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Abstract

Mass spectrometry-based proteomics is a popular and powerful method for pre-

cise and highly multiplexed protein identification. The most common method

of analyzing untargeted proteomics data is called database searching, where the

database is simply a collection of protein sequences from the target organism,

derived from genome sequencing. Experimental peptide tandem mass spectra

are compared to simplified models of theoretical spectra calculated from

the translated genomic sequences. However, in several interesting application

areas, such as forensics, archaeology, venomics, and others, a genome sequence

may not be available, or the correct genome sequence to use is not known. In

these cases, de novo peptide identification can play an important role. De novo

methods infer peptide sequence directly from the tandem mass spectrum with-

out reference to a sequence database, usually using graph-based or machine

learning algorithms. In this review, we provide a basic overview of de novo pep-

tide identification methods and applications, briefly covering de novo algo-

rithms and tools, and focusing in more depth on recent applications from

venomics, metaproteomics, forensics, and characterization of antibody drugs.
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1 | INTRODUCTION

Liquid chromatography–tandem mass spectrometry (LC–
MS/MS) proteomics has been successful in providing bio-
logical insights and generating new hypotheses in many
scientific areas, including systems biology,1 protein–
protein interactions,2 cancer biology,3 and even the identi-
fication of unknown organisms in clinical and biodefense
settings.4–6 The typical proteomics workflow, known as
bottom-up proteomics, consists of protein extraction,
denaturation, digestion with the specific protease trypsin,
and LC–MS/MS analysis of the resulting peptide mix-
ture.7,8 The mass spectrometer breaks selected peptides

into fragments in the gas phase by collision with an inert
gas. Because these collisions result in semirandom cleav-
age of peptide bonds, the relationships between the
masses of the resulting fragment ions encode information
about the sequence of the peptide. Depending on the sam-
ple and the details of the analytical platform, thousands
to tens of thousands of peptides can be identified in a sin-
gle LC–MS experiment.

In addition to the analytical instrumentation, bioinfor-
matics tools play a key role, particularly peptide identifica-
tion algorithms. Identifying a peptide means determining
its amino acid sequence. From the peptide sequences, the
proteins can be inferred, and the chromatographic peak
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areas, now tagged with the peptide sequences, can be used
for quantitation. There are several approaches to peptide
identification using mass spectrometry data, including
database searching, spectral library searching, de novo
approaches, and hybrid or tag-based approaches.9 The most
common and best-known class of peptide identification
algorithms is database searching, exemplified by such
well-known tools as Sequest,10 Mascot,11 and numerous
others.12 The database is actually a collection of protein
sequences, derived from genome sequencing and usually
representing all proteins encoded by the organism under
study. Simple rules are used to create a theoretical or
model spectrum from the database peptide sequence, and
these simplified model spectra are compared to and scored
against the observed spectra. Database searching is more
accurate than de novo methods, and has widely accepted,
though still debated, methods for estimating and control-
ling the rate of erroneous peptide-spectrum matches
(PSMs).13,14 Database search is only possible when studying
organisms whose genomes have been sequenced, or at least
organisms very closely related to those with sequenced
genomes. Another method, spectral library search, com-
pares observed spectra to a library of confidently identified
empirical spectra, rather than a collection of protein
sequences. It is faster and more sensitive than database

search.15 Spectral libraries are generally available for only a
small number of model organisms, including human and
mouse.

When databases or spectral libraries are not available,
researchers can turn to de novo methods of peptide iden-
tification, since these algorithms do not require a data-
base or a library.16,17 Instead, these algorithms determine
the peptide sequence directly from the spacing (i.e., mass
differences) between fragment ion peaks (Figure 1). Vari-
ous algorithms are used for this purpose (see below), but
all share the goal of finding the peptide that best explains
an observed tandem mass spectrum, without reference to
any sequence database. De novo peptide sequencing is a
challenging problem, and even today's best methods are
not as accurate as database searching. However, when
the limitations and advantages of de novo peptide identi-
fications, particularly of the large numbers of de novo
identifications available from the tens of thousands of
MS/MS spectra in a modern LC–MS/MS experiment, are
understood, de novo methods can be a powerful way of
analyzing proteomics data in many contexts.

Although the first attempts at de novo spectrum inter-
pretation predate database search, database search has
been the predominant method in proteomics research for
25 years. De novo methods have been considered by the

FIGURE 1 Example of an annotated mass spectrometry (MS/MSor fragmentation) spectrum for the ricin peptide LEQLAGNLR.

Collision with a gas in the mass spectrometer provides vibrational excitation, which leads to breakage of the most labile bonds, which are

frequently the peptide bonds. Thus, peptides consistently fragment between amino acid residues, so the distance between peaks representing

successive fragment ions equals the mass of an amino acid residue. De novo sequencing algorithms attempt to infer the amino acid sequence

from the information thus encoded in the fragment ion spacing. This is the MS/MS spectrum of the peptide LEQLAGNLR from the A-chain

of ricin, obtained as part of a liquid chromatography–MS (LC–MS)/MS analysis of a castor seed digest. Only major b- and y-type ions are

labeled; other explained peaks are colored only. Black peaks are not explained by the most common ion types; however, expert manual

review can sometimes lead to more peaks being annotated
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proteomics community as a curiosity or niche technique.
However, recent improvements in algorithms and instru-
mentation have led to increased interest and expanded
use cases.

A very thorough review of published de novo
approaches has recently been published by Muth et al.17 In
this review, we briefly cover computational algorithms, but
also discuss several data acquisition and sample prepara-
tion strategies intended to improve de novo interpretation.
Most importantly, we also provide a series of examples that
illustrate both the power and the limitations of de novo
peptide sequencing, together with necessary background.
We intend to give a non-proteomics audience a sense of
the areas where de novo approaches may be useful, a frame
of reference for understanding both their power and limi-
tations, and a basis for evaluating the results of a de novo
analysis. We hope that this presentation will familiarize
researchers in diverse areas of protein science with the
approach and spur additional creative use cases.

We begin with a brief discussion of available tools and
algorithms and their limitations, but we do not provide a
detailed survey of de novo methods, dwelling instead on
practical tips for researchers who want to make use of such
tools. In addition, we will discuss several proposed spe-
cialty methods of sample preparation or data analysis that
are intended to improve the results of de novo analysis.
Finally, we will describe areas where de novo analysis has
proved successful, including venomics and other analysis
of unsequenced organisms, complete sequence characteri-
zation of therapeutic antibodies, and metaproteomics with
an emphasis on potential applications in forensic proteo-
mics, our own area of research. A common theme that
emerges from these examples is the way in which de novo
sequencing and de novo-derived sequence tags effectively
limit the peptide sequence search space in a way that pro-
vides useful information without the need for prior knowl-
edge or questionable assumptions about a sample's origin.

2 | ALGORITHMS AND TOOLS

2.1 | The spectrum graph

Most current and historical de novo tools use the spec-
trum graph concept in some form,18–20 including the pop-
ular and readily available de novo software packages
PEAKS21 and Novor.22 The tandem mass spectrum is rep-
resented as a graph. Fragment ion mass peaks are nodes,
and edges are generated if the mass difference between
two nodes is equal to an amino acid residue mass. Each
edge is therefore labeled with an amino acid residue. The
spectrum graph contains special source and sink nodes,
representing the N-terminus of the peptide (i.e., zero

mass) and the C-terminus of the peptide (equal to the
precursor mass or molecular weight of the peptide).
Each path through the graph from source to sink repre-
sents a possible peptide sequence that could explain the
observed spectrum. However, which path is the correct
one? Nodes, edges, or both can be weighted according to
peak intensity, or the probability of observing a particular
residue or pair of residues. A score that sums the weights
for each path can then be calculated. Dynamic program-
ming algorithms can then be used to recursively find the
highest-weighted path through the graph, which is pre-
sumed to represent the best peptide.

There are two main difficulties encountered with this
approach. The first is that peptide fragmentation spectra
do not always contain all possible fragment ions. Fragmen-
tation efficiency at each peptide bond is determined by a
number of chemical and sequence-related factors,23 and
there are typically missing peaks. This leads to a missing
node in the spectral graph and could prevent the correct
sequence from being identified. Most spectral graph algo-
rithms deal with this by allowing edges that are equal to
dipeptide residue masses, which allows the correct solution
to be found but also greatly increases the number of possi-
ble solutions, making it more difficult for the correct pep-
tide to get the highest score. The pNovo 3 tool has recently
addressed this difficulty by employing spectral predictions
that include predictions of the intensity of each fragment
ion peak, including the peaks before and after the missing
peak.24 Thus, presence or absence of a peak can help iden-
tify the peptide. A practical implication of the effect of
missing fragment ions is that de novo tools work best on
high quality spectra with extensive fragmentation.

The second difficulty is that when a gas-phase peptide
ion fragments in the mass spectrometer, the charge
can be retained on either half, leading to N-terminal and
C-terminal fragments, termed b and y ions, respectively.
There is not a general way to distinguish between the
two types, so spurious edges between b and y ions can be
created in the spectral graph, leading to incorrect pep-
tides, sometimes including peptides containing stretches
of correct sequence in the reversed order.20 Various
algorithmic methods have been proposed to solve this
problem,18,19 but the difficulty of this problem has also
inspired a number of labeling and other strategies to dis-
tinguish b and y ions in advance of applying an algorith-
mic solution (see below). High-resolution MS/MS spectra
make this problem more rare.25

2.2 | Machine learning approaches

Machine learning, also called statistical learning, is a large
family of computational techniques that infer or derive
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classification rules from calculated properties (known as
features) of a large set of training data. Deep learning is
a flavor of machine learning that uses neural networks.
Some recent publications have applied various machine
learning techniques to the de novo sequencing problem,
and can be divided into two groups. Approaches in the
first group use empirical machine learning as the primary
method of peptide identification, such as DeepNovo,26

Kaiko,27 and SMSNet.28 These tools make use of large sets
of MS/MS spectra that had previously been confidently
identified by other methods, such as database search with
stringent quality filters. By extracting features from these
PSMs, they learn how to predict the sequence from the
spectrum tools in the second group use machine learning
to rescore or re-rank candidate sequences after an initial
graph-based enumeration, like Novor 22 and pNovo 3.24

Methods in the first group represent a distinctly new
approach to peptide identification. These methods resem-
ble the graph-based methods only in that they do not
directly use a database of sequences or a spectral library.
The finished model requires no input other than a spec-
trum and a precursor mass and, in that sense, these are is
a de novo algorithms. However, since the models must be
trained by a set of matched sequences and spectra, deep
learning could also be viewed as a kind of generalization
of spectral library search. Of this first group, the first
published example was DeepNovo,26 which combined
multiple neural networks and a dynamic programming
algorithm. It was trained on 1.7 million spectra from
multiple species. Kaiko27 built on the same deep learning
framework but had a much larger training set (5 million),
and demonstrated that DeepNovo as published may
suffer from overfitting. Both of these papers reported
improved performance relative to PEAKS and Novor,
but interestingly the Kaiko paper reported that PEAKS
and Novor outperformed DeepNovo but not Kaiko.
DeepNovo has been incorporated into the most recent
release of PEAKS (version 10). It may be too soon to
gauge the impact of deep learning methods on de novo
identification, but as the amount of available proteomics
data (and hence the availability of training data) grows, it
seems likely that work in this area will continue.

The second group of machine learning tools uses
machine learning to score or re-rank candidate peptides
generated by the spectrum graph approach. Novor22 uses
scoring functions learned from training data by a decision
tree algorithm that uses a feature set that includes peak
intensity, combined with dynamic programming, to select
candidates, and a second score generated from another
decision tree to refine the PSM. Similarly, pNovo 324 uses a
tool called a learning-to-rank framework to distinguish
between very similar peptide sequences with similar scores.
The training in this case was based on accurate predicted

spectra, which in turn were created by a deep learning
method29 that predicts not only the masses of fragment
ions (which is trivial based on fragmentation chemistry)
but also the intensities of fragment ion peaks, which is
much harder. Thus, both Novor and pNovo 3 leverage frag-
ment ion peak intensities and their sequence dependence
in a way that few peptide identification tools do.

2.3 | Tag-based methods

De novo methods cannot always accurately determine the
sequence of an entire peptide, but they excel at accurately
identifying stretches of amino acid sequence. Muth and
Renard found that PEAKS and Novor correctly identified
the complete correct peptide sequence in 19–37% as many
spectra as database search, but that in the same data sets,
49–71% of individual amino acid residues were correctly
identified.30 Using a different data set, Devabhaktuni et al.
recently showed that most de novo spectral interpretations
(�50% to over 80%, depending on the tool) are over 50%
correct in terms of number of correct residues in the pep-
tide sequence.31These subsequences, called sequence tags
or simply tags, along with peptide mass information, can
then be compared to sequence databases to identify pep-
tides. This sequence tag-based, hybrid approach31–34 can be
viewed either as a fourth peptide identification method, or
as an application of de novo methods. After tags are gener-
ated by de novo algorithms, tag-based methods do require a
database, but the increased speed and specificity provided
by the tags can allow successful searching of a much larger
database, or can be used to narrow down the database, as
described in the section on metaproteomics below. The
TagGraph algorithm deserves special mention for the way
in which de novo reconstructions are used to generate tags,
which are then matched to sequence databases using
very fast string-matching algorithms to retrieve candidate
sequences. Candidate sequences are then scored against
the original spectrum using a modified spectral graph
approach where tags are considered as nodes. TagGraph
was used to identify many posttranslationally modified pro-
teins, but in principle could also be used to search a very
large collection of sequences, such as a comprehensive
multiorganism database.

3 | INTERPRETING DE NOVO
RESULTS

3.1 | Practical considerations

The above discussion of algorithms and tools has practi-
cal implications for a researcher considering a de novo
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analysis. If a machine learning model is to be used, the
training set should be sufficiently large to avoid over-
fitting, and it should be congruent with the properties of
the data to be analyzed. For example, if the model was
trained with only peptides digested by the conventional
enzyme trypsin, the model may not be appropriately
trained to recognize nontryptic peptides. Such a model
may therefore be unsuited to analyze data from, for
instance, an in vivo peptidome arising from the action of
many specific and nonspecific proteases.

It is also critical that the fragmentation spectrum data
quality is suitable to de novo applications. In recent years,
high-resolution MS/MS data, such as that acquired from
the Thermo Scientific Q Exactive family of mass spec-
trometers, has become more prevalent. It is only logical
that the increased fragment ion mass accuracy would
increase performance of spectrum graph methods by
reducing the occurrence of spurious edges, and indeed
this has been demonstrated.25 Good signal-to-noise ratios
in fragmentation spectra are also important for successful
de novo sequencing. In high signal-to-noise spectra, low-
abundance fragment ion peaks are more likely to be
detected, thus avoiding the challenges associated with
missing fragment ion peaks.

It is important to be able to evaluate the strength of
an individual de novo PSM. PEAKS and Novor generate
both an overall score and a local confidence score, the
latter of which is an estimate of the confidence of the
assignment of each individual amino acid residue. A
threshold value is often selected, with peptides not meet-
ing the threshold discarded. The appropriate value of the
score threshold depends on the overall purpose of the
analysis. In addition, it is important to remember that
“incorrect” de novo hits often contain correct sequence
stretches that can be used as tags.

Even though de novo identification does not require a
database for peptide sequence characterization, inter-
preting de novo results almost always means comparison
to a sequence database in some form. Many software
tools for this purpose exist and have been extensively
reviewed by Muth et al.17 The choice of database used
in the comparison and the choice of the tool will depend
on the goals of the analysis, but we will mention two of
the most useful and successful here. UniPept's meta-
proteomics tool35 takes a list of tryptic peptide sequences
and compares them to an in silico tryptic digest of the
UniProt database, tracking the occurrence of the peptide
sequence through successive levels of taxonomy via a
least common ancestor approach. A typical de novo anal-
ysis of a bacterial proteome analyzed with Novor can pro-
vide several thousands de novo peptide reconstructions,
often enough to indicate which organisms are in the
sample. PepExplorer,36 following the earlier MS-BLAST

program37 matches de novo peptides to a database using a
variation of the BLAST algorithm optimized for de novo
peptide identifications. The well-known BLAST algorithm
calculates similarity between protein sequences by using a
substitution matrix, which contains estimated probabili-
ties of one amino acid being substituted for another. This
model works very well for evolutionary changes but does
not accurately reflect the types of errors that de novo
sequencing commonly makes, such as isoleucine/leucine
or asparagine/diglycine (isobaric), or glutamine/lysine
(nearly isobaric) substitutions, or transposition of two
adjacent residues. PepExplorer uses a substitution matrix
tailored to common de novo sequencing errors. Examples
of the use of these tools are given below. As a final note,
the number of matched peptides in one of these tools can
also be used as a measure of data quality, once a baseline
for a given system is established.

3.2 | Confidence and false discovery rate
estimation

No peptide identification method is perfect, and some pro-
portion of identifications will likely always be incorrect. In
database searching, the proteomics community deals with
the problem mainly by using the target-decoy approach
to control the false discovery rate (FDR; the proportion of
PSMs that are incorrect).13,14 This method works by includ-
ing sequences in the search database that are not expected
to be present in the sample, usually scrambled or reversed
sequences from the sample database. Hits to these decoy
sequences are assumed to be incorrect, and the minimum
acceptable score is adjusted to control the proportion of
incorrect hits (the FDR) to an acceptable level, usually 1%.
An expansion of this concept known as Percolator38 uses
semisupervised machine learning (i.e., decoys are labeled
as incorrect assignments) and features calculated from the
PSMs to reclassify target and decoy spectra.

Estimating FDRs in de novo sequencing remains chal-
lenging. Since there is no database, decoy database
methods cannot be applied. Two notable attempts to
solve the problem should be mentioned. Miller et al.39

developed the tool Postnovo, which follows the Percola-
tor philosophy. Using the agreement between de novo
search results from Novor, PepNovo+, DeepNovo, and
PEAKS, Postnovo compares the output of each tool using
different fragment ion tolerances, spectral clustering, and
presence or absence of sequences suggestive of common
de novo sequencing errors. After training on separately
identified peptides, the model yields an estimate of the
FDR. In a somewhat similar approach, Devabhaktuni
et al.40 estimated FDRs of de novo peptide sets by compar-
ing de novo results to high-confidence database search
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results as a function of de novo score threshold. This pro-
vided and empirical mapping of de novo score to FDR.

Although a useful measure for controlling incorrect
peptide identifications, FDR may not be the most rele-
vant metric for all applications. In some cases, such as
analysis of simple mixtures or purified peptides, there
may not be enough PSMs to accurately estimate the
global FDR, and researchers must rely on the scores
provided by the de novo software used. Both PEAKS
and Novor provide local confidence scores, which esti-
mate the confidence of each individual residue in the
sequence. (The main peptide score in PEAKS is the aver-
age local confidence score.) Local confidence scores can
be used to identify regions of the sequence that are likely
to be correct, which can be used as sequence tags in a
tag-based search tool such as TagGraph,31 as a starting
point for manual de novo sequence identification41 or as
a query string for sequence databases. Traditional FDR
analysis does not account for partially correct, but very
useful, PSMs.

4 | DATA ACQUISITION AND
SAMPLE PREPARATION METHODS
FOR IMPROVING DE NOVO
IDENTIFICATION

Interpreting tandem mass spectra using de novo methods
can be difficult because of (a) missing fragment ion
peaks and (b) difficulty in distinguishing b and y ions.
Both issues lead to de novo sequencing errors. Many
attempts to improve de novo sequencing have used data
acquisition or sample preparation methods to overcome
these challenges. An important trend in overcoming
the missing peaks problem has been to collect multiple
spectra for the same peptide using different fragmenta-
tion methods, which can contain different fragment ions.
Combining the spectra can provide a more complete
ion series. Some approaches label peptides with stable-
isotope coded heavy and light reagents, whereas others
use specialized digestion enzymes or specialized frag-
mentation methods, and some use a combination
of both.

4.1 | Distinguishing fragment ion types

Devabhaktuni and Elias used a labeling approach and
created an algorithm they call label-assisted de novo
sequencing. By N-terminally labeling peptides using
heavy and light reagents, the precursor ions will appear
as doublets. By comparing the heavy and light MS/MS
spectra, the b ions differ by the mass of the label while

the y ions will be identical between the two spectra. This
makes it possible to distinguish the b and y ion series and
better predict the de novo peptide.40

Yang et al. have shown how using complementary
enzymes can produce what they call mirror spectra.42

Mirror spectra can be produced by digesting the sample
(in parallel reactions) with trypsin (which cuts the pep-
tide bond C-terminal to lysine and arginine residues) and
LysargiNase (which cuts on the N-terminal side of lysine
and arginine residues). This results in paired sets of pep-
tides that differ only by having a basic residue at the N-
or the C-terminus, called mirror peptides. The two sam-
ples are analyzed in separate LC–MS/MS runs. Pairs of
spectra from mirror peptides are identified from similar
chromatographic elution times and defined mass rela-
tionships, either equal mass if the preceding and follow-
ing basic residues were the same (both Lys or both Arg),
or a defined mass difference if the preceding and follow-
ing basic residues were different (i.e., the difference
between Lys and Arg masses). Corresponding fragment
ion peaks across the pair of mirror spectra also have
defined mass relationships that differ for y and b ions,
thus effectively labeling the ion series. Gaps in the b and
y ion series of the trypsin spectra can be filled in using
the Ac-LysargiNase spectra and vice versa which results
in fuller coverage of the peptide. The authors of this
method42 found that in a test set of Escherichia coli prote-
ome samples around 50% of the peptides had both trypsin
and Ac-LysargiNase spectra, and the mirror spectra were
able to reach 97% coverage of either the y or b ion
series.42 They created the software tool pNovoM to pair
mirror spectra and perform the de novo search.

A method that takes advantage of specialized dissoci-
ation methods (collision-induced dissociation [CID]
fragmentation in combination with 351 nm ultraviolet
photodissociation [UVPD]) was presented by Horton and
coworkers.43 After protecting lysine amino groups by car-
bamylation, the peptides are covalently labeled with a
chromophore at the amino (N) terminus. The chromo-
phore absorbs light at the wavelength of the UVPD laser,
leading to peptide fragmentation. Because amino-terminal
fragments (b ions) retain the chromophore, the cycle of
light absorption and dissociation is repeated, so b ions are
readily degraded. The resulting spectra therefore have
only y ions, which greatly facilitates de novo interpreta-
tion via a graph-based algorithm. Horton et al. subse-
quently developed a software tool, UVnovo, to process
UVPD/CID spectral pairs.44 The tool uses machine learn-
ing (a random forest algorithm) and a graph-based
approach to interpret the spectra. In their test set using
E. coli proteome datasets, they were able to identify 70%
of spectra, using the database search tool Sequest as a
benchmark for correct peptides.
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4.2 | Combining data from multiple
fragmentation methods

Many other researchers have attempted to merge data
from multiple peptide fragmentation methods. Aside
from UVPD mentioned above, in this review we have
been discussing exclusively CID and its variant, higher-
energy C-trap dissociation (HCD). Peptides can also be
fragment by gas-phase reactions with an electron donor,
known as electron transfer dissociation, ETD. A detailed
discussion of fragmentation methods is outside the scope
of this review, but many researchers have combined data
from multiple spectra of the same peptide fragmented
by multiple methods. The combined data can result in
fewer missing fragments and therefore superior de novo
reconstructions.45–47

5 | APPLICATION AREAS

5.1 | Venomics and other unsequenced
organisms

Many venomous animals (snakes, spiders, scorpions,
cone snails, etc.) have genomes that have not yet been
sequenced. Characterization of the protein and peptide
components of these venoms is important for the pro-
duction of antidotes and antivenoms, for the discovery
of proteins with potential therapeutic uses, and for an
understanding of basic venom biology. By using de novo
peptide identification tools, and comparing their results
to sequence databases, many venom proteins can be
identified by mapping to similar proteins in other
species.

A good example comes from a study of Loxosceles
intermedia spider venom by Trevisan-Silva et al.48 These
authors combined a thorough multienzyme, multi-
fragmentation proteomics analysis with the Meta-SPS data
analysis strategy. This strategy (see below) assembles the
overlapping spectra arising from the different proteases in
a manner similar to shotgun genomics assembly. Top-
down (undigested) protein fragmentation data were also
used to evaluate the sequence coverage of each protein.
These “contigs” were mapped to a sequence database con-
taining the few known Loxosceles protein sequences from
UniProt and transcriptomics data from the Loxosceles
intermedia venom gland. Using this method, 190 venom
proteins were identified, including representatives from all
known venom toxin classes. Unfortunately, the authors
did not compare the de novo results to a direct database
search using the transcriptome database. This is an
impressive result, demonstrating the power of de novo
approaches. It is worth noting that this approach could

potentially uncover novel proteins as well; well-supported
contigs that do not map back to known sequences poten-
tially represent completely novel proteins.

In 2015, Melani et al. carried out a proteomic charac-
terization of the venom of the South American rattlesnake
Crotalus durissus terrificus.49 Peptides were identified
from low-resolution CID mass spectra using both a stan-
dard database search and a de novo search (using PEAKS
version 6). PEAKS de novo peptides with an ALC above
50 were used in a similarity search of a database made up
of the UniProt entries from suborder Serpentes in Pep-
Explorer. They were able to identify more protein families
than previous studies, including several new protein fami-
lies. Importantly, a total of nine protein families were
only identified through the de novo analysis, illustrating
the power of de novo-based methods in characterizing
unsequenced organisms.

De novo sequencing can also lead to important
biochemical insights regarding individual proteins. In 2016,
Camacho et al. characterized an apparent metalloproteinase,
BlatPII, purified from Bothriechis lateralis venom. BlatPII
was discovered in a fraction that lacked the typical hemor-
rhagic activity of this class of metalloproteinase. Mass spec-
trometric sequencing of this fraction with PEAKS revealed
highly confident peptides with sequences characteristic of
this class of metalloproteases, including a sequence from the
active site that had an inactivating mutation. Subsequent
cloning of the gene and mapping of the de novo peptides to
the newly sequenced gene with PepExplorer confirmed the
inactivating mutation, demonstrating that de novo peptide
sequencing can help identify and functionally characterize
novel proteins.

5.2 | Metaproteomics and forensics

5.2.1 | Metaproteomics

Metaproteomics can be thought of as environmental
proteomics. Proteomics is the study of the total protein
complement of a cell or tissue and how it changes
with changing conditions. Metaproteomics is the study of
the total protein complement of a complex microbial
ecosystem—such as a soil, seawater, or the human gut
microbiomes—and its changes. Metaproteomics differs
from traditional proteomics in that the composition of
the sample—the identities of its constituent organisms
and their proportions—is wholly or partly unknown. This
fact means that selecting the appropriate database for
peptide and protein identification by database search is a
major challenge.

At first glance, searching a metaproteomics sample
with a comprehensive database may seem like a good idea;
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by including everything, the search is unbiased with
respect to the organisms suspected to be in the sample.
However, such an intuitive approach is fundamentally
flawed. As the number of sequences in the database
increases, the chance of a spectrum matching closely to an
incorrect peptide also increases, resulting in a large num-
ber of incorrect but high-scoring PSMs. Because the esti-
mated number of incorrect matches (the FDR) is set to a
fixed value, the threshold score needed to accept a PSM
also increases. This filters out more incorrect matches, but
also many high-scoring correct matches, thus reducing the
overall sensitivity.50 For maximum sensitivity, the smallest
database that still matches the sample should be used.

The metaproteomics field has come up with several
strategies for selecting an appropriate search database.
Using 16S ribosomal RNA sequencing to identify taxa in
each sample can be used to limit the database. Another
strategy is selecting databases from previously studied or
similar sample types. Modified database search approaches
such as two-stage strategies51 and databases created from
unassembled metagenomics reads have also been pro-
posed.52 All of these techniques have advantages and draw-
backs, and the interested reader is referred to the large
amount of literature in this area.53,54

Recently, Potgieter et al.55 published a method called
MetaNovo which uses de novo sequence tags to identify
peptides from a very large database. MetaNovo uses DeN-
ovoGui56 to run DirecTag34 to create de novo sequence
tags. Tags are stored in a database and mapped to
the input protein sequence file using a rapid retrieval
method implemented in Peptide Mapper.57 In this
case, the sequence file is the entirety of the UniProt data-
base. Three tools were used to analyze a human gut
microbiome dataset: MetaNovo, an unnamed matched
metagenome approach, and a bacterial metaproteomics
tool called MetiProtIQ,58 which uses an iterative database
search strategy. MetaNovo performed as well or better
than the other two approaches in terms of number of
peptides identified and had a similar taxonomic distribu-
tion to the other tools. However, MetaNovo identified
more bacterial phyla and species than MetaProIQ, which
uses a curated database. These additional identifications
had PSM scores that were significantly better than
decoys, suggesting that they are valid hits. These results,
and other examples provided by the MetaNovo authors,
illustrate the power of de novo-derived tags in meta-
proteomics peptide identification.

5.2.2 | Forensics and related areas

Interest is growing in using proteomics to characterize
forensic samples.59 One scenario involves the use of

proteomics to identify or characterize the biological ori-
gin of an unknown, protein-containing sample (possibly
even a sample that does not contain DNA, such as a pro-
tein toxin, or a sample that contains degraded DNA). In
addition to traditional (criminal justice) forensics, other
fields also face the problem of characterizing a sample
when little or nothing is known about its identity or ori-
gin, such as archaeology and cultural heritage. To cite
just a few examples, proteomics has been used to charac-
terize a victim's stomach contents upon autopsy,60 iden-
tify trace evidence at a crime scene as vomit,61 identify
3,500-year-old organic residue from tombs in northwest-
ern China as a fermented dairy product,62 and determine
the host animal that was the source of a disease-vector
tick's last blood meal.63

All of the studies just mentioned used either database
search or sequence-tag search to identify proteins. The
first three all used a very large database that includes
many species, such as UniProt (around 100 million
sequences) or NCBI (around 20 million sequences in this
case, representing a considerable down-selection of the
800 million currently listed). Forensic proteomics is like
metaproteomics in that an analyst seeking to identify an
unknown sample by database searching is confronted
with the challenge of selecting an appropriate database.
Too large a database will tend to reduce the sensitivity,
and too small a database risks missing sample compo-
nents of interest. The fourth example, identifying the
source of a tick's blood meal, used a very small and spe-
cific database (only hemoglobins), and thus potentially
missed other species-informative proteins. Without access
to the raw data, we cannot test these assertions, but they
are in line with observations from metaproteomics and
numerous database searching studies.50

Of the first three studies listed above, those with mod-
ern samples found on the order of a few hundreds of pro-
teins. The archaeological study found only a few tens of
proteins, but in all cases, the proteins identified provided
considerable biological insight. However, the large size of
the database is potentially problematic. How can an
appropriate database be chosen in an unbiased way that
does not make unwarranted assumptions about a sam-
ple? If the goal is to characterize a truly unknown sam-
ple, any assumption may be an unwarranted assumption.

Johnson et al. have recently demonstrated how
de novo peptide identification using Novor can be used to
evaluate the suitability for database search of an imper-
fectly matched database64 while simultaneously evaluat-
ing the quality of a dataset. High-scoring peptides from a
de novo analysis with Novor are appended to the proposed
search database, and the search conducted with the com-
bined database. A low number of quality de novo hits can
indicate problems with the data itself (low signal-to-noise,
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low proportion of spectra arising from peptides, etc.).
The proportion of PSMs that match to sequences origi-
nally in the database, rather than to the de novo-derived
sequences, is a measure of the suitability of that database
for the data. In other words, if de novo sequences only
rarely score better than a database sequence, the database
is a close match to the sample. For example, Johnson
et al. found that in a human dataset, 90.8% of PSMs
best matched a human database, whereas in searches
with chimpanzee, gorilla, and orangutan databases, only
83–88% of database PSMs scored better than PSMs to
de novo-derived sequences.

This approach can evaluate whether a given database
is the right one, but does not provide any guidance on
which database to test in the case of a true unknown.
Our research team is developing a de novo-guided data-
base selection procedure for forensics similar in spirit to
MetaNovo (described above). De novo-derived sequence
tags are mapped to a large sequence database, and statis-
tical methods are used to determine the best-matching
organism. In the example forensics studies above, we
hypothesize that a de novo-guided selection of the search
database would have resulted in increased protein count,
increased protein coverage, or both, simply because the
resulting database would have been smaller.

To better illustrate how de novo-guided database
selection might work in a forensic setting, we turn to an
example from our own group's focus area: protein toxin
detection by mass spectrometry. This example will also
illustrate the use of software tools to interpret de novo
results by comparing de novo sequences to a database.
Ricin and abrin are protein toxins that come from the
seeds of the castor plant and the jequirity pea, respec-
tively. When confronted with an unknown sample that
appears to consist of ground plant seeds, an investigator
might ask (a) from what organism the sample is derived
and (b) whether the sample contains a dangerous toxin.

Such a workflow is illustrated in Figure 2. We started
with triplicate LC–MS/MS analyses of proteins extracted
from the seeds of Ricinus communis (toxic), Abrus
precatorius (toxic), Glycine max (soybean, nontoxic), and
Arachis hypogaea (peanut, nontoxic). De novo peptide
identification was carried out with PEAKS 8.5, and the
resulting PSM list was filtered for only those PSMs with
an average local confidence score of 70 or greater. A list of
peptides from these PSMs was then imported into the
UniPept webserver metaproteomics analysis tool.65 This
tool compares all the de novo sequences to the UniPept
database and tracks the distribution of each matched pep-
tide across taxonomic groups using a least common ances-
tor algorithm. The output is a count of unique peptides
whose least common ancestor is at each taxonomic level,
as shown for a single castor seed sample in Figure 3. Note

the large number of peptides whose least common ances-
tor is R. communis. For clarity, we have aggregated the
data at the genus level. In each case, the correct genus is
one with the most peptide matches (Table 1; numerous
other genera had small numbers of matches as shown in
Figure 3, but for clarity, we only show the known genera
of the four samples). The combination of PEAKS and
UniPept has therefore answered the first question (what
organism generated the sample?) with no assumptions
made about what database to search, other than that the
correct organism is represented in UniProt. If desired, the
appropriate databases could be downloaded and used in a
database search at this stage, allowing access to the supe-
rior accuracy, sensitivity, and FDR estimation of database
search.

Table 1 illustrates both the power and the limitations
of de novo peptide identification. The rate of perfect
(i.e., the sequence is 100% correct) peptide matches is
lower than it would be in a database search. Hence, many
peptide sequences do not match to UniPept, since they
are incorrect. The fraction matching to UniPept, which
can be viewed as an upper limit on the fraction correct,
ranges from 15 to 40%. The rest of the peptide matches
are simply discarded. Sequence-tag based methods could
improve this rate; this approach is used by MetaNovo
and is actively being investigated in our research group
as well.

To answer the second question (is the protein toxin
ricin present?) we analyze the peptide lists with Pep-
Explorer.36 Like UniPept, this tool also compares peptide
lists to a sequence database, but unlike UniPept, it allows
for partial matches. It performs a BLAST sequence simi-
larity search, but with substitution matrices optimized for
the kinds of sequence errors commonly observed in
de novo sequencing. For instance, transposing two adja-
cent residues is a common de novo error, arising from the
absence of a fragment ion in the mass spectrum, but it
is not a common mutation. For this example, we com-
pared the peptide list from one of the castor seed datasets
to a database containing only the ricin A and B chain
sequences. Numerous matched peptides were returned,
with sequence identities ranging from 76.5% to 100%
(Figure 4). If only perfect matches were allowed, this
analysis achieved 51 ± 5% and 15 ± 5% coverage of
the A and B chains, respectively (average and standard
deviation of the three replicates). If close but imperfect
matches (80% sequence identity) are allowed, the cover-
age increases to 60 ± 10% and 39 ± 12%. This analysis
strongly suggests that the ricin toxin is present in the
samples, as it is indeed known to be. However, these
results per se do not conclusively prove ricin is present—
one of several closely related proteins could give a similar
result.
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These examples illustrate the potential for de novo in
forensic proteomics using existing commercial and aca-
demic tools. However, the specialized requirements for
scientific evidence in the legal system require a rigorous
statistical basis—the above analysis is merely suggestive,
but not conclusive. Formalizing these processes, statisti-
cally accounting for multiorganism peptides, closely
related proteins, and in particular, empirically validat-
ing the output on relevant samples are all requirements
for making these approaches ready for routine
application.6,66–68

5.3 | Complete de novo sequencing
of antibodies and other proteins

Monoclonal human antibodies are a fast-growing class of
drugs. As of 2018, there were 64 FDA approved monoclo-
nal antibodies69 to treat a wide range of diseases such as
breast cancer and rheumatoid arthritis. To obtain regula-
tory approval, these antibodies must be thoroughly char-
acterized, including at the amino acid sequence level.

De novo sequencing of monoclonal antibodies is often an
important step, for instance, in the development of a
generic drug where the cell line that generated the anti-
body is no longer available.70,71 A common approach70–73

to complete de novo sequencing of a protein is to digest
the protein with multiple enzymes, either in separate
reactions or simultaneously, followed by LC–MS/MS
analysis. The presence of many overlapping de novo pep-
tides allows the peptide sequences to be combined into
contigs by algorithms akin to assembly of next-generation
sequencing reads. The multiple enzyme digestion is nec-
essary to (a) obtain more complete coverage of the pro-
tein and (b) create enough overlapping peptides for the
assembly algorithms to work well. Enzymatic digestion
can be in separate reactions, or combined in a single
reaction with lower enzyme concentrations as in the
MELD method of Morsa et al.,72 or microwave-assisted
acid hydrolysis can be used instead of enzymatic hydroly-
sis.74 The only requirement is a diversity of highly over-
lapping peptides. Sometimes, de novo peptides are
mapped back to a template sequence or supplemented
with database searches.

FIGURE 2 Overview of an

analytical workflow for identification

and characterization of ground seed

material with proteomics and de novo

peptide identification. Ground castor

seed material containing the toxin ricin

is sometimes recovered in criminal

investigations. However, ground seed

material can be difficult to identify by

visual examination. To simulate testing

such unknown material using mass

spectrometry, we first ground the seeds

and extracted soluble proteins with

aqueous buffer. Next, potential toxins

were inactivated with heat and the

extract was denatured with urea and

digested with trypsin. Tryptic peptides

were analyzed by liquid

chromatography-high resolution

tandem mass spectrometry, generating

tens of thousands of tandem mass

spectra. Mass spectrometric data were

then analyzed with PEAKS Studio 8.5.21

High-scoring peptides from the PEAKS

results were further analyzed with

UniPept35 and PepExplorer36, two tools

for comparing de novo peptide lists to

sequence databases
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The study conducted by Tran et al. is a representative
example. They digested target proteins using trypsin, chy-
motrypsin, and Asp-N71 and acquired LC–MS/MS data.

The LC–MS/MS spectra were then searched using
PEAKS de novo and Peaks DB75 in a two-step search. The
first step used the UniProt database to discover the

FIGURE 3 Dendrogram visualization of the results of a UniPept taxonomy analysis on a single liquid chromatography–tandem mass

spectrometry (LC–MS/MS) replicate of a ground castor seed sample. Each node represents a taxon and the area and color are proportional to the

number of peptides whose LCA (lowest common ancestor) is at that taxon or lower. The size and color of the edges represent the same

information. For simplicity only the superkingdom, kingdom, phylum, family, and genus ranks with at least two LCA peptides are shown. De novo

peptides map to many taxa, but only in the lineage of the castor plant Ricinus communis are high numbers of matching de novo peptides observed

TABLE 1 Results of UniPept least common ancestor analysis for four ground seed samples

Sample
De novo
peptides

Peptides matched
to UniProt

Peptides per genus

Ricinus Abrus Arachis Glycine

Castor1 8902 3269 422 1 0 1

Castor2 5699 2273 233 0 1 0

Castor3 5285 2050 223 0 4 0

Abrus1 7592 2449 0 26 5 7

Abrus2 6607 2342 0 24 3 9

Abrus3 3933 1550 1 17 3 3

Arachis1 6281 1660 0 0 280 1

Arachis2 5459 1429 5 0 216 0

Arachis3 5233 1306 0 0 213 1

Glycine1 8709 3448 1 0 0 391

Glycine2 8821 3428 1 0 1 371

Glycine3 8924 3604 0 0 0 385

Note: Bolded text indicates de novo peptides that mapped to the correct genus.
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species, and the second round used a custom database of
antibody sequences from that species. For the three anti-
bodies tested, they achieved protein coverage from 96.6
to 100%. For a protein mixture of six known proteins
(murine leptin, human kallikrein-related peptidase,
E. coli GroEL, horse heart myoglobin, bovine aprotinin,
and horseradish peroxidase) they were able to achieve
protein sequence coverage between 65 and 99%.

These approaches are not limited to human monoclo-
nal antibodies. Application of Meta-SPS to a spider venom

has been described above.48 In addition to a monoclonal
antibody, Meta-SPS was originally demonstrated on a mix-
ture of six proteins (leptin, kallikrein, GroEL, myoglobin,
aprotinin, and peroxidase) that were separately digested
with trypsin, chymotrypsin, AspN, GluC, ArgC, and LysC.
These samples were analyzed with an LC–MS/MS method
that acquired CID and HCD spectra for each peptide. Since
spectra representing overlapping peptides also contain
overlapping patterns of fragment ion peaks, processed spec-
tra were aligned to form meta-contigs before interpreting

FIGURE 4 De novo peptide sequences mapped to the sequence of the protein toxin ricin A chain (top) and B chain (bottom) with

PepExplorer. The color scale represents the percent sequence identity between the de novo peptide and the canonical ricin sequence. Trypsin

cleavage sites are represented by light gray lines. Peptides marked with an asterisk have a 100% match to a de novo peptide and are also

strong peptides, meaning that their sequences occur sufficiently rarely outside of ricin and related proteins that they can be considered

statistically diagnostic of the presence of ricin.66 Peptides with partial sequence identity could come either from de novo sequencing errors

(i.e., imperfectly sequenced ricin peptides) or they could be perfect matches to one of several closely related ricin-like proteins (i.e., perfect

matches to a protein that closely resembles ricin). Several ricin-like proteins in castor plant are known, but only ricin and the highly similar

agglutinin RCA120 are highly expressed in castor seeds.68 The high sequence coverage and the high sequence identity both support the

presence of ricin or a closely related sequence in the sample; the presence of strong peptides suggests that ricin itself is present. The vertical

axis simply lists the detected peptides in sequence order
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them with pepNovo+.20 Across the six proteins, Meta-SPS
achieved between 68 and 99% coverage with sequencing
accuracy between 80 and 100%. Assembly of spectra rather
than sequences is the defining feature of Meta-SPS. In the-
ory, spectral assembly prior to de novo interpretation
should allow more accurate de novo reconstructions and
longer contigs because the assembly algorithms do not
have to cope with partially correct de novo sequences.

These methods apply equally well to a protein with a
completely novel sequence. In 2018, the Young Proteomics
Investigators Club, a division of the European Protein Soci-
ety, organized a challenge in which participants were asked
to determine the sequence of an artificial protein. The
amino acid sequence of this protein was designed to spell
out two English sentences (with some letter substitutions).
Pino et al.76 approached this problem by first digesting the
sample with trypsin, pepsin, chymotrypsin, and Lys-C in
separate reactions. They then clustered the MS/MS spectra,
and the highest-quality spectra were searched by PepNovo
+, Novor, and DirecTag (via DeNovoGUI). Spectra derived
from overlapping sequences were assembled with a spec-
tral network approach. Clustering ensured that very high-
quality spectra were used in the de novo searches. Pino
et al. were thereby able to correctly sequence 61% of the
designed protein. With additional sample and combined
enzymes as in the MELD approach,72 it is conceivable that
even more complete coverage could have been obtained.

6 | CONCLUSIONS

Algorithms for de novo peptide identification will con-
tinue to improve, as will the speed and resolution of mass
spectrometers, so it may be expected that the accuracy of
de novo sequencing will continue to improve. As recogni-
tion of the high information content of partially correct
de novo PSMs continues to increase, we anticipate that
new applications will be developed. De novo tools will
not replace database search methods for mainstream pro-
teomics applications, but will remain necessary for a
wide variety of specialty applications for some time to
come. This review has covered several of those applica-
tions, and, we hope, inspired the reader to discover more.

The use of de novo peptide identification in forensics
is especially promising, offering an unbiased way to char-
acterize samples that are complete unknowns. Providing
a statistical framework for such analyses will be critical
for success in this area.
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