Table 4.
Comparison of different classification studies
Study | Dataset | Method | Classifier | Accuracy % |
---|---|---|---|---|
Barstugan et al. [22] | Abdominal CT images: 16 × 16 |
− Grey-level co-occurrence matrix (GLCM) − Local directional pattern (LDP) − Grey-level run length matrix (GLRLM) − Grey-level size zone matrix (GLSZM) − Discrete wavelet transform (DWT) |
Support vector machine (SVM) | 99.68 |
32 × 32 | 99.37 | |||
48 × 48 | 99.64 | |||
64 × 64 | 97.28 | |||
Basu et al. [23] | Chest X-ray images | Domain extension transfer learning (DETL) | Machine learning (ML) Deep learning (DL) |
95.3% ± 0.02 |
Ozturk et al. [24] | Raw chest X-ray images: | DarkCovidNet model | Deep learning (DL) | 98.08 |
− Binary classification (COVID versus no-findings) | ||||
− Multi-class classification (COVID versus no-findings versus pneumonia) | 87.02 | |||
Elasnaoui et al. [25] | X-ray and CT images | Models: Inception_ResNet_V2 | Multilayer perceptron classifier | 92.18 |
DenseNet201 | 88.09 | |||
Resnet50 | 87.54 | |||
MobileNet_V2 | 85.47 | |||
Inception_V3 | 88.03 | |||
VGG16 | 74.84 | |||
VGG19 | 72.52 | |||
Proposed study | DNA sequences: | − Discrete Fourier transform | K-nearest neighbor algorithm | 100 |
− Discrete cosine transform | ||||
− COVID-19 versus SARS-CoV | − Seven moment invariants | |||
− COVID-19 versus MERS-CoV | 100 | |||
− COVID-19 versus SARS-CoV versus MERS-CoV | 100 | |||
− COVID-19 versus SARS-CoV | Trainable cascade-forward back propagation neural network | 100 | ||
− COVID-19 versus MERS-CoV | 98.34 | |||
− COVID-19 versus SARS-CoV versus MERS-CoV | 98.89 |