high levels of manganese may accelerate the accumulation of Aβ in the brain, thereby 

increasing Aβ neurotoxicity and accelerating the disease’s progression.

A frontal cortex gene expression profiling experiment was performed in Cynomolgus 
macaques who received 3.3–5.0 mg/kg of manganese weekly for 10 months [188]. 

Manganese treatment upregulated 61 genes compared to controls, from a total of 6,766 

genes. The most highly upregulated gene was Amyloid Beta Precursor Like Protein 1 

(APLP1), a member of the APP family associated with AD [188]. Immunohistochemistry 

confirmed increased APLP1 expression and revealed Aβ diffuse plaques in manganese-

treated frontal cortex [188]. Neurological function mediated by the frontal cortex is affected 
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in manganese-exposed animals and provides further explanation of visuospatial associative 

learning deficits in these same animals [189]. Manganese-induced neurotoxicity is likely 

attributable to the translational inhibition of AβPP and heavy chain ferritin resulting in 

excessive iron accumulation and exacerbated neurotoxic oxidative stress [190].

Epidemiologic studies of manganese exposure and Alzheimer’s disease

Postmortem brain manganese concentrations in Alzheimer’s disease—The 

physiological concentration of manganese in the normal human brain is estimated to be from 

5.32 to 14.03 ng Mn/mg protein, which corresponds to 20.0–52.8 μM Mn [191]. In 

mammalians, manganese-induced neurotoxicity occurs when manganese concentrations in 

the brain are elevated by ~3-fold, which corresponds to 15.96–42.09 ng Mn/mg protein or 

60.1–158.4 μM Mn [191]. These calculations suggest that Mn levels in the brain must be 

tightly controlled within a narrow physiological range.

Few studies have measured manganese concentrations in the brain of AD patients and 

normal controls, reporting mixed results. One earlier study measured manganese 

concentrations in the human brain of AD and aging participants using instrumental neutron 

activation analysis [192], a nuclear process for determining the metal concentrations in a 

vast range of materials [193]. Manganese levels in all brain regions were not different 

between controls and AD subjects (0.261 μg/g versus 0.245 μg/g) with the highest 

manganese levels detected in the basal ganglia in both groups [192]. In contrast, in two brain 

regions, the parietal cortex and the cerebellum [194], metal concentrations were measured 

by ICP-MS, a well-established method for quantifying various trace elements [195]. Higher 

levels of manganese were observed in the parietal cortex of the AD brain compared to 

controls [194].

Abnormal manganese concentrations are noted in AD and may play a role in its 

pathogenesis. The AD brain is under intensive oxidative stress [196] and MnSOD plays a 

role in AD progression. MnSOD is localized in the cerebral cortex and hippocampus of 

patients with AD [197], suggesting MnSOD is associated with the formation of Aβ plaques. 

Brains of AD patients have increased expression but reduced enzyme activity of MnSOD 

[198]. In summary, these studies suggest that brain manganese and MnSOD alterations may 

contribute to AD pathology.

Epidemiologic studies of manganese exposure and cognitive decline, 
dementia, and Alzheimer’s disease—Studies have examined associations between 

manganese exposure and cognitive functions (Table 3). Manganese was usually measured in 

blood, hair, drinking water, or air. Studies using hair [199], blood [200–202], or both hair 

and blood [203] biomarkers reported significant associations between adult manganese 

levels and impaired cognitive function.

In occupational manganese settings, exposure is typically higher than in environmental 

settings. Those with occupational exposure have reported deficits in attention and 

concentration, memory, visuospatial function, verbal learning, and executive and other 

cognitive functions, and manganese blood levels have a dose-effect relationship with 

cognitive function [202]. Following environmental manganese exposures in Quebec, women 
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with higher manganese blood levels had lower visual memory scores, while men with higher 

manganese blood levels had poor initial learning and recall, or both, on visual and verbal test 

scores [200]. In two rural Mexico communities living within a manganese mining district, 

higher blood manganese levels were associated with low-level cognitive function on the 

MMSE [201]. Also in a Mexican mining district, air manganese concentrations were 

associated with adult attention impairment [204]. In the environment from a ferromanganese 

alloy plant in Brazil, hair manganese in mothers was negatively associated with nonverbal 

cognitive ability, measured on Raven’s Progressive Matrices [203]. In two communities near 

a ferromanganese refinery in Brazil, hair and fingernail manganese levels were inversely 

associated with visual working memory and intelligence [199]. In a cross-sectional study of 

adults residing in Marietta and East Liverpool, Ohio, USA who were exposed to high levels 

of environmental airborne manganese from industrial sources, manganese exposure was 

associated with lower working memory, visuospatial memory, and verbal skills [205]. 

Together, these studies suggest exposure to high levels of manganese results in decreased 

cognition in adults.

Few studies have specifically tested the relationship between manganese exposure and AD, 

and the results have been inconsistent. In a retrospective ecological study, clinical cases of 

AD in Québec had higher soil levels of manganese at their birthplace residences relative to 

municipal averages [63]. In 40 Chinese older adults, whole blood manganese concentrations 

were correlated with cognitive function (MMSE and Clinical Dementia Rating Scale scores) 

and plasma Aβ [186]. These results suggest high manganese exposure may be involved in 

AD pathology and cognitive dysfunction. In contrast, a meta-analysis based on 17 studies, 

including 836 cases and 1,254 healthy controls found that AD patients had lower serum 

manganese levels compared with control subjects [206]. This study also found that those 

with mild cognitive impairment had lower serum manganese levels compared with control 

subjects. These findings suggest manganese may be a risk factor for AD. However, these 

findings should be interpreted with caution as most of the included studies had a small 

sample size, different sampling methods and metal analysis, and a lack of dietary manganese 

analysis.

Potential link between manganese and overlapping cases of AD-Parkinson’s 
disease—Manganese impacts AD pathology [119, 186] and manganese has a well-

established connection with Parkinson’s disease [207, 208]. In cases where both AD and 

Parkinson’s disease overlap, little is known of manganese’s contribution. AD and 

Parkinson’s disease are the two most common neurodegenerative diseases with substantial 

overlap in pathological and clinical features. Mild cognitive impairment is associated with a 

risk of progression to AD and risk of progression to Parkinson’s disease [209, 210]. 

Clinically, approximately 30% of patients with AD develop parkinsonism [211], and a high 

percentage of these patients have Lewy bodies [212]. Over 50% of patients with Parkinson’s 

disease eventually develop dementia [210]. Up to 50% of AD cases display α-synuclein 

aggregation into Lewy bodies [213–215], and cerebrospinal fluid from patients with either 

AD or Parkinson’s disease has similar α-synuclein levels [216]. Patients with dementia with 

Lewy bodies-AD typically exhibit more accelerated cognitive dysfunction than is seen in 

patients with AD alone [217, 218]. Transgenic mice that develop dementia with Lewy bodies 
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and AD pathologies display cognitive decline associated with a dramatic enhancement of 

Aβ, tau, and α-synuclein pathologies [219].

The ATP13A2 (PARK9) gene is an interesting factor that may link manganese to mixed 

cases of Parkinson’s disease and AD. Mutations in ATP13A2 were identified in patients with 

Kufor-Rakeb syndrome, an autosomal recessive juvenile-onset Parkinson’s disease that is 

characterized by supranu-clear upgaze paresis and dementia [220]. ATP13A2 is suggested to 

be involved in the transport of metals, including manganese, into cells [221]. Overexpression 

of ATP13A2 reduces intracellular manganese concentration and protects cells against 

manganese-induced neurotoxicity and cell death [221]. Patients with Lewy body disease had 

reduced ATP13A2 protein levels correlated with increased α-synuclein and Aβ in all Lewy 

body disease cases [222]. Given the role of manganese in the etiology of Parkinson’s disease 

and AD, further studies to determine potential mechanisms linking manganese to 

overlapping cases of Parkinson’s disease and AD are warranted.

Manganese summary—Manganese is an essential metal that is primarily received 

through dietary sources. However, exposure to high levels of the metal via inhalation can 

lead to brain manganese accumulation and a parkinsonian-like disorder known as 

manganism. Dietary manganese crosses the BBB, whereas inhaled manganese is absorbed 

through the olfactory transport pathway, thus resulting accumulation of the metal in the 

brain. In animal models, excessive manganese causes oxidative stress through impaired 

MnSOD and causes AD pathology including Aβ accumulation and tau phosphorylation. In 

human epidemiologic studies, manganese binds Aβ and elevated manganese exposure is 

associated with cognitive declines, though the prospective association with clinical AD has 

not yet been demonstrated. Extremely high exposure to manganese is associated with 

manganism, a specific neurodegenerative disease. The neurological effects of manganese 

exposure depend on levels of additional essential metals.

CONCLUSION

AD and related dementias are presently incurable and represent major public health 

challenges. There are 50 million people currently estimated to have dementia around the 

globe, and this number is expected to reach 152 million in 2050 [3]. AD and related 

dementias are most likely to occur in aging populations. As the aging population grows, the 

burden of disease, especially in developing countries, is tremendous. Randomized 

pharmacological trials for AD and related dementias have been largely unsuccessful [5], and 

trial investigators emphasize the importance of identifying risk factors for disease [7]. 

Identification of modifiable risk factors is critical to prevention of AD and related dementias 

and would have a significant public health impact. Likely risk factors for AD and related 

dementias include exposure to heavy metals, such as lead, cadmium, and manganese.

The metals lead, cadmium, and manganese occur naturally and persist in the environment. 

Lead and cadmium are non-essential metals that serve no required biological purpose in the 

human body and serious adverse effects are observed with increasing exposure levels. The 

general population is primarily exposed to lead via house dust from lead-based paint and 

drinking water from lead pipes, while the general population is primarily exposed to 
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cadmium through cigarette smoking and diet. Manganese is an essential metal for normal 

physiological processes and the general population is primarily exposed to manganese 

through diet. Adverse effects can occur with manganese exposure that is either too low or 

too high.

Exposures to lead, cadmium, and manganese are ubiquitous in our environments and stored 

in our bodies. Lead, cadmium, and manganese are divalent metals that can be transported 

into cells and around the body using endogenous divalent metal transporter systems, similar 

to normal transport for calcium and iron. Older adults carry historic lead exposure in bones 

from periods when lead was more commonly used in commercial products. Older adults also 

retain high body burdens of cadmium due to cadmium’s long half-life in the kidney. 

Manganese similarly has a fairly long half-life in tissues, especially in the bones, and 

accumulates in the brain.

Lead, cadmium, and manganese are well-documented neurotoxicants acting through 

multiple pathways to contribute to AD pathology. In cell and animal model systems, lead, 

cadmium, or manganese treatment induces oxidative stress, neuroinflammation, and 

apoptosis in neurons. In addition, animal models treated with these metals observe AD-

related pathological features in the brain (Aβ and tau tangles) as well as memory deficits. 

Human epidemiologic studies have consistently shown lead, cadmium, and manganese are 

associated with impaired cognitive function and cognitive decline in adults. No longitudinal 

human epidemiology study has assessed lead or manganese exposure on AD specifically. 

Two human studies using data from the US NHANES reported a possible link between 

cadmium exposure and AD mortality. Though lead, cadmium, and manganese have 

characterized neuronal toxicological pathways, cause AD-related pathology and memory 

deficits in model systems, and are associated with declines in cognition in older adults, 

evidence in humans linking these to AD is very limited. More longitudinal epidemiologic 

studies with high-quality time course exposure data and incident cases of AD are warranted 

to confirm and estimate the proportion of risk attributable to these exposures.

Older adults are poised to experience lead-, cadmium-, and manganese-related accelerated 

declines in cognition as they age. Given the widespread and global exposure to lead, 

cadmium, and manganese, even small increases in the risks of AD and related dementias 

would have a major population impact on the burden on disease. Exposure management 

should be considered to reduce the risks of AD and related dementias that may be 

attributable to exposure to lead, cadmium, or manganese. Modifying exposure levels to the 

known neurotoxicants and suspected AD and related dementia risk factors, lead, cadmium 

and manganese, should be a public health priority to prevent disease.
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Fig. 1. 
Etiologic window for environmental exposures linked to Alzheimer’s disease and related 

dementias (ADRD).
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Fig. 2. 
Transport of lead (Pb), cadmium (Cd) and manganese (Mn) to the brain. Lead, cadmium and 

manganese enter the body through the gut and lung and are distributed in the bloodstream 

and transported to the brain. Cadmium and manganese also reach the brain through the 

olfactory nervous system. Lead crosses the blood-brain barrier and accumulates in the brain. 

All three metals can accumulate in the choroid plexus, a component of the blood-CSF 

(cerebrospinal fluid) barrier. The image was created in the Mind the GRAPH (https://

mindthegraph.com/).
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Fig. 3. 
Mechanisms of general neurotoxicity action (yellow) and Alzheimer’s disease specific 

toxicity (orange) of cadmium, lead, and manganese on Alzheimer’s disease. Possible 

intervention options (green) and exposure routes and body distribution (light blue) are 

highlighted. Adapted from [223].
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