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ABSTRACT
Background  T cells have been recognized as core 
effectors for cancer immunotherapy. How to restore the 
anti-tumor ability of suppressed T cells or improve the 
lethality of cytotoxic T cells has become the main focus in 
immunotherapy. Bispecific antibodies, especially bispecific 
T cell engagers (TCEs), have shown their unique ability 
to enhance the patient’s immune response to tumors by 
stimulating T cell activation and cytokine production in 
an MHC-independent manner. Antibodies targeting the 
checkpoint inhibitory molecules such as programmed cell 
death protein 1 (PD-1), PD-ligand 1 (PD-L1) and cytotoxic 
lymphocyte activated antigen 4 are able to restore the 
cytotoxic effect of immune suppressed T cells and have also 
shown durable responses in patients with malignancies. 
However, both types have their own limitations in treating 
certain cancers. Preclinical and clinical results have 
emphasized the potential of combining these two antibodies 
to improve tumor response and patients’ survival. However, 
the selection and evaluation of combination partners 
clinically is a costly endeavor. In addition, despite advances 
made in immunotherapy, there are subsets of patients 
who are non-responders, and reliable biomarkers for 
different immunotherapies are urgently needed to improve 
the ability to prospectively predict patients’ response and 
improve clinical study design. Therefore, mathematical and 
computational models are essential to optimize patient 
benefit, and guide combination approaches with lower cost 
and in a faster manner.
Method  In this study, we continued to extend the 
quantitative systems pharmacology (QSP) model we 
developed for a bispecific TCE to explore efficacy of 
combination therapy with an anti-PD-L1 monoclonal 
antibody in patients with colorectal cancer.
Results  Patient-specific response to TCE monotherapy, 
anti-PD-L1 monotherapy and the combination therapy 
were predicted using this model according to each 
patient’s individual characteristics.
Conclusions  Individual biomarkers for TCE monotherapy, 
anti-PD-L1 monotherapy and their combination have 
been determined based on the QSP model. Best treatment 
options for specific patients could be suggested based on 
their own characteristics to improve clinical trial efficiency. 
The model can be further used to assess plausible 
combination strategies for different TCEs and immune 
checkpoint inhibitors in different types of cancer.

BACKGROUND
Colorectal cancer (CRC), especially meta-
static CRC (mCRC) with proficient mismatch 
repair (pMMR) or microsatellite stable 
(MSS) tumors, is one of the leading causes of 
cancer-associated deaths in USA.1 In recent 
years, immune checkpoint inhibitors (ICIs) 
have achieved a durable clinical response in 
patients with melanoma, non-small-cell lung 
cancer (NSCLC) and other cancer types.2 
However, the results of testing these drugs in 
mCRC patients with pMMR or MSS tumors 
were disappointing.3 Novel therapeutic 
agents or combination strategies are being 
tested and accurate biomarker-guided patient 
selection is needed to determine patients who 
will most likely benefit from the treatment.4 5 
Note that all abbreviations are described in 
online supplementary table S1.

During the past few years, the US Food 
and Drug Administration has approved 
the application of anti-programmed cell 
death protein (PD-1) inhibitors, including 
nivolumab (OPDIVO, Bristol-Myers Squibb) 
and pembrolizumab (KEYTRUDA, Merck) 
and the anti-PD-ligand 1 (L1) inhibitor 
atezolizumab (TECENTRIQ, Genentech). 
They have shown great potential for targeting 
PD-1/PD-L1 interaction in the treatment 
of patients with different types of cancer 
including melanoma, advanced NSCLC, 
renal cell carcinoma (RCC), head and neck 
squamous cell cancer, triple-negative breast 
cancer and microsatellite instability-high 
mCRC (MSI-H mCRC).2 6 Typically, high 
PD-L1 expression in cancer cells is associated 
with favorable prognosis and better disease-
free survival in response to PD-1/PD-L1 
inhibitors.7 8 However, CRC cells express less 
PD-L1 and it has been reported by Valentini 
et al that the expression of PD-L1 in MSS 
CRC is mainly restricted to tumor-infiltrating 
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immune cells.9 This could explain why MSS CRC patients 
failed to respond to anti-PD-1/PD-L1 therapy.

Despite the recent failure of anti-PD-1/PD-L1 therapy 
in MSS CRC patients, novel bispecific T cell engagers 
(TCEs) have been developed and tested in treating CRC 
both in vitro and in vivo. Gonzalez-Exposito et al devel-
oped patient derived CRC organoids to explore the 
mechanism of T cell bispecific antibody cibisatamab 
(CEA-TCB) sensitivity.10 Bacac et al reported the anti-
tumor activity of CEA-TCB in 110 cell lines and the mode 
of CEA-TCB mediated CRC cell lysis in a mouse tumor 
model.11 Waaijer et al developed a T cell-engaging bispe-
cific antibody (BsAb) to target cell surface A33 antigen 
(huA33-BsAb), which is expressed in more than 95% of 
human colon cancers.12 An ongoing phase I clinical trial 
of MGD007 (​Clinicaltrials.​gov, NCT02248805), a gpA33 x 
CD3-BsAb, will provide more valuable information on the 
clinical safety of this approach.13

Even though there are over 500 publications listed 
in PubMed reporting the preclinical and clinical inves-
tigations of BsAb,14 treating solid malignancies, which 
make up 90% of all cancers, remains extremely chal-
lenging using BsAb because of their poor permeability.15 
Although the clinical outcome of BsAb is more satisfac-
tory in hematologic malignancies, some ongoing clinical 
trials have shown promising outcomes in solid tumors.16 
A phase I study (NCT02324257, NCT02650713) led by 
Hoffmann-La Roche has shown the potential of CEA-TCB 
(RO6958688; RG7802) monotherapy in treating patients 
with MSS mCRC, and 45% of the patients showed either 
partial response or stable disease. In a combination study 
of CEA-TCB with atezolizumab, an anti-PD-L1 inhibitor, 
82% of the patients showed either partial response or 
stable disease, which was an exciting breakthrough for a 
BsAb in a solid tumor.17

Although great achievements have been made by the 
combination therapy of BsAb with anti-PD-L1 inhibitors 
in solid tumors, possible disadvantages may arise such 
as difficulties of determining the source of side effects, 
drug–drug interactions, cumulative side effects and 
higher cost.18 19 In order to avoid possible side effects 
and risks associated with combination therapy, it is 
important to prospectively determine whether individual 
patients will derive additional benefit from combination 
therapy.20 21 Patients need to be differentiated and given 
the most appropriate treatment options to improve the 
therapeutic outcome. The establishment of predictive 
biomarkers is, therefore, important to maximize thera-
peutic benefit and guide selection of the best therapeutic 
approach for oncologists.8 22

Previous studies have demonstrated the performance 
and ability of quantitative systems pharmacology (QSP) 
modeling in determining predictive biomarkers.23–28 
Norton et al developed a multiscale agent-based model 
of the tumor immune microenvironment, providing 
information for personalized treatment for individual 
patients.29 Jafarnejad et al built a QSP model to repre-
sent the antitumor immune response in human NSCLC 

and identified biomarkers for checkpoint inhibitor-based 
immunotherapy.30 Wang et al proposed a QSP model to 
determined potential predictive biomarkers to improve 
the antitumor response in HER2-negative breast cancer.31

In this work, we have extended our QSP model to 
include our previously developed TCE module and newly 
updated anti-PD-L1 module to study the efficacy of anti-
PD-L1 monotherapy and the combination with TCE 
therapy for MSS CRC patients. We studied individual 
biomarkers for the three therapeutic approaches—TCE 
monotherapy, anti-PD-L1 monotherapy and their combi-
nation. In silico virtual clinical trials (VCTs) have been 
conducted to compare the response to different treat-
ments for the same cohort of virtual patients (VPs), 
and to discover predictive biomarkers. Our novel QSP 
model enables development of biomarker-guided patient 
selection to improve clinical trial efficiency by providing 
the distributions of different biomarkers, recommend 
rational therapeutic regimen and alleviate the rising 
demand for personalized treatment.

METHODS
Model structure
The QSP model used in this study was based on our 
previous models developed for NSCLC and TCE.30 32 33 
The model structure includes central (blood), peripheral 
(other tissues and organs), tumor and tumor-draining 
lymph node compartments. The model is composed of 
several individual but interconnected modules such as 
cancer cell, T cell, immune checkpoint, antibody pharma-
cokinetics (PK), antigen presentation and TCE modules 
(figure  1). The dynamics of major species in each 
module have been described in our previous publications 
including tumor growth, antigen processing and presen-
tation, T cell activation and proliferation, T cell distribu-
tion, Treg dynamics, and TCE and immune checkpoint 
blockade PK and pharmacodynamics (PD). All governing 
equations for the immune checkpoint and TCE modules 
have been explained in detail in the online supplemen-
tary information provided by Jafarnejad et al30 and Ma et 
al,33 respectively. The modular design of the model makes 
it readily extensible to other therapeutic agents and their 
corresponding PK/PD or other newly discovered physio-
logical processes. 73 ordinary differential equations and 
105 algebraic equations were used to model all biological 
processes involved in the model. In this work, the mono-
therapy of atezolizumab (MPDL3280A, RO5541267, 
TECENTRIQ) and the combination therapy with atezoli-
zumab and cibisatamab (RO6958688, RG7802) were 
studied and compared. PK parameters of cibisatamab 
have been reported and PK parameters of atezolizumab 
were fitted to experimental data. Observed and simu-
lated serum concentrations of atezolizumab following 
an intravenous dose of 1, 3, 10, 15 mg/kg and 1200 mg 
are provided in the supplement (online supplementary 
figure S1). Dynamics of cibisatamab have been calibrated 
and described in our previous publication.33 This model 
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can be applied to most TCEs and ICIs with minor modi-
fications. All simulations and sensitivity analyzes were 
performed using the SimBiology platform in MATLAB 
R2018b (MathWorks, Natick, Massachusetts, USA).

Functional expression of PD-L1 on cancer and immune cells
In a previous model, Jafarnejad et al incorporated the 
dynamics of immune checkpoint blockade and demon-
strated the general applicability of that module to any 
anti-PD-1/PD-L1 inhibitor. The model was then used to 
study anti-PD-1 therapy in NSCLC using nivolumab.30 
A numberof PD-1, PD-L1, PD-L2 and other parameters 
involved have been carefully chosen or fitted to experi-
mental measurements. Baseline parameters were chosen 
to fit a Hill function to in vitro dose-response measure-
ments of IFNγ by Jafarnejad et al and thus can be applied 
for atezolizumab. However, our previous model only 
considered the expression of PD-L1 on cancer cells. The 
expression of PD-L1 on antigen-presenting cells (APCs) 
is also an important factor leading to tumor immune 
evasion and has been reported to have a significant effect 
on the outcome of immunotherapy.34 35

Upregulation of PD-L1 on cancer cells is believed to 
be the major mechanism for tumor immune evasion.36 
However, it has been reported that dendritic cells (DCs), 
a major APCs, express cell-surface PD-L1 on activation 
by toll-like receptor ligands.37 DCs are responsible for 
initiating rapid proliferation of antitumor CD8 +T cells; 
however, PD-L1 signaling induced by DCs restricts the 
proliferative capacity of CD8 +T cells during activation, 
and a previous study demonstrated that DCs lacking PD-L1 
expression resulted in significantly increased numbers of 
antigen-specific CD8+T cells.38 We, therefore, extended 
the current model with PD-L1 expression in APCs, which 
limits the proliferation of Teff in TdLN compartment. 
Blockade of PD-L1 signaling during the priming phase in 
the TdLN compartment will restore the normal prolifer-
ative capacity of Teff. CRC express less PD-L1 than some 
other types of cancer, but APCs express similar levels of 
PD-L1 among different cancer types. Detailed parameters 
used for ICIs expression level are provided in the online 

supplementary information as well as governing equa-
tions, species, parameters, reactions, rules, events and 
descriptions related to the newly added mechanism.

Parameter sensitivity analysis
Parameter sensitivity analysis (PSA) was performed to 
assess the sensitivity of the QSP model to a set of parame-
ters. Latin hypercube sampling (LHS) was used to assign 
the values for this set of parameters with uniform trans-
formation such as tumor volume, density of Teff and 
Treg, Teff/Treg cell ratio in tumor compartment, and 
CD8 +T cell clonality in blood. Partial rank correlation 
coefficient (PRCC) analysis was performed to identify the 
most influential factors from the simulation results and 
was implemented by using the MATLAB Global Optimi-
zation Toolbox.

Statistical analysis
Statistical analysis was performed for VPs’ subcohorts. 
Wilcoxon test was used to analyze the differences between 
responders and non-responders (NRs) under the atezoli-
zumab/cibisatamab monotherapy and combination 
therapy using the ggpubr package embedded in RStudio 
V.1.2. The impact of sensitive parameters on the overall 
response rate (ORR) was also studied with 95% Agresti-
Coull CI.

RESULTS
A virtual cohort of 2000 patients was created by LHS 
method. Each VP was generated with a random sample 
of parameter values based on the list of parameters in the 
PSA. The baseline number and ranges of all parameters 
listed in the PSA were based on clinical and experimental 
evidence (online supplementary tables S2 and S3), the 
baseline values are based on experimental measure-
ments.8 30 33 39 40 Note that the ranges for parameters were 
chosen to be physiologically reasonable if experimental 
measurements are unavailable. To avoid generating 
implausible patients due to uncertainty in parameter 
ranges, several physiological parameters were used to 

Figure 1  Diagram of the main cellular and molecular interactions implemented in the model (modified from30 33). APC, antigen-
presenting cell; IL2, interleukin-2; PD-L1, programmed cell death ligand 1; TCE, T cell engager.
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screen VPs such as tumor diameter, T cell density in the 
blood, activated T cell density in the tumor and Teff to 
Treg ratio. A lower and upper bound of these parameters 
have been set based on clinical measurements.33 VPs who 
did not develop tumors or with implausible parameter 
values that were outside the normal physiological range 
were regarded as non-patients and excluded from the 
virtual trial. Plausible VPs were used for estimating ORR.

In silico VCT outcomes
The ORR of atezolizumab monotherapy, cibisatamab 
monotherapy and combination therapy were investigated 
by simulating plausible VPs in each trial. In accordance 
with NCT02324257 and NCT02650713 trials, MSS CRC 
VPs in atezolizumab monotherapy were treated with 
atezolizumab 1200 mg Q3W. The same VPs were used in 
cibisatamab monotherapy and combination therapy in 
order to compare their responses to different therapies. 
They were treated with cibisatamab 60 mg QW for cibi-
satamab monotherapy and cibisatamab 60 mg QW with 
atezolizumab 1200 mg Q3W for combination therapy. 
Based on the screening rules, there were 1312, 1325 and 
1299 VPs left in atezolizumab monotherapy, cibisatamab 
monotherapy and combination therapy, respectively. The 
simulated time-dependent percent tumor size changes 
are shown in online supplementary figure S2 (spider 
plot) following RECIST V.1.1. After 400 days, most 
patients who had PR/CR and SD reached convergence, 
where their tumor size no longer changed. Although the 
tumor size of some patients was still changing, the tumor 
size was getting smaller and did not affect the calculation 
of ORR. Then we calculated ORR at this time point (400 
days). Among the patients in atezolizumab monotherapy, 
107/1312 had PR/CR (8.2%), 91/1312 had SD (6.9%) 
and 1114/1750 had PD (84.9%). In cibisatamab mono-
therapy, 69/1325 had PR/CR (5.2%), 107/1325 had SD 
(8.1%) and 1149/1325 had PD (86.7%). In combination 
therapy, 145/1299 had PR/CR (11.2%), 114/1299 had 
SD (8.8%) and 1040/1299 had PD (80.0%). The ORR 
of cibisatamab monotherapy (5.2%) and combination 
therapy (11.2%) showed agreement with NCT02324257 
and NCT02650713 trials (6% in cibisatamab monotherapy 
and 12% in combination therapy) (online supplementary 

table S4). To more closely mimic real patient populations, 
we applied these simulation results to the actual clinical 
trial in NCT02324257 (31 patients, cibisatamab mono-
therapy) and NCT02650713 (25 patients, combination 
therapy) by randomly sampling 31 VPs 10 000 times in 
cibisatamab monotherapy and 25 VPs 10 000 times in 
combination therapy. Although there was no atezoli-
zumab monotherapy in these two trials, we sampled 31 
VPs 10 000 times in our simulated atezolizumab mono-
therapy. This allowed us to obtain a 95% percentile boot-
strap confidence interval (95% CI) of the ORR for the 
three treatments (online supplementary table S4, figure 
S3) and the ORR in each interval (online supplementary 
table S5). There has been several reports demonstrating 
little activity of ICIs such as atezolizumab in most MSS 
CRC patients,41 42 which was reflected in the lower limit 
of our estimated 95% CI for atezolizumab monotherapy.

Statistical analysis for NRs and responders to determine 
potential biomarkers
PRCC was used for performing global uncertainty and 
sensitivity analysis to measure the degree of association 
between parameters and the tumor volume. In atezoli-
zumab monotherapy and combination therapy, tumor 
growth rate and initial tumor diameter were significantly 
positively correlated to the tumor volume. Tumor muta-
tional burden (TMB) defined as the number of clones 
of T cells that are activated30 33 and PD-L1 expression 
in cancer cells were negatively correlated to the tumor 
volume (figure 2A). In addition, CEA expression in cancer 
cells was also negatively correlated to the tumor volume 
in combination therapy (figure 2B). Waterfall plots were 
used to present each individual patient's response to 
atezolizumab (online supplementary figure S4) or combi-
nation therapy (figure  3). Obviously, higher TMB and 
PD-L1 expression in cancer cells corresponded to smaller 
tumor volume based on RECIST criteria (figure 3).

Distribution of parameters of interest between R and 
NR are shown in figure 4. In atezolizumab monotherapy, 
TMB, PD-L1 on both cancer cells and APCs, Teff density 
as well as Teff/Treg ratio in tumor were significantly 
higher in responders, whereas T cell PD-1 expression 
and atezolizumab cross-arm binding efficiency (χ) were 

Figure 2  The partial rank correlation coefficient, PRCC, for individual parameters. (A) Atezolizumab monotherapy. (B) 
Combination therapy. APC, antigen-presenting cell; PD1, programmed cell death protein 1; PD-L1, PD-ligand 1; PRCC, Partial 
rank correlation coefficient; TCE, T cell engager.
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not significantly different between responders and NRs 
(figure 4A). Note that the tumor growth rate, although 
significantly positively correlated with tumor volume, 
cannot be used as an indicator to predict patients’ 
response. The results of cibisatamab monotherapy were 
completely consistent with our previous reports and 

will not be repeated here. Similar conclusions were 
observed for combination therapy. Most of the parame-
ters that showed significant differences between R and 
NR in monotherapies also had significant differences 
between patients in combination therapy. However, in 
combination therapy, PD-L1 expression in APCs was not 
significantly different between R and NR, indicating the 
addition of combination therapy with cibisatamab may 
compensate for the loss of activated CD8 +T cells due to 
the PD-L1 on APCs (figure 4B).

Comparison of Atezolizumab Monotherapy/Cibisatamab 
monotherapy and combination therapy
In clinical trials, it is difficult to know in advance which 
patients may benefit from combination therapy, particu-
larly when only a small portion of patients are likely to 
derive benefits from such treatment. Prospectively being 
able predict patient response to combination thera-
pies, especially for those patients who fail to respond or 
respond poorly to monotherapy, can lead to enhanced 
clinical trial design. VCTs make it easier to determine 
different responses to different therapies using the exact 
same cohort of VPs.

Here, we focused on those VPs who had PD in atezoli-
zumab or cibisatamab monotherapy but had SD (PD-SD) 
or PR/CR (PD-PR/CR) in combination therapy or had 
SD in atezolizumab or cibisatamab monotherapy but PR/
CR (SD-PR/CR) in combination therapy. Other patients 
who had PD or SD in both monotherapy and combina-
tion therapy without any improvement (PD-PD, SD-SD) 
were grouped as reference. Then, we compared the 
differences between patients in these groups (figure 5).

Figure 3  Waterfall plots of combination therapy while 
varying. (A) TMB; (B) PD-1 expression; (C) PD-L1 expression 
in cancer cells; (D) PD-L1 expression in APCs; (E) CEA 
expression; (F) CD3 expression in teff cells. APCs, antigen-
presenting cells; CEA, carcinoembryonic antigen; PD1, 
programmed cell death protein 1; PD-L1, PD-ligand 1; TMB, 
tumor mutational burden.

Figure 4  Distributions of potential biomarkers in NR and R in (A). Atezolizumab monotherapy (B). Combination therapy. (i) 
Tumor growth rate; (ii) TMB; (iii) ieff density in tumor; (iv) Teff/Treg ratio in tumor; (v) PD-L1 expression in cancer cells; (vi). PD-
L1 expression in APCs; (vii) PD-1 expression in teff; (viii) Cross-arm binding efficiency χ of atezolizumab; (ix) CEA expression in 
cancer cells; (x) Cross-arm binding efficiency λ of cibisatamab; (xi) CD3 expression in teff; (xii) CD3-cibisatamab binding affinity. 
APCs, antigen-presenting cells; CEA, carcinoembryonic antigen; NS, not significant; PD1, programmed cell death protein 1; PD-
L1, PD-ligand 1; TMB, tumor mutational burden. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001.
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When comparing atezolizumab monotherapy and 
combination therapy, patients who benefited from combi-
nation therapy including PD-PR/CR, PD-SD and SD-PR/
CR had significantly higher TMB, Teff density in tumor 
and CEA expression in cancer cells, which demonstrated 
their important role in predicting treatment outcomes 
for combination therapy. Moreover, patients in PD-PR/
CR and PD-SD groups also had higher Teff/Treg ratio 
and cibisatamab cross-arm binding efficiency (λ) than 
the PD-PD group. Parameters such as TMB, Teff density 
and Teff/Treg ratio in tumor and CEA expression in 
cancer cells of patients in the PD-PR/CR group were also 
significantly higher than those in the PD-SD group. The 
distribution of these parameters can not only estimate 
whether patients would benefit from receiving combi-
nation therapy, but also to determine how much benefit 
they might receive. In addition, patients in SD-PR/CR 
group had higher PD-L1 expression in cancer cells than 
the other four groups, and these patients had stable 
disease after receiving atezolizumab monotherapy. With 
the treatment of combination therapy, they were more 
likely to benefit and showed better treatment outcome 
(PR/CR) (figure 5A).

For cibisatamab monotherapy and combination 
therapy, TMB and Teff density in tumor once again 
proved their ability to predict therapeutic effect and 
potential as predictive biomarkers. PD-L1 expression in 
cancer cells was higher in those three groups of patients 
with improved therapeutic effects. CEA expression was 
also higher in patients in group SD-PR/CR than SD-SD 
and their condition was improved after receiving combi-
nation therapy (figure 5B).

Biomarker-guided patient selection
In another perspective, if we can prospectively predict 
which treatment is most likely to be effective for patients 
prior to the start of clinical trials, we would be able to 
select subjects for inclusion in randomized clinical trials 
and potentially reduce the number of subjects to recruit 
to improve clinical trial efficiency. Based on our virtual 
trials’ results, we divided all patients into five groups 
based on their responses to three treatments: responder 
to atezolizumab monotherapy only (ROA), responder 
to cibisatamab monotherapy only (ROC), responder to 
both monotherapies (ROB), responder to combination 
therapy only (ROCMB) and NR to any therapies.

We computed the distribution of several potential 
biomarkers in these five groups, respectively (figure 6). In 
terms of TMB, Teff density and Teff/Treg ratio in tumor, 
their distributions in ROB were highest compared with 
any other groups. This revealed why this group of patients 
was able to respond to any treatments (figure  6A–C). 
Group ROA had highest PD-L1 expression in cancer 
cells around 1E4–1E5 sites/cell and the range was rela-
tively narrower than other groups (figure 6D). Similarly, 
group ROC had high values of CEA expression in cancer 
cells and cibisatamab cross-arm binding efficiency (λ) 
(figure 6E,F). Group NR had the broadest distribution of 
all parameters, and most patients in this group had rela-
tively low parameter values. Note that patients in group 
ROCMB had ideal PD-L1 and CEA expression level, 
however, their TMB, Teff density and Teff/Treg ratio 
were lower than patients in group ROA, ROC and ROB 
and they were the best candidates for receiving combina-
tion therapy. Ideally, if these parameters were known in 

Figure 5  Distributions of potential biomarkers in VPS subgroups (PD-PD, PD-SD, PD-PR/CR, SD-SD, SD-PR/CR) receiving 
(A). Atezolizumab monotherapy versus combination therapy. (i) TMB; (ii). teff density in tumor; (iii). Teff/Treg ratio in tumor; 
(iv). CEA expression in cancer cells; (v). PD-L1 expression in cancer cells; (vi). tumor-specific antigen binding affinity. (B) 
Cibisatamab monotherapy versus combination therapy. (i). TMB; (ii) teff density in tumor; (iii) Teff/Treg ratio in tumor; (iv) 
PD-L1 expression in cancer cells; (v) CEA expression in cancer cells; (vi). Tumor-specific antigen binding affinity. CEA, 
carcinoembryonic antigen; NS, not significant; PD1, programmed cell death protein 1; PD-L1, PD-ligand 1; TMB, tumor 
mutational burden; VPS, virtual patients. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001.
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advance for a real patient, we would be able to predict 
which group the patient might belong to, based on our 
predicted parameter distribution, and then determine 
the most suitable therapy.

Predictive performance of different biomarkers
It is unlikely that a single biomarker will be sufficient 
to predict clinical outcomes in response to immune-
targeted therapy. The effects of multiple factors need 
to be comprehensively considered to accurately predict 
outcomes. Nevertheless, a single biomarker can be used 
to predict the ORR, but the predictive performance of 
biomarkers is different. To determine the most predictive 
biomarkers, we computed and compared the predictive 
ability of each parameter and how its value affected the 
ORR of subcohorts of all VPs.

We investigated the performance of preidentified 
biomarkers. The results were plotted as a receiver oper-
ating characteristic (ROC) curve. TMB, Teff density 
and Teff/Treg ratio in tumor had high area under the 
curve (AUC) in all treatments, which indicated their 
great potential as good predictive biomarkers (figure 7). 
PD-L1 and CEA expression in cancer cells had high 
AUCs for atezolizumab monotherapy and cibisatamab 
monotherapy, respectively. They also had intermediate 
AUCs in combination therapy, however, higher AUC of 
PD-L1 expression demonstrated its ability to be a better 
biomarker than CEA expression in combination therapy 
(figure 7A).

Then we examined the relationship between the ORR 
and each parameter by calculating the ORR of patient 
subcohorts. First, we sorted all patients in ascending 
order according to a certain parameter, then every 20 

patients were assigned into a group from the first patient, 
and the ORR of each group was calculated separately 
(figure 7B). All parameters were normalized to between 
0 and 1 according to their range for direct compar-
ison of the influence on the ORR. Clearly, the ORR of 
patients was very significantly affected by TMB. The 
ORR of patients with low TMB was close to 0% until the 
normalized parameter range was greater than 0.8 in x 
axis, which roughly corresponds to TMB greater than 76. 

Figure 7  (A) ROC analysis of potential predictive 
biomarkers in (i) Atezolizumab monotherapy; (ii) Cibisatamab 
monotherapy; (iii) combination therapy. (B) Preditive ability 
of potential biomarkers in (i) Atezolizumab monotherapy; 
(ii) Cibisatamab monotherapy; (iii) combination therapy. 
ORR, overall response rate; PD-1, programmed cell death 
protein 1; PD-L1, PD-ligand 1; ROC, receiver operating 
characteristic; TCE, T cell engager; TMB, tumor mutational 
burden.

Figure 6  Distributions of potential biomarkers in ROA, ROB, ROC, ROCMB and NR. (A) TMB; (B) teff density in tumor; (C) Teff/
Treg ratio in tumor; (D) PD-L1 expression in cancer cells; (E) CEA expression in cancer cells; (F) Cross-arm binding efficiency λ 
of cibisatamab. CEA, carcinoembryonic antigen; NR, non-responder; NS, not significant; PD-L1, programmed cell death ligand 
1; ROA, responder to atezolizumab monotherapy; ROB, responder to both monotherapies; ROC, responder to cibisatamab 
monotherapy; ROCMB, responder to combination therapy; TMB, tumor mutational burden. * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, 
**** P ≤ 0.0001.
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When x was close to 1, the ORR of patient subcohort was 
about 100% and their TMB was greater than 200. Simi-
larly, Teff density and Teff/Treg ratio were both positively 
correlated to patients’ ORR, and patients with ideal Teff 
infiltration in tumor may have higher ORR. Although the 
ORR increased to 20% with the increase of PD-L1 expres-
sion in patients, the effect of it on ORR was less compared 
with the TMB and Teff infiltration. Many patients with 
high PD-L1 expression were still unable to respond, most 
likely due to their relatively low TMB and Teff infiltration. 
We repeated the analysis for all three treatments; TMB 
showed the best potential to predict the outcomes of all 
treatments followed by Teff density and Teff/Treg ratio in 
tumor. These results are consistent with the ROC curves. 
According to this analysis, we were able to determine the 
best predictive biomarkers and therefore estimate the 
ORR interval that these parameter levels may correspond 
to.

Function and impact of PD-L2
PD-L2 has been widely reported as a second ligand for 
PD-1 and inhibitor of T cell activation. Effects of PD-L2 
were also included in the current QSP model. The 
dynamics of PD-L2 has been reported and described 
in the online supplementary information section 1.1.30 
However, its role is not completely understood and 
expression of PD-L2 on cancer cells and APCs showed 
some correlation with PD-L1 expression. Taube et al have 
reported that tumor and APCs can both express PD-L2 in 
patients with advanced, treatment-refractory solid tumors 
including NSCLC, melanoma, kidney, castration-resistant 
prostate cancer) and CRC.39 They assessed PD-L2 expres-
sion in 38 tumor specimens and found that PD-L2 was 
less frequently expressed than PD-L1 and was almost 
geographically associated with PD-L1 expression. More 
importantly, only 1/38 tumor specimen expressed PD-L2 
only without PD-L1 but 14/38 specimens expressed PD-L1 
without PD-L2 and 7/38 specimens expressed both PD-L1 
and PD-L2, the remaining 16/38 specimens were PD-L1 
and PD-L2 negative. This indicated that PD-L2 is unlikely 
to be expressed alone without PD-L1 and the expression 
level of PD-L2 was also much lower than PD-L1 based on 
Cheng et al.43 Thus, in the model, we assumed that PD-L2 
expression was correlated with PD-L1 and the amount of 
PD-L2 cannot exceed a certain threshold by defining a 
ratio between PD-L2 expression and PD-L1. Based on the 
aforementioned report, we set the lower limit of this ratio 
(r_PD-L2) to 0, meaning that PD-L1 can be expressed 
alone and set the upper limit of this ratio (r_PD-L2) 
to 0.07 based on the measurement of PD-L1/PD-L2 in 
mature DCs by Cheng et al.43 When generating VPs, each 
patient was assigned a certain amount of PD-L1 expres-
sion and a r_PD-L2 between 0 and 0.07. This ensured that 
all patients would have a realistic concurrent PD-L1 and 
PD-L2 expression and avoid generating a large number 
of implausible patient population with unrealistic PD-L1/
PD-L2 expression such as PD-L2 alone or more PD-L2 
than PD-L1.

However, this setting caused an issue when calcu-
lating the distribution of PD-L2 in responders and non-
responders, responders showed significantly higher 
PD-L2 both in cancer and APCs (online supplementary 
figure S5), which was contrary to our expectations. Since 
atezolizumab did not block the interactions between PD-1 
and PD-L2, less PD-L2 should be more ideal due to their 
inhibitory effect. However, due to the ratio we assigned 
for PD-L1/PD-L2 expression, patients with higher PD-L1 
expression were highly likely to have higher PD-L2 than 
patients with lower PD-L1 expression even though the 
ratio was randomly assigned for each patient between 0 
and 0.07, which generated misleading results. To solve 
this issue, we introduced an additional parameter δ into 
the Hill function of ICIs (equations 10 and 11 in online 
supplementary information). By varying the value of 
δ between 0 and 1, we were able to explore how PD-L2 
expression affects the Hill equation and then tumor 
growth. We repeated the atezolizumab monotherapy 
again with δ and computed its distribution in responders 
and non-responders. The ORR was 9.3%, which was a 
significant improvement compared with previous one 
(8.2%). In addition, we computed the distribution of δ in 
responders and non-responders and found no significant 
difference between them (p>0.05) (online supplementary 
figure S6). To conclude, because of the low expression of 
PD-L2 on cancer cells and APCs, they had relatively little 
impact on tumor growth and patient response.

DISCUSSION
According to recent reports, the majority of CRC patients 
have MSS tumors, which accounts for 80%–85% of all 
CRC patients.44 Only CRC patients with dMMR/MSI-H 
CRC showed response to immunotherapy due to their 
highly immunogenic nature. Previous studies revealed 
that most MSS tumors were ‘cold’ tumors with much less 
PD-L1 expression in cancer cells and low TMB compared 
with melanoma, NSCLC and RCC.8 39 Thus, targeting the 
PD-1/PD-L1 axis was ineffective in treating MSS CRC. 
Nevertheless, other studies revealed a small subset of MSS 
CRC patients who may still benefit from anti-PD-1/PD-L1 
antibodies.45 Therefore, the identification of predictive 
biomarkers for MSS CRC patients is essential to improve 
patient outcome. Recent clinical trials are looking at novel 
ICIs, combination of immunotherapeutic agents and 
better patient selection for immunotherapy treatment to 
increase response of MSS CRC patients. However, there 
is a combinatorial explosion of drug candidates and ther-
apies that make clinical assessment of plausible options 
highly expensive and less feasible. Implementations of 
QSP models have become an alternative method to study 
different drug combinations and their efficacy. Our QSP 
model incorporates dynamics of ICIs and TCEs that can 
be applied to any anti-PD-1/PD-L1 blockades and TCEs, 
which can be used as a tool to study drug candidates and 
combination strategies in silico.

https://dx.doi.org/10.1136/jitc-2020-001141
https://dx.doi.org/10.1136/jitc-2020-001141
https://dx.doi.org/10.1136/jitc-2020-001141
https://dx.doi.org/10.1136/jitc-2020-001141
https://dx.doi.org/10.1136/jitc-2020-001141
https://dx.doi.org/10.1136/jitc-2020-001141
https://dx.doi.org/10.1136/jitc-2020-001141
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Our model has successfully conducted in silico VCTs 
for atezolizumab monotherapy and combination therapy. 
The predicted ORR showed consistency with clinical 
trial results. Patients receiving monotherapy with PD-1 
or PD-L1 agents typically well tolerate them based on 
previous studies, but combination therapies are always 
associated with elevated risk of immune-related adverse 
events. The identification of predictive biomarkers is crit-
ical to optimize patient benefit and reduce risk of toxici-
ties. Important parameters such as TMB, amount of Teff 
in tumor microenvironment, and PD-L1/CEA expres-
sion in cancer cells have shown potential to be predictive 
biomarkers. PD-L1 expression in APCs could potentially 
be a biomarker for atezolizumab monotherapy, but it 
showed no correlation with patients’ response in combina-
tion therapy. Other parameters such as cross-arm binding 
efficiency λ and CD3-cibisatamab binding affinity could 
affect the efficacy of cibisatamab monotherapy, which 
should be noted and carefully selected in the design of 
TCE.

We then explored if patients who failed to respond to 
monotherapies can benefit from combination therapy by 
studying patients in PD-PD, PD-SD, PD-PR/CR, SD-SD 
and SD-PR/CR groups. This analysis would help guide 
treatment recommendations by assessing if combination 
therapy may work for specific patients. We have shown 
how patients with different parameters responded differ-
ently. Although patients in PD-PR/CR and PD-SD groups 
can both benefit from combination therapy, patients 
in PD-PR/CR group had higher TMB, Teff density and 
Teff/Treg ratio in tumor, and PD-L1 or CEA expression 
in cancer cells than patients in PD-SD groups. However, if 
we only compare one parameter, the distribution of this 
parameter in patients of PD-PR/CR, PD-SD and PD-PD 
groups may overlap with other groups, resulting in false 
positive results, that is, high TMB patients in PD-PD group 
were predicted in PD-PR/CR or PD-SD groups. However, 
this can be avoided by comparing more parameters.

Moreover, we computed the distribution of potential 
biomarkers in our VPs and studied how their distribution 
affected patients’ response, by grouping all patients into 
ROA, ROC, ROB, ROCMB and NR groups. This might 
solve the problem of unnecessary trials and help deter-
mine the best treatment option for patients and prospec-
tively assign them to the right group. As we mentioned 
before, a small subset of MSS CRC patients can still 
respond to anti-PD-1/PD-L1 antibodies or TCE mono-
therapy. These patients need to be identified instead of 
being potentially excluded from a therapy that could be 
suitable for them. In addition, some patients are unlikely 
to respond to monotherapies, and should receive combi-
nation therapy. There is also a subset of patients who may 
respond to any treatment, for them the best treatment can 
be chosen based on the clinicians’ experience and other 
factors such as potential toxicity and patients’ preferred 
dosing regimen. Finally, patients who may not respond 
to any treatment can be identified and considered for 
other treatment options in a timely manner. Therefore, 

it is essential to implement novel biomarker-guided 
patient selection to improve the overall efficiency of clin-
ical trials design. Ideally, if all these potential biomarkers 
can be measured, the best treatment can be identified 
for a specific patient based on the reference ranges 
obtained from a virtual population. However, realistically, 
in the most cases, not all parameters can be measured, 
therefore, the performance of these biomarkers can be 
compared with predict efficacy and a rough prediction 
of ORR can be made even when there are only a few 
biomarkers available.

PD-L2 is commonly considered as an inhibitor of T 
cell activation, but its actual role in the tumor microen-
vironment are still being elucidated. An in vivo study of 
PD-L2 KO mice has shown a potential function of PD-L2 
for augmenting T helper 1 and CTL responses.46 Another 
report revealed that the aggregated form of PD-L2 on 
DCs may suppress the interaction between PD-1 and 
PD-L1.47 Despite these reports, therapy targeting both 
PD-1 ligands such as PD-1 blockade still provided clin-
ical benefit.48 Since the functions of PD-L2 are still not 
completely understood and the primary ligand of PD-1 
has been proven to be PD-L1 with presence of PD-L2, we, 
therefore, decided not to study the impact of PD-L2 on 
patients’ response in our model in depth. Fortunately, 
the expression of PD-L2 in CRC is very low and its effect 
on CRC is much lower than in other types of cancer. 
Although there is more PD-L2 on APCs, sensitivity anal-
ysis has shown limited impact on patients’ response. As 
more evidence emerges to clarify the role of PD-L2, we 
will add these mechanisms to the model in future work.

We have extended the ICIs module with PD-L1 expres-
sion in APCs. However, a higher level of PD-L1 expression 
in tumor-infiltrating immune cells especially tumor-
associated macrophages (TAMs) and myeloid-derived 
suppressor cells (MDSCs) has been detected and proved 
to be associated with patients’ survival.7 49 Since these cells 
are important for tumor progression, efficacy of targeting 
PD-L1 on tumor-infiltrating immune cells should be 
further studied. In terms of TAMs, their polarization 
toward M1 or M2 subsets in the tumor microenviron-
ment has attracted a lot of attention and ample evidence 
exists that TAMs appear and behave as M2 phenotype, 
which is an important factor in protumorigenesis.50 It 
is, therefore, necessary to include TAMs and MDSCs to 
have a better understanding of the roles of PD-1/PD-L1 
in different cells and of the function of TAMs polarization 
in the tumor microenvironment. This addition will then 
make our QSP model more complete in determining 
biomarkers and providing guidance for future clinical 
trials.

CONCLUSION
In summary, we performed three in silico VCTs using 
our QSP model with an expanded ICIs module. The 
model reproduced clinical trial outcomes and showed 
good consistency with previous publications. For each 
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therapy, we were able to identify potential patient selec-
tion biomarkers. By comparing the predicted outcomes 
of monotherapy and combination therapy in the same set 
of VPs, the model was able to identify the best treatment 
options for patients based on their individual character-
istics. In addition, the current model can be applied to 
other TCEs and ICIs in different types of cancer to help 
assess plausible combination strategies and reduce the 
effort of clinical assessment. Although the knowledge gap 
between clinical trials and QSP modeling hinders appli-
cation of these models in many respects, including the 
optimal selection of combination therapies, predicting 
toxicity, duration of response (DOR) and progression 
free survival, this gap will be filled as greater emphasis is 
placed on the collection of patient-centric biomarkers in 
current and future clinical trials.
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