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SUMMARY:

Background: Body CT scans are frequently performed for a wide variety of clinical indications, 

but potentially valuable biometric information typically goes unused. We investigated the 

prognostic ability of automated CT-based body composition biomarkers derived from previously-

developed deep-learning and feature-based algorithms for predicting major cardiovascular events 

and overall survival in an adult screening cohort, compared with clinical parameters.

Methods: Mature and fully-automated CT-based algorithms with pre-defined metrics for 

quantifying aortic calcification, muscle density, visceral/subcutaneous fat, liver fat, and bone 

mineral density (BMD) were applied to a generally-healthy asymptomatic outpatient cohort of 

9223 adults (mean age, 57.1 years; 5152 women) undergoing abdominal CT for routine colorectal 

cancer screening. Longitudinal clinical follow-up (median, 8.8 years; IQR, 5.1–11.6 years) 

documented subsequent major cardiovascular events or death in 19.7% (n=1831). Predictive 

ability of CT-based biomarkers was compared against the Framingham Risk Score (FRS) and body 

mass index (BMI).

Findings: Significant differences were observed for all five automated CT-based body 

composition measures according to adverse events (p<0.001). Univariate 5-year AUROC (with 

95% CI) for automated CT-based aortic calcification, muscle density, visceral/subcutaneous fat 

ratio, liver density, and vertebral density for predicting death were 0.743(0.705–0.780)/
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0.721(0.683–0.759)/0.661(0.625–0.697)/0.619 (0.582–0.656)/0.646(0.603–0.688), respectively, 

compared with 0.499(0.454–0.544) for BMI and 0.688(0.650–0.727) for FRS (p<0.05 for aortic 

calcification vs. FRS and BMI); all trends were similar for 2-year and 10-year ROC analyses. 

Univariate hazard ratios (with 95% CIs) for highest-risk quartile versus others for these same CT 

measures were 4.53(3.82–5.37) /3.58(3.02–4.23)/2.28(1.92–2.71)/1.82(1.52–2.17)/2.73(2.31–

3.23), compared with 1.36(1.13–1.64) and 2.82(2.36–3.37) for BMI and FRS, respectively. Similar 

significant trends were observed for cardiovascular events. Multivariate combinations of CT 

biomarkers further improved prediction over clinical parameters (p<0.05 for AUROCs). For 

example, by combining aortic calcification, muscle density, and liver density, the 2-year AUROC 

for predicting overall survival was 0.811 (0.761–0.860).

Interpretation: Fully-automated quantitative tissue biomarkers derived from CT scans can 

outperform established clinical parameters for pre-symptomatic risk stratification for future 

serious adverse events, and add opportunistic value to CT scans performed for other indications.

Introduction

There has been substantial and growing interest in applying artificial intelligence (AI) to 

medicine, using various machine- and deep-learning algorithms.1 Along with other “big 

data” challenges, diagnostic imaging has been identified as a logical early target.2–4 In 

particular, body computed tomography (CT) represents an ideal modality with vast potential, 

as these scans are widely performed and contain additional robust, objective volumetric data 

that is highly reproducible and consistent across patients. In fact, opportunistic use of CT 

data beyond the clinical indication has already shown value from a variety of manual and 

semi-automated approaches, most notably with incidental osteoporosis screening.5–7 Beyond 

bone mineral density (BMD) information, every abdominal CT scan contains additional rich 

body composition data that can be objectively measured, including vascular calcification, 

muscle mass and density, visceral and subcutaneous fat, and liver fat content.8–13 If properly 

leveraged, this additional opportunistic data could further augment the value of a CT scans 

for the benefit of patients by potentially providing risk stratification for future adverse events 

and overall mortality. Of note, a recent report has emphasized the relative lack of such 

prevention research among studies supported by the U.S. National Institutes of Health 

(NIH).14 Importantly, this body composition data is freely available on essentially any 

abdominal CT scan, regardless of the initial clinical indication for imaging.

We have previously developed, trained, tested, and validated fully-automated a number of 

algorithms for measuring body composition at abdominal CT, including quantification of 

aortic calcification, muscle density, visceral and subcutaneous fat, liver fat, and BMD.15–19 

These CT-based biomarkers may hold potential for identifying those at increased risk for a 

variety of adverse clinical outcomes. With all of the artificial intelligence (AI) learning steps 

complete and the specific automated tool outputs already pre-selected, our next logical step 

was to apply these mature pre-defined “static” tools to an external cohort. To this end, we 

have access to a unique external screening cohort of generally healthy asymptomatic adults 

who underwent abdominal CT for the purpose of colorectal cancer prevention and screening, 

using CT colonography (CTC) technique.20 Through longitudinal follow-up, we have 

identified subsequent defined adverse events in this patient cohort, including heart attack, 
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stroke, and death. The main purpose of this study was to investigate the prognostic ability of 

a fully-automated pre-defined panel of CT-based body composition biomarkers for pre-

symptomatic prediction of future cardiovascular events and overall survival in a healthy 

adult screening cohort.

Methods

Patient cohort and CT protocol

This HIPAA-compliant investigation was approved by the Institutional Review Board at the 

University of Wisconsin and the Office of Human Subjects Research Protection at the NIH 

Clinical Center. The requirement for signed informed consent was waived. After exclusion 

of 82 individuals for inadequate follow-up (<1 year in the absence of an adverse event), the 

final study cohort consisted of 9223 generally healthy consecutive asymptomatic outpatient 

adults (mean age, 57.1 years; 5152 women, 4071 men), undergoing low-dose unenhanced 

abdominal CT for colorectal cancer screening (as part of routine health maintenance) 

between 2004 and 2016 at a single medical center. The low-dose non-contrast supine multi-

detector CT scans utilized for this investigation were all performed at 120 kVp using a single 

vendor (GE Medical Systems), with modulated mA to achieve a noise index of 50, typically 

resulting in an effective dose of 2–3 mSv. The specific additional CTC-related techniques for 

bowel preparation and colonic distention have been previously described.20,21 and are 

beyond the scope of this investigation.

Automated CT Biomarkers

The deep learning and image processing algorithms utilized for this predictive trial were 

previously developed, trained, and tested at the NIH Clinical Center. These CT-based 

algorithms include automatically segmenting and quantifying the spine, aortic calcium, 

abdominal musculature, visceral and subcutaneous fat, and liver. The current study 

represents an external validation for these tools,22 which were all trained and tested on CT 

cohorts separate from the current study cohort. Both the preliminary works and this 

culminating predictive trial all made use of the high performance computing capabilities of 

the Biowulf system at the NIH. The specific AI methodology for these automated CT-based 

anatomic tissue segmentation and quantification tools have been previously described 

elsewhere15–19,23–29 (see Supplement for additional methodology details). Briefly, these 

tools fall into two main categories: a deep-learning group and a feature-based image-

processing group. Deep-learning algorithms were utilized to segment and analyze the entire 

liver, the abdominal wall musculature, and calcified atherosclerotic aortic plaque. These 

models consisted of a modified 3D U-Net for segmentation of liver and muscle, and the 

Mask-RCNN algorithm for segmentation of aortic calcium. For bone and fat quantification, 

feature-based image processing algorithms were used, starting with fully-automated spine 

segmentation and labeling software to identify each vertebral level from T12–L5. This was 

followed by isolation of the anterior trabecular space of each vertebra for BMD, as well as 

the visceral and subcutaneous fat compartments at each level. Because these validated CT-

based tools were utilized herein in a static manner whereby no additional “learning” was 

employed, the need for additional training, testing, or cross-validation is obviated.
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Preliminary works utilizing our CT screening cohort were performed for each automated CT 

tool to establish normative values, success/failure rates, and to narrow down each tool to a 

single stable quantitative measure for each tissue composition, without additional learning or 

adjustment.15–19 Each tissue measure can be reported in a variety of ways. For example, CT 

attenuation numbers measured in Hounsfield units (HU) reflect mean tissue density. Tissue 

bulk can be expressed according to cross-sectional area at specified levels or by volume. The 

final selected static measure for each of five body composition areas (Fig 1) was chosen 

according to our preliminary investigations to optimize overall success, and included: 1) the 

visceral-to-subcutaneous (V/S) fat ratio at the L1 level, 2) mean muscle density (in HU) at 

the L3 level, 3) volumetric liver density (in HU), 4) aortic calcification between the L1–L4 

vertebral levels, quantified by an Agatston score, and 5) trabecular BMD at the L1 level (in 

HU). The technical failure rates for these tools were all on the order of 1% or less. Figure 1 

depicts visual correlates of the quantitative output for the automated CT tools. This final 

panel of biomarkers was derived from CT scans in this study cohort in a fully-automated 

fashion.

Clinical Parameters and Adverse Outcomes

Beyond patient age and sex, the main clinical parameters we considered were body mass 

index (BMI), defined as weight (kg) divided by the square of height (m2) and the data inputs 

necessary for the Framingham Risk Score (FRS). The FRS for assessing risk for 

cardiovascular disease (CVD) is a well-established, validated multivariate algorithm 

combining the factors of age, sex, blood pressure, cholesterol, lipids, diabetic status, and 

smoking.30 Data points closest to the timing of the CT scan were included.

Adverse clinical outcomes were defined by either patient death or major cardiovascular 

events subsequent to CT scanning, including myocardial infarction (MI), cerebrovascular 

accident (CVA), or development of congestive heart failure (CHF) to reflect the endpoints 

considered by the FRS for CVD. We constructed a broad algorithmic EHR search for the 

relevant clinical data points and the defined clinical events.

Statistical Analysis

The analysis and modeling were developed specifically for this study, and have not been 

applied previously to other cohorts or scenarios. Summary statistics were compiled and 

compared for those patients with and without subsequent adverse events. To assess the 

association between the predictive measures and downstream adverse events, we utilized 

both an event-free survival analysis and logistic regression to compute receiver operating 

characteristic (ROC) curves. Relevant p-values were derived using two-sided t-tests for 

normally distributed variables, and the Wilcoxon rank sum test when the normality 

assumption did not hold. AUROC comparisons were made using DeLong’s method; p<0.05 

was used to determine statistical significance. For the time-to-event survival analysis, 

Kaplan-Meier curves were generated by splitting predictor variables into quartiles. Cox 

proportional hazards models were used to derive concordance values and individual risk 

predictions. For ROC curve analysis, data sets were restricted to defined time intervals since 

time to event is not considered. Three arbitrary cutoffs included only patients having at least 

2-year, 5-year, or 10-year follow-up, respectively, if they did not experience an event within 
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those time frames. Area under the ROC curves (AUROC) with 95% confidence intervals 

were calculated. Univariate and multivariate analyses of CT biomarkers were performed. 

Age and sex were considered as potential confounders. Of note, FRS is already a 

multivariate predictor. Hazard ratios with 95% confidence intervals (CI) were computed for 

each CT biomarker, comparing the “highest-risk” quartile against the other three quartiles.

Results

The final study cohort consisted of 9223 generally healthy asymptomatic adults (mean age, 

57.1 years; 5152 women, 4071 men), who underwent low-dose unenhanced abdominal CT. 

After final longitudinal clinical follow-up subsequent to CT scanning (median time interval, 

8.8 years; IQR, 5.1–11.6 years), adverse clinical outcomes of interest, including major 

cardiovascular events (MI, CVS, or CHF) or death, were confirmed in 1831 (19.7%) 

patients. Of the 549 (5.9%) patients who died during the surveillance interval, the median 

time interval from CT scan to death was 6.1 years (mean, 6.2 years; IQR, 3.2–9.2 years). 

Median time to cardiovascular event was 4.4 years (mean, 5.0; IQR 2.0–7.8 years). 

Significant differences (p<0.001) were observed in all five automated CT-based measures 

(aortic calcification, muscle density, visceral/subcutaneous fat ratio, liver density, and L1 

vertebral density) between those with and without an adverse event (Table 1). Summary data 

for clinical parameters according to adverse events are shown in Table S1.

The diagnostic performance of the clinical parameters (FRS and BMI) and the CT-based 

metabolic biomarkers for predicting overall survival is shown in Table 2 according to ROC 

curve and Cox proportional hazards analyses. For all data points (ie, 2-year, 5-year, and 10-

year AUROC; and Cox model concordance), the automated CT-based univariate results for 

aortic calcification and muscle density were higher than the FRS, without including any 

demographic input data. For example, as shown in Figure 2a, the univariate 5-year AUROC 

values (with 95% CIs) for CT-based aortic calcification and muscle density were 0.743 

(0.705–0.78sss0) and 0.721 (0.683–0.759), respectively, compared with 0.688 (0.650–0.727) 

for FRS (p<0.05 for aortic calcium vs. FRS). Automated CT-based fat, liver, and bone 

measures also performed fairly well as univariate measures, whereas BMI was a poor 

predictor, with 5-year AUROC of 0.499 (0.454–0,544) (Fig 2a). Similar performance trends 

were observed for prediction of downstream major cardiovascular events (Table S2). For 

example, all AUROC values for aortic calcification, whether alone or in combination with 

other CT-based automated measures, were significantly greater than for FRS (p<0.05). In 

general, multivariate combinations of CT biomarkers further improved prediction over 

clinical parameters (Tables 2 and S2). For example, combining the three CT-based 

quantitative biomarkers of aortic calcification, muscle density, and liver fat resulted in a 2-

year AUROC of 0.811 (0.761–0.860) (Fig 2b).

When FRS was added to the CT-based aortic calcium score, there was no significant 

improvement of this automated CT measure alone for either CV events or overall survival, 

with p-values all 0.509 or greater for all AUROC comparisons (Tables 2 and S2). Similarly, 

adding FRS to CT-based multivariate combinations did not significantly improve 

performance either (Tables 2 and S2). Also of note, adding potential confounders of patient 
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age and sex to the multivariate analysis provided only minor incremental benefit to the 

automated CT data alone (Fig S1b).

Kaplan-Meier time-to-death plots by quartile for the clinical parameters and univariate CT 

biomarkers are shown in Figure 3. Good separation between the “highest-risk” quartile 

versus the other three quartiles over time was observed for the automated aortic calcification 

score, with a similar trend for automated muscle density. Although quartile separation was 

less pronounced for the CT-based fat and liver measures, each is noticeably better then BMI. 

Univariate hazard ratios (with 95% CI) comparing the highest-risk quartile with the other 

three quartiles for CT-based aortic calcification, muscle density, visceral/subcutaneous fat 

ratio, liver density, and vertebral density were 4.53 (3.82–5.37), 3.58 (3.02–4.23), 2.28 

(1.92–2.71), 1.82 (1.52–2.17), and 2.73 (2.31–3.23), respectively. Corresponding hazard 

ratios for BMI and FRS were 1.36 (1.13–1.64) and 2.82 (2.36–3.37), respectively. Similar 

time-to-event results were observed when cardiovascular events are included (Fig S1a); 

univariate hazard ratios ranged from 1.62–3.53 for the five metabolic CT markers (and 1.34 

and 2.59 for BMI and FRS, respectively). When combining CT-based parameters in a 

multivariate fashion, further improvement in worst quartile separation was observed (Fig 

S1b).

Figure 1B demonstrates a case example that shows how predictive modeling derived from 

the quantitative CT data can be applied to an individual patient, similar to the multivariate 

FRS approach.

Discussion

This study demonstrates the potential value of harnessing the rich biometric tissue data 

embedded within all body CT scans that typically go unused in routine practice. Although 

such an opportunistic approach can be applied using manual or semi-automated measures, 

the maturation of robust fully-automated AI algorithms provides for a more efficient and 

objective means for high-volume population-based opportunistic screening. With over 80 

million body CT scans performed each year in the U.S.,31 much of the focus has been placed 

on negative concerns about “incidentalomas” and radiation exposure.32,33 However, since 

most scans are performed on older adults, the opportunistic screening potential also becomes 

apparent. We applied these CT-based tools for assessing body composition to a generally 

healthy, outpatient screening cohort to start, which uniquely reflects our general adult 

population over 50, but this approach can also be applied to other cohorts, including those 

with symptoms or increased risk factors. We envision a (not-too-distant) future where this 

valuable prognostic CT information might be routinely captured and reported for the benefit 

of the patient, regardless of the clinical indication for imaging. The added value from these 

CT-based metabolic biomarkers requires no additional patient time or radiation exposure, 

and has the potential for improved individualized risk profiling.

We found that the AI panel of automated CT-based tissue biomarkers used in this study 

compared favorably with the FRS for pre-symptomatic prediction of future cardiovascular 

events and death. In fact, in terms of AUROCs and HRs, the univariate CT-based measures 

of aortic calcification alone significantly outperformed the multivariate FRS for major CV 
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events and overall survival. Based on prior preliminary work that required manual case-by-

case interaction for abdominal aortic calcium scoring in a smaller cohort,9 we expected the 

automated calcium tool to be valuable for cardiovascular risk profiling. BMI, which does not 

account for the relative anatomic distribution of fat,10 was a poor predictor of cardiovascular 

events and overall survival, whereas the CT-based visceral/subcutaneous fat ratio performed 

significantly better. Although BMI quartile separation was minimal, the slightly greater risk 

for death observed for the 1st and 4th quartiles (Figure 3) likely reflects the previously 

described U-shaped risk curve for this parameter.34 Liver density at non-contrast CT directly 

correlates with fat content,11,19 and reflects the high prevalence of hepatic steatosis, which 

has relevance for metabolic syndrome. Although its univariate performance was not stellar, 

liver density appears to have complementary value in terms of AUROC when combined with 

other CT biomarkers, such as aortic calcification and muscle density. In general, a 

multivariate combination of these CT-based biomarkers is likely the best way forward for 

optimized risk stratification. Furthermore, these CT biomarkers appear to be stronger 

predictors of future CV events compared with a panel of previously studied blood- and 

urine-based biomarkers reported by Wang et al.35

A recent publication by Vargas et al has emphasized the relative lack of prevention research 

that measures leading risk factors for death or disability as outcomes among studies 

supported by the U.S. National Institutes of Health (NIH).14 This study was intended in part 

to help address this research gap. While the current study focused only on the clinical 

outcomes of subsequent cardiovascular events and overall survival, these automated CT 

biomarkers have prognostic value for other “cardiometabolic” endpoints, such as 

osteoporotic fragility fractures and metabolic syndrome. We are only advocating for using 

this additional CT-based body composition data in an opportunistic fashion, and not as the 

sole reason for scanning. However, when coupled with an established indication such as 

CTC for colorectal cancer prevention, the concept of standalone population-based CT 

screening of asymptomatic adults could potentially be considered. In this scenario, the 

cumulative value of the screening CT data would need to clearly outweigh the potential 

harms, including cost and radiation exposure, and provide benefit beyond the more typical 

clinical means. Nonetheless, in current practice, this additional CT data is largely going 

unused in the many patients being scanned for a wide variety of established clinical 

indications. Automated CT measures of muscle, fat, and bone might also be valuable for 

opportunistic frailty monitoring in cancer patients, who often undergo repeated CT scanning 

for treatment response and surveillance.

The ever-expanding attention focused on the potential of AI in medicine is nearly 

ubiquitous, both in the medical literature and the lay press.1 The application of countless 

algorithms ranging from classic machine learning to more complex deep learning with 

convolutional neural networks is omnipresent. Along with a few other specific areas in 

medicine, medical image analysis represents a logical target for AI application.3,4 Despite 

predictions by some that “disruptive” AI technology is destined to soon displace the 

radiologist,36 the complexity of creating, training, and modifying the vast number of 

necessary algorithms argues instead for active engagement over replacement.3,4,37,38 

Furthermore, AI is really nothing new in radiology, and co-authors of the current work have 

been involved in CT-based computer-aided detection (CAD) for many years.39 Although we 
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believe that AI-based advances will ultimately enhance the practice of radiology, the recent 

hype has greatly outpaced true progress to date. The validated CT-based AI tools that we 

demonstrate herein represent the culmination of years of development, training, and testing. 

Although some of the processes are rooted in deep-learning algorithms, the output of these 

quantitative tools is straightforward and can be visually confirmed for quality assurance (ie, 

“explainable” AI), as opposed to the more “black box” feel of many other deep-learning AI 

solutions.

We acknowledge limitations to our investigation. All CT studies were performed with non-

contrast technique; we are currently validating the use of these automated tools in a separate 

asymptomatic healthy cohort who underwent CT both without and with intravenous contrast. 

Risk stratification was based on analysis of the initial CTC examination in this screening 

cohort. A subset of more than 2000 patients underwent subsequent CT screening 5–10 years 

later, for which we plan to assess for interval changes in these automated measures that may 

offer additive value. Although our relatively unique CT screening cohort comprised of 

generally healthy outpatient adults was ideal for initial investigation, external validation in 

other screening populations with broader racial diversity is warranted, as our cohort was 

about 90% Caucasian. Application to new cohorts, including symptomatic patients at other 

centers, would also allow for further testing of the predictive models. This could be 

performed using a federated approach.40 One could argue that the FRS is outdated as a 

clinical comparator and used less often in the clinic. However, the FRS has served well for a 

number of previous trials, providing greater context as a common reference standard. 

Furthermore, the recent 2019 ACC/AHA guidelines state that the FRS may still be 

appropriate for use as an alternative risk prediction tool.41 It is conceivable that unforeseen 

confounders between the earlier testing/training cohorts and the current study group could 

exist with regard to measuring body composition by CT. Given the nature of the EHR search 

for adverse outcomes, it is possible that some definable events were not captured. However, 

our population tends to be quite stable. The quartile separation approach we have chosen 

likely does not reflect the optimal division of the data, but instead represents a starting point 

for further investigation, potentially with even larger cohorts. Finally, it is also important to 

consider the potential for possible unintended harm if subsequent intervention or inaction 

resulted from an incorrect classification of cardiovascular risk based on the CT-based body 

composition data.

In conclusion, we have shown that fully-automated quantitative tissue biomarkers derived 

from abdominal CT scans can outperform established clinical parameters for pre-

symptomatic prediction of future cardiovascular events and overall survival. This approach 

leverages robust biometric data embedded in all such scans, and can add opportunistic value 

to abdominal CT scans performed for a wide variety of other indications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research in context

Evidence before this study

There is a robust literature on how certain objective measures derived from abdominal 

CT scans can provide useful health information beyond the specific clinical indication for 

scanning. We and others have previously shown that manual “opportunistic” measures of 

aortic calcification, abdominal musculature, visceral fat, liver fat, and bone mineral 

density can help stratify patient risk in terms of future adverse cardiometabolic events, 

including death. In some cases, these manual CT-based measures outperformed 

established clinical predictive tools. We have also recently demonstrated that these CT-

based biometric measures can all be fully automated using artificial intelligence (AI) 

techniques to allow for objective, large-scale investigation of larger patient cohorts.

Added value of this study

This is the first study to our knowledge to apply a battery of validated, fully-automated 

CT biomarkers to a large adult asymptomatic screening cohort with long-term clinical 

follow-up to assess their ability to predict future adverse clinical events, such as 

myocardial infarction, stroke, and death. Predictive ability of these CT biomarkers was 

compared with the well-established Framingham Risk Score (FRS). We found that the 

automated CT-based prediction was overall superior to the FRS. Some univariate CT 

measures outperformed the multivariate FRS, with further improvement in CT-based 

prediction when combining biomarkers. These CT biomarkers are typically ignored in 

current clinical practice, but this tissue-based information resides in all CT scans, 

regardless of clinical indication for imaging,

Implications of all the available evidence

Our study demonstrates the rich prognostic value that can be automatically derived from 

abdominal CT scans, incidental to the indication for imaging. Given the many millions of 

CT scans performed each year in many countries, harnessing this valuable data could 

identify many pre-symptomatic patients who are at high risk for future serious adverse 

events, potentially allowing for earlier intervention and prevention.
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Figure 1A. Depiction of the fully-automated CT biomarkers tools utilized in this study.
Schematic depiction (A) of the automated process for asses sing fat, muscle, liver, aortic 

calcium, and bone from original abdominal CT scan data. In practice, the visual tool outputs 

allow for slice-by-slice quality assurance for automated segmentation results in individual 

patients. CT biomarkers results were then correlated with subsequent adverse clinical 

outcomes. Importantly, these automated algorithms were pre-selected based on prior work 

and applied in a static fashion, without additional “learning” or adjustment.
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Figures 1B and 1C. Case example in an asymptomatic 57-year-old man undergoing CT for 
colorectal cancer screening.
At the time of CT screening, he had a BMI of 27.3 and FRS of 5% (low risk). However, 

several CT-based metabolic markers were indicative of underlying disease (B), including a 

visceral-to-subcutaneous fat ratio of 3.1 (99th percentile), abdominal aortic Agatston score of 

5070 (97th percentile), and steatotic liver density of 28 HU (97th percentile). Multivariate 

Cox model prediction based on these three CT-based results put risk of CV event within 2, 5, 

and 10 years at 19%, 40%, and 67%, respectively, and of death at 4%, 11%, and 27%, 

respectively. At longitudinal clinical follow-up, the patient suffered an acute MI three years 

after this initial CT and died 12 years after CT at the age of 64. Contrast-enhanced CT (C) 

performed seven months before death for minor trauma was interpreted as negative but does 

show significant progression of vascular calcification, visceral fat, and hepatic steatosis.
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Figure 2. ROC curves for predicting overall survival
A. ROC curves for the clinical parameters of FRS and BMI, as well as univariate CT 

measures of aortic calcification and muscle density for predicting death over a 5-year time 

horizon. Without additional demographic or other input data, both CT parameters 

outperform the multivariate FRS according to area under the curve (AUC). In general, BMI 

was a poor predictor of outcomes at all time points in this study. The numbers in parentheses 

represent 95% confidence intervals).

B. Multivariate combination of CT-based biomarkers further improved prediction. In this 

example, CT-based aortic calcification, muscle density, and liver density for predicting 

overall survival over 2-year time horizon give an AUC or 0.811 (95% CI, 0.761–0.860).
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Figure 3. Kaplan-Meier time-to-death plots by quartile for clinical parameter and univariate CT 
biomarkers
Good separation between the “worst” versus other quartiles over time was observed for the 

automated aortic calcium and muscle density values. Quartile separation was less 

pronounced for the CT-based fat and liver measures, but each is noticeably better than BMI. 

The L1 BMD results are not shown but separation of the worst quartile was comparable to 

muscle assessment.
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Table 1.

Summary Data of CT Biomarkers According to Clinical Outcomes

Summary Data of CT Biomarkers According to Clinical Outcomes

CT Biomarker Total Cohort (n=9223)
CV Event Death

Yes (n=1831) No (n=7392) Yes (n=549) No (n=8674)

AoCa (Ag)

 Mean 699 1628 469 2471 587

 Median 59 449 31 873 48

 IQR 0–493 38–1945 0–313 131–3541 0–428

Muscle HU

 Mean 28.9 25.4 29.8 20.8 29.4

 Median 31 27 31 22 31

 IQR 22–38 17–35 23–38 12–31 23–38

V/S Fat Ratio

 Mean 0.91 1.13 0.58 1.22 0.89

 Median 0.72 0.94 0.68 0.98 0.71

 IQR 0.5–1.2 0.6–1.4 0.5–1.1 0.7–1.5 0.5–1.1

Liver HU

 Mean 55.4 54.1 55.7 53.6 55.5

 Median 58 56 58 56 58

 IQR 52–62 50–61 52–62 50–60 52–62

L1 HU

 Mean 171.2 159.0 174.2 150.9 172.4

 Median 168 156 171 146 169

 IQR 142–197 128–186 146–200 113–180 144–198

CV = cardiovascular; AoCa = aortic calcification; Ag = Agatston score; HU = Hounsfield units; V/S = visceral-tosubcutaneous; IQR = interquartile 
ratio; Subsequent CV events defined as acute MI, CVA, CHF, or death

All comparisons of CT biomarkers with versus without events were statistically significant (p<0.001)
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Table 2.

Diagnostic Performance for Predicting Overall Survival

Diagnostic Performance for Predicting Death

2-year AUROC 
(n=7849)

5-year AUROC 
(n=6891)

10-year AUROC 
(n=4029)

Cox PH Model 
Concordance

Clinical Parameters

 FRS 0.700 0.688 0.693 0.681

 BMI 0.546 0.499 0.533 0.520

Automated CT Biomarkers

Univariate

 AoCa (Ag) 0.746 0.743* 0.746* 0.735

 Muscle HU 0.736 0.721 0.717 0.700

 V/S Fat Ratio 0.685 0.661 0.656 0.648

 Liver HU 0.644 0.619 0.628 0.602

 L1 HU 0.627 0.646 0.640 0.637

Multivariate**

 AoCa + Muscle 0.780 0.768 0.768 0.772

 AoCa + Muscle + Liver 0.811 0.782 0.777 0.778

 AoCa + Muscle + Liver + V/S 0.817 0.789 0.780 0.780

 AoCa + FRS° 0.774 0.744 0.746 0.733

 AoCa+Muscle+Liver+V/S+FRS° 0.847 0.796 0.792 0.778

Cox PH model = Cox proportional hazards model; AUROC = area under the ROC curve; FRS = Framingham Risk Score; BMI = body mass index; 
AoCa = aortic calcification; Ag = Agatston score; HU = Hounsfield units; V/S = visceral-to-subcutaneous

*
p<0.05 compared with FRS performance

**
p<0.05 compared with FRS performance

°
No significant improvement compared with CT-based performance without FRS (p=0.509–0.965 for AoCa comparison and p=0.406–0.806 for 

AoCa+Muscle+Liver+V/S comparison)
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