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Abstract

This article develops a pair of new prediction summary measures for a nonlinear prediction 

function with right-censored time-to-event data. The first measure, defined as the proportion of 

explained variance by a linearly corrected prediction function, quantifies the potential predictive 

power of the nonlinear prediction function. The second measure, defined as the proportion of 

explained prediction error by its corrected prediction function, gauges the closeness of the 

prediction function to its corrected version and serves as a supplementary measure to indicate (by 

a value less than 1) whether the correction is needed to fulfill its potential predictive power and 

quantify how much prediction error reduction can be realized with the correction. The two 

measures together provide a complete summary of the predictive accuracy of the nonlinear 

prediction function. We motivate these measures by first establishing a variance decomposition 

and a prediction error decomposition at the population level and then deriving uncensored and 

censored sample versions of these decompositions. We note that for the least square prediction 

function under the linear model with no censoring, the first measure reduces to the classical 

coefficient of determination and the second measure degenerates to 1. We show that the sample 

measures are consistent estimators of their population counterparts and conduct extensive 

simulations to investigate their finite sample properties. A real data illustration is provided using 

the PBC data. Supplementary materials for this article are available online. An R package 

PAmeasures has been developed and made available via the CRAN R library. Supplementary 

materials for this article are available online.
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1. Introduction

In this article, we study prediction accuracy measures for a nonlinear prediction function 

based on a possibly misspecified nonlinear model with right-censored time-to-event data. By 

far, the most commonly used prediction accuracy measure for a linear model is the R2 

statistic, or coefficient of determination. Let Y be a real-valued random variable and X be a 

vector of p real-valued explanatory random variables or covariates. Assume that one 

observes a random sample (Y1, X1),...,(Yn, Xn) from the distribution of (Y, X). The R2 

statistic is defined as

R2 = 1 −
∑i = 1

n Y i − Y i
2

∑i = 1
n Y i − Y 2 , (1)

where Y i = a + bTXi is the least squares predicted value for subject i. The R2 statistic has the 

straightforward interpretation as the proportion of variation of Y, which is explained by the 

least squares prediction function due to the following variance decomposition:

∑
i = 1

n
Y i − Y 2 = ∑

i = 1

n
Y i − Y 2 + ∑

i = 1

n
Y i − Y i

2 . (2)

total variation = explained variation + unexplained variation

Despite its popularity in linear regression, the above R2 statistic is not readily applicable to a 

nonlinear model since the decomposition (2) no longer holds. In the past decades, much 

efforts have been devoted to extending the R2 statistic to nonlinear models. Among others, 

the pseudo, R2 statistics for a nonlinear model include likelihood-based measures (Goodman 

1971; McFadden et al. 1973; Maddala 1986; CoxandSnell 1989; Magee 1990; Nagelkerke 

1991), information-based measures (McFadden et al. 1973; Kent 1983), ranking-based 

measures (Harrell et al. 1982), variation-based measures (Theil 1970; Efron 1978; 

Haberman 1982; Hilden 1991; Cox and Wermuth 1992; Ash and Shwartz 1999), and the 

multiple correlation coefficient measure (Mittlböck and Schemper 1996; Zheng and Agresti 

2000). However, none of the existing pseudo R2 measures are motivated directly from a 

variance decomposition and none have received the same widespread acceptance as the 

classical R2 for linear regression. Interested readers are referred to Zheng and Agresti (2000) 

for an excellent survey of existing pseudo R2 measures and further references.

In this article, we first develop a pair of new prediction accuracy measures for a nonlinear 

prediction function of an individual response. We begin with defining population prediction 

accuracy measures. Based on a variance decomposition, we define a ρ2 measure as the 

proportion of the explained variance of Y by a corrected prediction function, which is shown 

to coincide with the squared multiple correlation coefficient between the response and the 

predicted response. Because it describes the proportion of the explained variance by its 

corrected prediction function, ρ2 measures the potential predictive power of the predictive 

function and thus by itself is not sufficient to summarize the prediction accuracy of the 

Li and Wang Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prediction function. As a remedy, we introduce another parameter, λ2, defined as the 

proportion of prediction error explained by the corrected prediction function based on a 

prediction error decomposition, to measure how close the prediction function is to its 

corrected version and quantifies how much prediction error reduction is realized with the 

correction. The two parameters capture complementary information regarding the predictive 

accuracy of the prediction function and provide a complete summary of its predictive power. 

We further develop sample versions of the variance and prediction error decompositions 

based on uncensored data, define the corresponding sample prediction accuracy measures, 

namely R2 and L2, and establish their asymptotic properties. It is worth noting that for the 

least squares prediction function under the linear model, L2 always degenerates to 1 and thus 

only R2 is needed to describe its predictive accuracy.

We further extend the proposed prediction accuracy measures to event time models with 

right-censored time-to-event data. Note that even for the linear model, it is not clear how to 

extend the R2 statistic defined in (1) to right-censored data since some of the Y values are 

not observed. A variety of pseudo R2 measures and other loss functions have been proposed 

for event time models with right-censored data (Kent and O’Quigley 1988; Korn and Simon 

1990; Graf et al. 1999; Schemper and Henderson 2000; Royston and Sauerbrei 2004; 

O’Quigley, Xu, and Stare 2005; Stare, Perme, and Henderson 2011). For example, the EV 

option in the SAS PHREG procedure gives a generalized R2 measure proposed by Schemper 

and Henderson (2000) for Cox’s (1972) proportional hazards model. Amore recent proposal 

by Stare, Perme, and Henderson (2011) uses explained rank information, which is applicable 

to a wide range of event time models. Stare, Perme, and Henderson (2011) also gave a 

thorough literature review of prediction accuracy measures for event time models. We 

highlight that for linear regression, none of the existing pseudo R2 measures for right-

censored data reduce to the classical R2 statistic in the absence of censoring. Moreover, 

under a correctly specified model, they do not converge to the nonparametric population R2 

value ρNP
2 ≡ var(E(Y |X))/var(Y ), the proportion of the explained variance by E Y X , as the 

sample size grows large. Finally, as illustrated in Section 4 (Table 1), the pseudo R2 

measures of Schemper and Henderson (2000) and Stare, Perme, and Henderson(2011) may 

fail to distinguish between Cox’s models with the same regression coefficients but different 

baseline hazards: they could remain constant for different Cox’s models as ρNP
2  varies from 

0 to 1. In Section 3, we propose right-censored sample versions of R2 and L2 by deriving a 

variance decomposition and a prediction error decomposition for right-censored data and 

show that they are consistent estimators of the population parameters ρ2 and λ2. The 

proposed measures possess multiple appealing properties that most existing pseudo R2 

measures do not have. First, for the linear model with no censoring, our R2 statistic reduces 

to the classical coefficient of determination and L2 degenerates to 1. Second, when the 

prediction function is the conditional mean response based on a correctly specified model, 

our R2 statistic is a consistent estimate of the nonparametric coefficient of determination 

ρNP
2 , and L2 converges to 1 as the sample size grows to infinity. Third, our method is 

applicable to a variety of event time models including the Cox proportional hazards model, 

accelerated failure time models, additive risk models, threshold regression model, 

proportional odds model, and transformation models, with time-independent covariates and 
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independently right-censored data. Fourth, our measures are defined without requiring the 

prediction model to be correctly specified. Finally, the proposed R2 statistic provides a 

natural benchmark to compare the potential prediction power between prediction models 

that are not necessarily nested or correctly specified as illustrated in the real data example in 

Section 5.

The rest of the article is organized as follows. In Section 2.1, we define a pair of population 

prediction accuracy measures for a nonlinear prediction function by deriving a variance 

decomposition and a prediction error decomposition. Sample measures based on 

independent and identically distributed complete data are then proposed and studied in 

Section 2.2. Section 3 extends these measures to event time models with right-censored data. 

Section 4 presents simulations to illustrate potential weaknesses of some existing pseudo R2 

proposals for right-censored data and investigate the finite sample performance of the 

proposed measures. A real data example is given in Section 5. Further remarks are provided 

in Section 6. Additional lemmas, all theoretical proofs, and more numerical results are 

collected in the supplementary materials.

2. Prediction Accuracy Measures for a Nonlinear Model

Denote by F (y |x) = P (Y ≤ y |X = x) the true conditional distribution function of Y given X = 

x. Consider a regression model of Y on X described by a family of conditional distribution 

functions ℳ = Fθ(y |x):θ ∈ Θ , where θ is either finite or infinite dimensional. For example, 

Fθ(y |x) = Φ(y − α − βTx)/σ) for the linear regression model with a normal N(0, σ2) error, 

where θ = (α, βT, σ2) and Φ is the standard normal cumulative distribution function. For the 

Cox (1972) proportional hazards model, Fθ(y |x) = 1 − 1 − F0(y) exp βTx  where θ = (β, F0) 

consists of a finite dimensional regression parameter β and an infinite dimensional unknown 

baseline distribution function F0. Model ℳ is said to be misspecified if it does not include 

the true conditional distribution function F(y|x) as a member.

For any θ ∈ Θ, let mθ(X) be a prediction function of Y obtained as a functional of Fθ( ⋅ |X). 
Common examples of mθ(X) include the conditional mean response mθ(x) = ∫ ydFθ(y |x) and 

the conditional median response mθ(x) = Fθ
−1(0.5 |x). Assume that θ  is a sample statistic that 

converges to a limit θ* as n grows to ∞. As discussed in the supplementary materials 

(Appendix A.1) θ* is typically the true parameter value under a correctly specified model, 

and the parameter value that minimizes the Kullback-Leibler information criterion under a 

misspecified model.

Below, we first develop population prediction accuracy measures for mθ*(X), which can be 

regarded as the asymptotic accuracy measures for the predictive power of mθ(x). Their 

sample versions for mθ(X) will then be derived in a similar fashion.

2.1. Population Prediction Accuracy Measures

For any p-variate function P(x), define MSPE(P(X)) = E{Y − P(X)}2. as the mean squared 
prediction error of P(X) for predicting Y. In general, it would be desirable for a prediction 
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function P(X) of Y to possess at least the following properties: (i) E P (X) = μY  and (ii) 

MSPE (P (X)) ≤ MSPE μY , where μY = E(Y ) is the best prediction among all constant (non-

informative) predictions of Y as measured by MSPE. However, such minimal requirements 

are not always met by mθ*(X) when the model ℳ is possibly misspecified or when the 

prediction is not based on the conditional mean response. Below, we introduce a linearly 

corrected prediction function, which always meets the above requirements (i) and (ii) and is 

pivotal to assessing the predictive accuracy of mθ*(X).

Definition 2.1.—The linearly corrected prediction function of mθ*(X) is defined as

mθ*
(c)(X) = a + bmθ*(X) = μY

+ cov Y , mθ*(X)
var mθ*(X) mθ*(X) − E mθ*(X) ,

(3)

where (a, b) = argminα, βE Y − α + βmθ*(X) 2.

It is easy to see that mθ*
(c)(X) satisfies the above mentioned requirements (i) and (ii) and that 

MPSE mθ*
(c)(X) ≤ MPSE mθ*(X) . More importantly, by Lemma A.1 (supplementary 

materials), mθ*
(c)(X) facilitates the following variance and prediction error decompositions:

var(Y ) = E mθ*
(c)(X) − μY

2 + E Y − mθ*
(c)(X) 2, (4)

and

MSPE mθ*(X) = E Y − mθ*
(c)(X) 2

+ E mθ*
(c)(X) − mθ*(X) 2,

(5)

which lead to the following prediction accuracy measures for mθ*(X).

Definition 2.2.—Define

ρmθ*
2 = 1 −

E Y − mθ*
(c)(X) 2

var(Y ) =
E mθ*

(c)(X) − μY
2

var(Y ) , (6)

to be the proportion of the variance of Y, that is, explained by mθ*
(c)(X), and

λmθ *
2 =

MSPE(mθ*
(c)(X))

MSPE mθ*(X) = 1 −
E mθ*

(c)(X) − mθ*(X) 2

MSPE mθ*(X) . (7)

to be the proportion of the MSPE of mθ*(X), that is, explained by mθ*
(c)(X).
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Remark 2.1 (Interpretation of ρmθ*
2  and λmθ*

2 ).—Define the L2-distance between any 

two real-valued random variables ξ and η by d2(ξ, η) = E(ξ − η)2
1
2 . Figure 1 depicts the 

geometric relationships between Y, μY, mθ*(X), mθ*
(c)(X), and E Y X , where P(X) denotes 

the space of all real-valued functions of X, mθ*
(c)(X) is the projection of Y onto the subspace 

of all linear functions of mθ*(X), and E(Y|X) is the projection of Y onto P(X).

It is clear from Figure 1 that the variance decomposition (4) corresponds to the Pythagorean 

theorem for the triangle Y , mθ*
(c)(X), μY , which leads to the definition of ρmθ *

2 , and that the 

prediction error decomposition (5) is the Pythagorean theorem for (Y , mθ*
(c)(X), mθ*(X)), which 

defines λmθ*
2 . Therefore, ρmθ *

2  and λmθ*
2  provide distinct, yet complementary information 

regarding the prediction accuracy of mθ*(X):ρmθ*
2  measures its potential predictive power 

through its corrected version mθ*
(c)(X), whereas λmθ*

2  measures its closeness to mθ*
(c)(X) and 

quantifies how much prediction error reduction can be achieved with the correction. 

Together, they provide a complete summary of the predictive accuracy of mθ*(X). In practice, 

ρmθ *
2  should be used as the primary measure for the potential predictive power of mθ*(X), 

whereas λmθ *
2  should be used as a supplementary measure to indicate (by a value less than 1) 

if a linear correction is required for mθ*(X) to achieve its potential predictive power and how 

much prediction error reduction can be realized with the correction. Finally, L2 is not to be 

confused as a lack-of-fit measure for model ℱ. Although mθ*(X) = E(Y |X) implies λmθ*
2 = 1, 

λmθ*
2  may also be 1 even if mθ*(X) ≠ E(Y |X), as long as mθ*

(c)(X) = mθ*(X). Hence, λmθ*
2 = 1

simplyindicatesthat no linear correction is required for mθ*(X) to achieve it potential 

predictive power and does not necessarily imply that the model is correctly specified. This 

point is further illustrated by our simulation results in the supplementary materials 

(Appendix A.2.3, Figures A.4 and A.5: first row).

It is also seen from Figure 1 that the Pythagorean theorem for the triangle Y , E(Y |X), μY
corresponds to the following well-known variance decomposition

var(Y ) = var(E(Y X)) + E(var(Y X)) .

We refer to

ρNP
2 ≡ 1 − E(Y − E(Y X))2

var(Y ) = var(μ(X))
var(Y ) , (8)

the proportion of explained variance by E(Y|X), as the non-parametric coefficient of 

determination. Note that ρNP
2  is the “correlation ratio” studied previously by Renyi (1959).
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The next theorem summarizes some fundamental properties of ρmθ*
2  and λmθ*

2

Theorem 2.1.

a. Let ρ(ξ, η) denote the correlation coefficient between two random variables ξ 
and η. Then, ρmθ*

2 = ρ Y , mθ*(X) 2;

b. (Linear prediction). Let BLUE(X) = a + bTX be the best linear unbiased 

estimator (BLUE) of Y, where a, b = arg minα, βE Y − α + βTX 2
. Then, (i) 

BLUE(c)(X) = BLUE(X), (ii) λBLUE
2 ≡ 1, and (iii) ρBLUE

2  is equal to the population 

value of the classical coefficient of determination for linear regression;

c. If mθ*(X) = E(Y |X), then λmθ*
2 ≡ 1, and ρmθ*

2 = ρNP
2 , where ρNP

2  is defined in (8);

d. (Maximal ρ2) Let P(X) be the space of all p-variate functions Q(X) of X. Then 

ρNP
2 = maxQ ∈ P(X) ρQ

2 .

2.2. Sample Prediction Accuracy Measures

Let (Y1, X1),...,(Yn, Xn) be a random sample of (Y, X) and θ = θ Y 1, X1, …, Y n, Xn  be a 

sample statistic. We next derive sample versions of ρmθ *
2  and λmθ *

2  for mθ(X).

By Lemma A.2 (supplementary materials), we have the following sample version of the 

variance and prediction error decompositions:

∑
i = 1

n
Y i − Y 2 = ∑

i = 1

n
mθ

(c) Xi − Y
2

+ ∑
i = 1

n
Y i − mθ

(c) Xi
2
, (9)

and

∑
i = 1

n
Y i − mθ Xi

2

= ∑
i = 1

n
Y i − mθ

(c) Xi
2

+ ∑
i = 1

n
mθ

(c) Xi − mθ Xi
2
,

(10)

where mθ
(c)(x) is the ordinary least squares regression function obtained by linearly regressing 

Y1,..., Yn on mθ(X1),...,mθ(Xn).

The sample versions of ρmθ *
2  and λmθ *

2  are therefore, defined by

Rmθ
2 =

∑i = 1
n mθ

(c) Xi − Y
2

∑i = 1
n Y i − Y 2 , (11)

and
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Lmθ
2 =

∑i = 1
n Y i − mθ

(c) Xi
2

∑i = 1
n Y i − mθ Xi

2 , (12)

where Rmθ
2  is the proportion of variation of Y explained by mθ

(c)(X) and Lmθ
2 , is the 

proportion of prediction error of mθ(X) explained by mθ
(c)(X).

Remark 2.2.—Similar to Theorem 2.1(a), it can be shown that Rmθ
2 = r Y , mθ(X) 2, where 

r Y , mθ(X)  is the Pearson correlation coefficient between Y and mθ(X). Furthermore, if mθ(x)

is the fitted least squares regression line from a linear model, then Lmθ
2 ≡ 1 and Rmθ

2  is 

identical to the classical coefficient of determination for the linear model.

Below, we give the asymptotic properties of Rmθ
2 , and Lmθ

2 .

Theorem 2.2.—Assume conditions (C2)-(C4) of supplementary materials (Appendix A.1) 

hold. Then, as n → ∞

a. (Consistency) Rmθ
2 P ρmθ*

2 , and Lmθ
2 P λmθ*

2 ;

b. (Asymptotic normality) n Rmθ
2 − ρmθ*

2 d N 0, σρ2 , and 

n Lmθ
2 − λmθ*

2 ) d N 0, σλ
2 , where σρ2 and σλ

2 are the asymptotic variances.

The asymptotic results allow one to assess the variability of the sample measures Rmθ
2  and 

Lmθ
2  and obtain confidence interval estimates for the corresponding population parameters. 

In practice, the bootstrap method (Efron and Tibshirani 1994) or a transformation-based 

method would be more appealing than the normal approximation method because the 

sampling distributions of Rmθ
2  and Lmθ

2  can be skewed, especially near 0 and 1.

3. Sample Prediction Accuracy Measures for Right-Censored Data

In this section, we extend the sample measures Rmθ
2  and Lmθ

2  defined by (11) and (12) to 

right-censored time-to-event data. Let T = min{Y, C} and δ = I(Y ≤ C), where C is an 

censoring random variable. Assume that one observes a right-censored sample of n 
independent and identically distributed triplets (T1, δ1, X1),...,(Tn, δn, Xn) from the 

distribution of (T, δ, X).

Assume that θ = θ T1, δ1, X1, …, Tn, δn, Xn  is a sample statistic. The sample prediction 

accuracy measures defined in (11) and (12) are no longer directly applicable to right-

censored data because Y is not observed on some subjects. In Lemma A.3 (supplementary 

materials), we show that
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∑
i = 1

n
wi T i − T (w) 2

= ∑
i = 1

n
wi mθ

(wc) Xi − T (w) 2
+ ∑

i = 1

n
wi T i − mθ

(wc) Xi
2
,

(13)

and

∑
i = 1

n
wi T i − mθ Xi

2

= ∑
i = 1

n
wi T i − mθ

(wc) Xi
2

+ ∑
i = 1

n
wi mθ

(wc) Xi − mθ Xi
2
,

(14)

for any set of nonnegative weights w1,…,wn satisfying ∑i = 1
n wi = 1, where mθ

(wc)(x) is the 

fitted regression function from the weighted least squares linear regression of Y1,...,Yn on 

mθ X1 , …, mθ Xn  with weight W = diag w1, …, wn . Furthermore, in Lemma A.4 

(supplementary materials), we will show that if

wi =

δi
G Ti −

∑j = 1
n δj

G Tj −

, i = 1, …, n, (15)

where G is the Kaplan-Meier (Kaplan and Meier 1958)estimate of G(c) = P(C > c), then (13) 

and (14) can be regarded as the right-censored data analogs of the uncensored sample 

variance decomposition (9) and prediction error decomposition (10), respectively. These 

results lead to the following right-censored sample prediction accuracy measures.

Definition 3.1.

The right-censored sample versions of ρmθ*
2  and λmθ*

2  are defined by

Rmθ
2 =

∑i = 1
n wi mθ

(wc) Xi − T (w) 2

∑i = 1
n wi T i − T (w) 2 , (16)

and

Lmθ
2 =

∑i = 1
n wi T i − mθ

(wc) Xi
2

∑i = 1
n wi T i − mθ Xi

2 , (17)

where the weight wi’s are defined in (15).
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The above defined Rmθ
2  can be interpreted as an approximate proportion of sample variance 

of Y explained by mθ
(wc)(X) and Lmθ

2  an approximate proportion of sample mean squared 

prediction error of mθ(X) explained by mθ
(wc)(X). By definition, 0 ≤ Rmθ

2 ≤ 1 and 0 ≤ Lmθ
2 ≤ 1.

Theorem 3.1.

a. (Uncensored data). If there is no censoring, then formulas (16) and (17) reduce to 

the uncensored data definitions (11) and (12), respectively.

b. (Consistency). Assume conditions (C1)-(C5) hold. Then, as 

n ∞, Rmθ
2 P ρmθ*

2 , and Lmθ
2 P λmθ*

2 .

c. (Asymptotic normality). Assume conditions (C1)-(C5) hold.Then, 

n Rmθ
2 − ρmθ*

2 d N 0, vρ2  and n Lmθ
2 − λmθ*

2 ) d N 0, vλ
2 , as n → ∞, where vρ2

and vλ
2 are the asymptotic variances.

Remark 3.1.

Theorem 3.1 (b) and (c) are derived under condition (C1) of Appendix A.1 that C is 

independent of X and Y. In the next section, we demonstrate by simulation that the Rmθ
2  and 

Lmθ
2  measures are quite robust even if C depends the covariates X, unless the model is 

severely misspecified.

4. Simulations

We present several simulation studies to investigate the finite sample properties of the 

proposed prediction accuracy measures.

Simulation 1:

In this simulation, we use the population ρNP
2  defined by (8) as a benchmark to illustrate the 

properties and potential weaknesses of two existing R2-type measures RSH
2  and RSPH

2  for 

the Cox model proposed by Schemper and Henderson (2000) and Stare, Perme, and 

Henderson (2011), respectively. In the simulation, the event time Y is generated from a Cox 

proportional hazard model: Y = H0
−1 −log(U) × exp −βTX , where U ~ U(0,1), H0

−1(t) = 2t
1
v

is the inverse function of a Weibull cumulative hazard function H0(t) = (0.5t)v, and X = 10 × 

Bernoulli(0.5). We consider nine data settings by varying β and v. We approximate the 

population ρ2 value by averaging its sample R2 values over 10 Monte Carlo samples of size 

n = 5000 with no censoring. The results are summarized by supplementary materials (Figure 

A.1 in Appendix A.2.1). Table 1 takes a snapshot of Figure A.1 for some selected settings.

Table 1 shows that for Cox’s models with the same baseline hazard (or v) but different 

hazard ratio (or β) (e.g., models 3, 6, 9), RSPH
2  and RSH

2  have produced the same rankings as 

Li and Wang Page 10

J Am Stat Assoc. Author manuscript; available in PMC 2020 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ρNP
2  and thus have correctly reflected the relative predictive power between these models. 

However, both RSPH
2  and RSH

2  have failed to distinguish the predictive power between 

models with the same hazard ratio (or β) but different baseline hazard (or v). For example, 

they remain a constant 0.49 for models 7, 8, and 9 whose ρNP
2  values are 0.10, 0.33, and 0.80, 

respectively. This is not surprising for RSPH
2  because it is a measure of the explained rank 

variation, that is, largely determined by β. However, the predictive power of the Cox model 

is determined by not only β, but also v, where the latter reflects the variability of the 

outcome variable and is not adequately accounted for by RSPH
2 . The RSH

2  measure is 

observed to suffer from the same limitation although it is not as obvious to see from its 

definition.

Simulation 2:

This simulation investigates finite sample properties of the proposed R2 and L2 measures for 

the Cox model relative to their population values ρ2 and λ2 by varying the censoring rate 

(0%, 10%, 25%, 50%), sample size n (100,250,1000), and data generation setting (Weibull, 

Log-normal, Inverse Gaussian). For the Weibull setting, data are generated from a Weibull 

model log(Y ) = βTX + σW , where β = 1, σ = 0.24, X ~ U(0,1), W ~ standard extreme value 

distribution. For the lognormal setting, data are generated from log(Y ) = βTX + σW , where β 
= 1, σ = 0.27, X ~ U(0,1), W ~ N(0,1), and C ~ Weibull (shape = 1, shape = b) with b 
adjusted to produce a given censoring rate. For the inverse Gaussian setting, data are 

generated from Y ~ Inverse Gaussian (mean = − eα0 + α1X
β0 + β1X , shape = e2 * α0 + α1X ), where α0 

= 3, α1 = −2.5, β0 = −1, β1 = 0.6, X ~ U(0,1). For all three data settings, ρ2 = 0.50, and 

censoring times are generated from C ~ Weibull (shape = 1, scale = b) with b adjusted to 

produce a given censoring rate.

We first examine the overall fit of the Cox model under each of the three data settings by 

displaying in Figure 2 the Cox-Snell residual plots for the Cox model based on the first 10 

Monte Carlo replications (first row: Weibull; second row: log-normal AFT; third row: 

inverse Gaussian) with varying sample size (first column: n = 100; second column: n = 250; 

third column: n = 1000) and censoring rate, CR = 0%. The plots reveal no misspecification 

of the Cox model under the Weibull setting (first row), mild model misspecification under 

the log-normal setting (second row), serious model misspecification under the inverse 

Gaussian setting (third row).

Figure 3 summarizes simulated R2 (shaded box) and L2 (unshaded box) values for the Cox 

model over 1000 Monte Carlo replications using boxplots by censoring rate (0%, 10%, 25%, 

50%), sample size (100, 200, 1000), and data generation setting (upper panel: Weibull; 

middle panel: log-normal AFT; bottom panel: inverse Gaussian). The population values ρ2 

and λ2 in Figure 3 are approximated by the averaged sample values over 100 Monte Carlo 

replications of sample size n = 5000 with no censoring. We observe from Figure 3 that for 

all three data settings, the proposed R2 and L2 estimate their population values well: their 
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medians agree well with the population values and as expected, their variability increases as 

the censoring rate increases and decreases as the sample size increases.

In the online supplementary materials (Appendix A.2.2), the we report results from a similar 

simulation study for the Cox model under different scenarios with ρ2 = 0.2. We also report 

results from similar simulation studies for the threshold regression model (Lee and 

Whitmore 2006) in the supplementary materials (Appendix A.2.3). All the simulations give 

consistent messages that R2 and L2 estimate their population counterparts well across all 

three data settings regardless of whether the model is correctly or misspecified.

We have also run more simulations under more data settings, population ρ2 values and for 

other models such as accelerated failure time models. The results are all consistent with 

what have been discussed above and thus not reported here.

Simulation 3:

In this simulation, we study the sensitivity of the proposed R2 and L2 measures defined in 

Section 3, when the independent censoring assumption (C1) of the Appendix A.1 is 

perturbed. The simulation setup is similar to the second simulation except that the censoring 

time C is dependent on the covariate X and that Y and C are conditional independent given 

the covariate. Specifically, log(C) = γcTX + θc × V , where X ~ U(0,1), θc = 4, V ~ extreme 

value distribution, and γc is adjusted to give a given censoring rate. Boxplots of the 

simulated R2 and L2 for the Cox model are depicted in Figure 4. We observe from Figure 4 

that the violation of independent censoring assumption has little effect on the performance 

of the proposed R2 and L2 when the Cox model is correctly specified or mildly misspecified 

(top and middle panels). However, it results in substantial bias for R2 and L2 under the last 

data setting (bottom panel) when the Cox model is severely misspecified.

5. An Example

In this section, we illustrate the use of the proposed prediction accuracy measures on a 

primary biliary cirrhosis (PBC) data with 312 patients from a randomized Mayo Clinic trial 

in primary biliary cirrhosis of the liver conducted between 1974 and 1984 (http://

astrostatistics.psu.edu/datasets/R/html/survival/html/pbc.html). For illustration purpose, we 

evaluate and compare the predictive power of the Cox model, the Weibull and log-normal 

accelerated failure time models, and the threshold regression model for predicting overall 

survival of individual patients with PBC, using the five covariates (patient’s age, log(serum 

bilirubin concentration), log(serum albumin concentration), log(standardised blood clotting 

time), and presence of peripheral edema and antidiuretic therapy) employed in the well-

known Mayo risk score (MRS) (Dickson et al. 1989).

We first examine the Cox-Snell residual plot based on the PBC data for each of the four 

predictions models in Figure 5 for overall lack-of-fit. In each plot, we have also overlaid 

additional Cox-Snell residual plots from 10 bootstrap samples to reflect the variability. 

Figure 5 does not indicate any serious lack-of-fit for the Cox model, Weibull and log-normal 

accelerated failure time models. However, it does suggest possible severe lack-of-fit for the 

threshold regression model, which is thus excluded from further consideration.
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Note that Figure 5 only provides a model diagnostic check for lack-of-fit. It does not offer 

further information regarding the predictive powers of the models under consideration 

especially because it is difficult to interpret the right tail of a Cox-Snell plot. In fact, plots of 

the predicted and observed survival times versus the risk scores for the three models in 

Figure 6 reveal that the Weibull AFT model and the log-normal AFT model could suffer 

substantial systematic prediction bias for low-risk patients (or long survivors). To assess and 

compare their predictive powers, we report their R2 and L2 values in Table 2.

It is seen from Table 2 that among the three models, the Cox model stands out as the best 

prediction model with the highest potential predictive power R2 = 0.39, which is consistent 

with the observation from Figure 6. To account for sampling variabilities, we also computed 

R2 values for the three models based on 100 bootstrap samples and summarized the R2 

differences between the Cox model and each of the other two models using boxplots in 

Figure 7, which confirms the superior potential predictive power of the Cox model to the 

Weibull and lognormal AFT models. Finally, the Cox model has an associated L2 value of 

0.83, suggesting that a linear correction would be needed to fulfill its potential predictive 

power and that the linear correction would result in a reduction of 1 − L2 = 17% of the mean 

squared prediction error.

6. Discussion

To assess the prediction accuracy of a nonlinear prediction function with right-censored 

data, we have first proposed a pair of population prediction accuracy parameters ρ2 and λ2 

and then developed their sample versions R2 and L2 for both uncensored and censored data. 

The R2 statistic, defined as the proportion of explained variance by its linearly corrected 

prediction function, quantifies the potential predictive power of the prediction function. The 

L2 statistic, defined as the proportion of explained prediction error by its corrected 

prediction function, measures how close the prediction function is to its corrected prediction. 

Together, they give a complete summary regarding the prediction accuracy of a nonlinear 

prediction function. We highlight that the proposed R2 statistic for right-censored data 

enjoys an appealing property that it educes to the classical coefficient of determination R2 

for the linear model in the absence of censoring, which is not shared by any other existing 

pseudo R2 proposals for right-censored data. Furthermore, L2 degenerates to 1 for the linear 

model with uncensored data. In practice, we recommend that R2 be used as the primary 

measure to evaluate and compare the potential predictive power between competing 

prediction models, and L2 be used as a supplementary measure only for the final prediction 

model of interest (such as the one with the largest R2 value) to indicate by a value less 1 if a 

correction is needed for the prediction function to fulfill its potential predictive power and 

quantify how much prediction error reduction can be realized by the correction, as illustrated 

in the real data example in Section 5.

Our simulation results show that the sample R2 and L2 measures estimate their 

corresponding population parameters well with little bias with moderate sample size and 

censoring rate, regardless of whether the model is correctly or misspecified. The consistency 

of the proposed measures for right-censored data is derived under a rather strong technical 

assumption that the censoring time is independent of both the survival time and the 
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covariates. However, our simulation results indicate that even when the independent 

censoring assumption is violated, the proposed measures still estimate their population 

counterparts well, except when the model is severely misspecified. Therefore, in the 

presence of dependent censoring, it is important to routinely perform model diagnostics to 

identify and eliminate a severely misspecified model before further applying the proposed 

measures to evaluate its prediction power. Finally, L2 = 1 simply indicates that no correction 

is needed for the prediction function to achieve its potential prediction power. It should not 

be used to suggest a good fit of the model to the data as discussed in Remark 2.1.

This article focuses on event time models with a single failure type, time-independent 

covariates and independently right-censored data. Future efforts to develop prediction 

accuracy measures for event time models with time-dependent covariates, competing risks, 

time-varying effects, and other censoring patterns are warranted. It would also be interesting 

to extend the proposed measures to weighted R2 and L2 that naturally follow from some 

weighted versions of the variance and prediction error decompositions similar to Lemma 

A.3, which could be useful to evaluate the local predictive performance for some 

subpopulation of interest. Our team is also investigating the application of the proposed R2 

measure for node-splitting in survival tree regression and survival random forest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Geometric interpretation of ρmθ*
2  and λmθ*

2 .
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Figure 2. 
(Cox’s model with independent censoring; censoring rate, CR = 0%) Cox-Snell residual plot 

for the Cox model based on the first 10 Monte Carlo samples with censoring rate CR = 0%, 

varying sample size (first column: n = 100; second column: n = 250; third column: n = 

1000), and varying data generation setting (first row: Weibull; second row: log-normal; third 

row: inverse Gaussian).
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Figure 3. 
(Independent censoring) Boxplots of simulated R2 (shaded box) and L2 (unshaded box) for 

the Cox model by censoring rate (0%, 10%, 25%, 50%), sample size (100,250,1000), and 

data generation setting (upper panel: Weibull; middle panel: log-normal; bottom 

panel:inverse Gaussian).
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Figure 4. 
(Dependent censoring) Boxplots of simulated R2 (shaded box) and L2 (unshaded box) for 

the Cox model by censoring rate (0%, 10%, 25%, 50%), sample size (100,200,1000), and 

data generation setting (upper panel: Weibull; middle panel: log-normal AFT; bottom panel: 

inverse Gaussian).
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Figure 5. 
(PBCdata) Cox-Snell residual plots for the Cox model, Weibull AFT model, log-normal 

AFT model, and threshold regression model. For each model, the solid line is based on the 

observed PBC data and the dotted lines are based on 10 bootstrap samples. Deviations from 

the 45° line indicate possible lack-of-fit to the data.
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Figure 6. 
(PBC data) Predicted (solid line) and observed (solid dot: uncensored; censored: circle) 

survival times (in days) versus risk score for the Cox model (top panel), Weibull AFT model 

(middle panel), and log-normal AFT model (bottom panel).
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Figure 7. 
(PBC data) Boxplots of the R2 differences between different models based on 100 bootstrap 

samples from the PBC data (Left: Cox’s model versus Log-normal AFT model; Right: 

Cox’s model versus Weibull AFT model). The asterisk in each boxplot represents the R2 

difference between the two models based on the observed PBC data.
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Table 1.

Simulated population proportion ρNP
2  of explained variance by the Cox (1972) model and population (RSPH

2

and RSH
2  of Schemper and Henderson (2000) and Stare, Perme, and Henderson (2011).

Model β υ ρNP
2 RSPH

2 RSH
2

1 0.1   0.5 0.07 0.23 0.10

2 0.1   1 0.14 0.23 0.10

3 0.1 10 0.15 0.23 0.10

4 0.2   0.5 0.09 0.38 0.28

5 0.2   1 0.27 0.38 0.28

6 0.2 10 0.40 0.38 0.28

7 0.5   0.5 0.09 0.49 0.49

8 0.5   1 0.33 0.49 0.49

9 0.5 10 0.80 0.49 0.49
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Table 2.

(PBC data) R2 values of different survival regression models.

Model Cox PH model Weibull AFT model Log-normal AFT model

R2 0.39 0.19 0.17

L2 0.83 0.19 0.09
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