Skip to main content
. 2020 Aug 14:bbaa170. doi: 10.1093/bib/bbaa170

Table 4.

Comparison of different classification studies

Study Dataset Method Classifier Accuracy %
Barstugan et al. [22] Abdominal CT images: 16 × 16

− Grey-level co-occurrence matrix (GLCM)

− Local directional pattern (LDP)

− Grey-level run length matrix (GLRLM)

− Grey-level size zone matrix (GLSZM)

− Discrete wavelet transform (DWT)

Support vector machine (SVM) 99.68
32 × 32 99.37
48 × 48 99.64
64 × 64 97.28
Basu et al. [23] Chest X-ray images Domain extension transfer learning (DETL) Machine learning (ML)
Deep learning (DL)
95.3% ± 0.02
Ozturk et al. [24] Raw chest X-ray images: DarkCovidNet model Deep learning (DL) 98.08
− Binary classification (COVID versus no-findings)
− Multi-class classification (COVID versus no-findings versus pneumonia) 87.02
Elasnaoui et al. [25] X-ray and CT images Models: Inception_ResNet_V2 Multilayer perceptron classifier 92.18
DenseNet201 88.09
Resnet50 87.54
MobileNet_V2 85.47
Inception_V3 88.03
VGG16 74.84
VGG19 72.52
Proposed study DNA sequences: − Discrete Fourier transform K-nearest neighbor algorithm 100
− Discrete cosine transform
− COVID-19 versus SARS-CoV − Seven moment invariants
− COVID-19 versus MERS-CoV 100
− COVID-19 versus SARS-CoV versus MERS-CoV 100
− COVID-19 versus SARS-CoV Trainable cascade-forward back propagation neural network 100
− COVID-19 versus MERS-CoV 98.34
− COVID-19 versus SARS-CoV versus MERS-CoV 98.89