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Background.  A range of near-real-time online/mobile mapping dashboards and applications have been used to track the co-
ronavirus disease 2019 (COVID-19) pandemic worldwide; however, small area-based spatiotemporal patterns of COVID-19 in the 
United States remain unknown.

Methods.  We obtained county-based counts of COVID-19 cases confirmed in the United States from 22 January to 13 May 2020 
(N = 1 386 050). We characterized the dynamics of the COVID-19 epidemic through detecting weekly hotspots of newly confirmed 
cases using Spatial and Space-Time Scan Statistics and quantifying the trends of incidence of COVID-19 by county characteristics 
using the Joinpoint analysis.

Results.  Along with the national plateau reached in early April, COVID-19 incidence significantly decreased in the Northeast 
(estimated weekly percentage change [EWPC]: −16.6%) but continued increasing in the Midwest, South, and West (EWPCs: 13.2%, 
5.6%, and 5.7%, respectively). Higher risks of clustering and incidence of COVID-19 were consistently observed in metropolitan 
versus rural counties, counties closest to core airports, the most populous counties, and counties with the highest proportion of ra-
cial/ethnic minorities. However, geographic differences in incidence have shrunk since early April, driven by a significant decrease 
in the incidence in these counties (EWPC range: −2.0%, −4.2%) and a consistent increase in other areas (EWPC range: 1.5–20.3%).

Conclusions.  To substantially decrease the nationwide incidence of COVID-19, strict social-distancing measures should be 
continuously implemented, especially in geographic areas with increasing risks, including rural areas. Spatiotemporal characteristics 
and trends of COVID-19 should be considered in decision making on the timeline of re-opening for states and localities.

Keywords.   COVID-19; epidemiology; geography; clustering; spatiotemporal trend.

Since the first cluster of the coronavirus disease 2019 (COVID-
19) was reported [1, 2], the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has triggered massive outbreaks 
and then evolved to a worldwide pandemic of COVID-19. As of 
13 May 2020, 4 347 018 confirmed cases and 297 197 COVID-
19–related deaths have been reported worldwide [3]. In the 
United States, the first COVID-19 case was reported on 21 
January 2020 [4], and the national outbreak of COVID-19 be-
ginning in early March of 2020 has caused 1 386 050 confirmed 
cases and 83 167 deaths from COVID-19 as of 13 May [5]. It 
is urgent to “flatten the epidemic curve” for COVID-19 in the 
United States.

Remarkable efforts have been made to map the corona-
virus spread using near-real-time interactive online/mobile 
geographic information systems (GIS) dashboards, websites, 
and applications in and out of the United States [3, 5–7]. 
These maps provide timely information on descriptive statis-
tics of the outbreak situation. However, no studies have com-
prehensively assessed small area-based characteristics of the 
spread of COVID-19 in the United States. Using government 
record–based surveillance data, we examined the spatiotem-
poral variations in COVID-19 as well as its associated geo-
graphic characteristics across the country. The results would 
enhance our understanding of small area-based spatiotem-
poral dynamics of the COVID-19 outbreak, and thus help in-
form multilevel strategies to control the spread of coronavirus 
and appropriate allocations of public health and healthcare re-
sources in the United States.

METHODS

Data Source

We obtained the counts of COVID-19 cases diagnosed from 22 
January to 13 May 2020 in the United States from the USAFacts, 
a not-for-profit initiative standardizing and providing the 
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publicly available government record–based data [5]. The daily-
updated numbers were cumulated to form a time-series data-
base of confirmed COVID-19 cases across all the US counties. 
The study is exempted from the ethics review due to the use of 
a publicly accessible data source.

County-level Variables

To identify the characteristics of counties with a high burden 
of COVID-19, we examined county-level geographic and 
sociodemographic factors, including rural-urban context, dis-
tance to the nearest core airport, population density, percentage 
of racial/ethnic minority population, percentage of the popula-
tion 65 years or older, and percentage of the population below 
the federal poverty line. Using the Rural-Urban Continuum 
Codes of US Department of Agriculture [8], rural-urban con-
text was defined as metropolitan (codes 1–3), urban (codes 
4–7), and rural (codes 8–9) areas. There are 30 core airports 
with the highest volume of traffic across the country [9]. The 
Euclidean distance from the population-weighted centroid 
of a given county to its nearest core airport was calculated to 
measure the spatial relationship of that county with core air-
ports. Population density was computed as the population 
number per square miles of land. County-level information on 
land areas, population sizes, and 3 other socioeconomic vari-
ables was retrieved from the combined 2014–2018 American 
Community Surveys to reduce the potential marginal error of 
the survey.

Statistical Analysis

We first created an epidemic curve to visualize the progression 
of newly confirmed COVID-19 cases by 4 US government–de-
fined regions (Northeast, Midwest, South, and West) over 11 
distinct time periods from 22 January through 13 May 2020, 
including the first 6 epi-weeks in combination (22 January–4 
March) and individual epi-weeks from 5 March to 13 May.

Using Spatial and Space-Time Scan Statistics (SaTScan) 
[10, 11], we examined spatiotemporal clustering of confirmed 
COVID-19 cases through detection of the higher-than-expected 
geographic hotspots across the country. The SaTScan applies a 
predefined circular window with varied sizes and time periods 
to scan the study area and identify the most likely clusters of 
the event of interest using a space-time permutation statistical 
model, and uses a Monte Carlo simulation approach to generate 
999 random datasets in computing the statistic for the statistical 
inference of a cluster. In this study, we defined the parameters 
of the scanning window as 150 miles of maximum geographic 
radius and the day as the minimum temporal scanning unit. 
Geographic clustering was detected in each of 11 time periods 
to characterize the dynamics of geographic hotspots of newly 
confirmed COVID-19 cases. The most likely high-risk clus-
ters/hotspots were captured based on the Monte Carlo rank 
with P < .05. We further examined the associations of county 

characteristics with COVID-19 clustering using logistic re-
gressions. The outcome was whether or not a given county 
was identified as part of a hotspot. The analysis was performed 
separately for each of the 7th–16th epi-weeks. Considering the 
collinearity between county characteristics, county-level vari-
ables were not mutually adjusted for. Statistical significance was 
tested as 2-sided with P < .05.

Finally, we computed the incidence rates of COVID-19 during 
each of 11 time periods to quantify the overall risk of infection 
and spatiotemporal trend of the spread of COVID-19 by region 
and geographic/demographic characteristics. Temporal trends 
in COVID-19 incidence, overall and by region and county char-
acteristics, were quantified by the estimated weekly percentage 
changes (EWPCs) using the Joinpoint regression [12].

The management of the database and logistic regressions 
were performed using the SAS System (version 9.4; SAS 
Institute Inc, Cary, NC). The Space-Time cluster analyses were 
performed using the SaTScan software (version 9.6; Martin 
Kulldorff, Harvard Medical School, Boston and Information 
Management Services Inc, Calverton, MD). The detected geo-
graphic hotspots were mapped using the ArcGIS package (ver-
sion 10.2.2; ESRI, Redlands, CA). The temporal trend analyses 
were performed using the Joinpoint package (version 4.8.0.1; 
Statistical Methodology and Application Branch, Surveillance 
Research Program, Division of Cancer Control and Population 
Sciences, National Cancer Institute).

RESULTS

Temporal Trend and Regional Differences of Confirmed Cases

As of 13 May 2020, a total of 1 386 050 COVID-19 cases were 
confirmed in the United States over 16 epi-weeks. Figure  1A 
shows the overall temporal trend of weekly counts of newly con-
firmed COVID-19 cases by 4 US regions. COVID-19 had oc-
curred sporadically until early March (first 6 epi-weeks); 116 
confirmed cases were reported mainly in the West region. The 
number of weekly confirmed COVID-19 cases subexponentially 
increased across the country from the 7th to the 11th epi-week, 
and slowly decreased in the following 5 epi-weeks. During the en-
tire observation period, the largest proportion of cases was from 
the Northeast (48.6%), followed by the South (22.3%), Midwest 
(18.3%) and West (10.8%). During epi-weeks 11–16, the propor-
tion of confirmed cases decreased from 55.3% to 29.1% in the 
Northeast but increased in 3 other regions (Midwest: 14.1% to 
26.4%; South: 21.5% to 30.8%; and West: 9.0% to 13.7%).

Spatiotemporal Clustering and the Associated County-level Characteristics

Figure 2 shows the clustering dynamics of COVID-19. In the 
first 6 epi-weeks, 2 geographic clusters (covering 20 counties) 
were detected in southern and northern California. In the sev-
enth epi-week, 6 geographic hotspots (covering 200 counties) 
were identified in Washington, New York, Massachusetts, and 
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northern Florida. In the following epi-weeks, many more ge-
ographic hotspots were detected across the country, including 
19 in 783 counties, 41 in 1214 counties, 49 in 1048 counties, 47 
in 1485 counties, 63 in 1355 counties, 66 in 1252 counties, 55 
in 1356 counties, 71 in 1687 counties, and 66 in 1613 counties 
from the 8th to 16th epi-weeks, respectively. The results from 
geographic clustering analysis are robust. Starting in the eighth 
epi-week, the top-20 clusters were highly significant (P < 0.001) 
and came largely from the Midwest and South regions.

Table 1 shows the associations of county characteristics with 
COVID-19 clustering in the 7th to 16th epi-weeks. Compared 
with rural counties, the odds ratio (OR) of COVID-19 clus-
tering was 5.31 (95% confidence interval [CI], 2.90–9.72) in 

metropolitan counties and 3.26 (95% CI, 1.76–6.03) in urban 
counties in the seventh epi-week, and the association gradu-
ally decreased through the 13th epi-week (OR, 1.04; 95% CI, 
.86–1.27 in metropolitan counties; OR, .88; 95% CI, .72–1.07 
in urban counties) and slightly increased thereafter (epi-week 
16: OR, 1.77; 95% CI, 1.45–2.15 in metropolitan counties; 
OR, 1.08; 95% CI, .90–1.31 in urban counties). The distance 
to the nearest core airports was strongly and inversely asso-
ciated with COVID-19 clustering (epi-week 7: OR, 14.4; 95% 
CI, 5.75–35.8; epi-week 16: OR, 1.95; 95% CI, 1.59–2.38 for 
the lowest vs the highest quartiles). The population density 
was significantly and consistently associated with COVID-
19 clustering from the seventh (OR, 6.69; 95% CI, 3.77–11.9 

Figure 1.  The temporal trend of weekly number of confirmed cases (A) and weekly incidence (B) of COVID-19 across 4 geographic regions in the United States over 16 
epi-weeks, 22 January–13 May 2020. Abbreviation: COVID-19, coronavirus disease 2019.
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for highest vs lowest quartiles) through the 16th epi-weeks 
(OR, 2.56; 95% CI, 2.09–3.15). A significantly increased likeli-
hood was also observed in areas with the highest versus lowest 
percentage of minorities from the seventh (OR, 6.93; 95% 
CI, 3.83–12.6) to the 16th (OR, 2.34; 95% CI, 1.91–2.87) epi-
weeks, except for epi-weeks 13 and 14. A  higher percentage 

of older people was associated with a lower likelihood of 
COVID-19 clustering from the eighth (OR, .57; 95% CI, .45–
.72 for the highest vs lowest quartiles) to the 12th (OR, .63; 
95% CI, .52–.77) epi-weeks and in the 16th epi-week (OR, .68; 
95% CI, .56–.83). There was no clear pattern in the association 
between poverty and COVID-19 clustering.

Figure 2.  Weekly dynamics of geographic clustering of newly confirmed COVID-19 cases in the United States over 16 epi-weeks, 22 January–13 May 2020. Abbreviation: 
COVID-19, coronavirus disease 2019.



Trends in COVID-19 in the United States  •  cid  2021:72  (15 February)  •  647

Ta
bl

e 
1.

 
Co

un
ty

-l
ev

el
 A

ss
oc

ia
tio

ns
 B

et
w

ee
n 

G
eo

gr
ap

hi
c 

an
d 

So
ci

od
em

og
ra

ph
ic

 C
ha

ra
ct

er
is

tic
s 

an
d 

Ri
sk

 o
f C

on
fir

m
ed

 C
O

VI
D

-1
9 

Cl
us

te
ri

ng
 in

 th
e 

U
ni

te
d 

St
at

es
 F

ro
m

 5
 M

ar
ch

 to
 1

3 
M

ay
 2

02
0

Va
ria

bl
e

W
ee

k 
7 

(5
–1

1 
M

ar
ch

)
W

ee
k 

8 
(1

2–
18

 
M

ar
ch

)
W

ee
k 

9 
(1

9–
25

 
M

ar
ch

)
W

ee
k 

10
 (2

6 
M

ar
ch

—
1 

A
pr

il)
W

ee
k 

11
 (2

–8
 A

pr
il)

W
ee

k 
12

 (9
–1

5 
A

pr
il)

W
ee

k 
13

 (1
6–

22
 

A
pr

il)
W

ee
k 

14
 (2

3–
29

 
A

pr
il)

W
ee

k 
15

 (3
0 

A
pr

il–
6 

M
ay

)
W

ee
k 

16
 (7

–1
3 

M
ay

)

A
re

a

 
M

et
ro

5.
31

 (2
.9

0–
9.

72
)

3.
63

 (2
.7

9–
4.

71
)

3.
40

 (2
.7

3–
4.

24
)

3.
16

 (2
.5

1–
3.

98
)

3.
05

 (2
.4

9–
3.

74
)

1.
93

 (1
.5

8–
2.

36
)

1.
04

 (.
86

–1
.2

7)
1.

75
 (1

.4
3–

2.
13

)
1.

34
 (1

.1
0–

1.
63

)
1.

77
 (1

.4
5–

2.
15

)

 
U

rb
an

3.
26

 (1
.7

6–
6.

03
)

1.
95

 (1
.4

9–
2.

54
)

2.
17

 (1
.7

4–
2.

70
)

2.
10

 (1
.6

7–
2.

64
)

1.
65

 (1
.3

5–
2.

01
)

1.
57

 (1
.2

9–
1.

92
)

.8
8 

(.7
2–

1.
07

)
1.

05
 (.

87
–1

.2
8)

1.
01

 (.
83

–1
.2

2)
1.

08
 (.

90
–1

.3
1)

 
R

ur
al

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

D
is

ta
nc

e 
to

 n
ea

re
st

 c
or

e 
ai

rp
or

ts
 (q

ua
rt

ile
)

 
Q

1 
(s

ho
rt

es
t)

14
.4

 (5
.7

5–
35

.8
)

24
.6

 (1
5.

6–
38

.8
)

4.
63

 (3
.7

0–
5.

79
)

2.
30

 (1
.8

6–
2.

84
)

4.
67

 (3
.7

6–
5.

79
)

2.
75

 (2
.2

4–
3.

39
)

1.
03

 (.
84

–1
.2

6)
1.

28
 (1

.0
4–

1.
56

)
1.

57
 (1

.2
8–

1.
91

)
1.

95
 (1

.5
9–

2.
38

)

 
Q

2
16

.0
 (6

.4
3–

39
.8

)
20

.0
 (1

2.
7–

31
.7

)
3.

10
 (2

.4
8–

3.
88

)
1.

39
 (1

.1
2–

1.
73

)
3.

33
 (2

.6
9–

4.
13

)
1.

98
 (1

.6
1–

2.
44

)
1.

20
 (.

98
–1

.4
7)

1.
18

 (.
96

–1
.4

4)
1.

41
 (1

.1
5–

1.
72

)
1.

93
 (1

.5
8–

2.
36

)

 
Q

3
12

.0
 (4

.7
9–

30
.2

)
10

.0
 (6

.3
0–

16
.0

2.
16

 (1
.7

2–
2.

72
)

1.
28

 (1
.0

2–
1.

59
)

2.
83

 (2
.2

8–
3.

50
)

1.
63

 (1
.3

2–
2.

00
)

1.
10

 (.
89

–1
.3

4)
1.

21
 (.

99
–1

.4
8)

1.
36

 (1
.1

2–
1.

66
)

1.
51

 (1
.2

3–
1.

84
)

 
Q

4 
(lo

ng
es

t)
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00

Po
pu

la
tio

n 
de

ns
ity

a  (q
ua

rt
ile

)

 
Q

1 
(lo

w
es

t)
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00

 
Q

2
3.

27
 (1

.7
8–

6.
02

)
3.

20
 (2

.2
9–

4.
47

)
4.

23
 (3

.3
2–

5.
39

)
1.

93
 (1

.5
3–

1.
42

)
2.

38
 (1

.9
2–

2.
95

)
1.

93
 (1

.5
8–

2.
37

)
1.

06
 (.

87
–1

.3
0)

1.
28

 (1
.0

4–
1.

57
)

1.
34

 (1
.1

0–
1.

64
)

1.
35

 (1
.1

0–
1.

65
)

 
Q

3
4.

31
 (2

.3
8–

7.
80

)
7.

41
 (5

.3
9–

10
.2

)
4.

74
 (3

.7
2–

6.
03

)
2.

30
 (1

.8
3–

2.
89

)
3.

59
 (2

.9
0–

4.
45

)
1.

58
 (1

.2
8–

1.
94

)
1.

15
 (.

94
–1

.4
1)

1.
39

 (1
.1

3–
1.

70
)

1.
54

 (1
.2

6–
1.

88
)

1.
62

 (1
.3

2–
1.

98
)

 
Q

4 
(h

ig
he

st
)

6.
69

 (3
.7

7–
11

.9
)

9.
56

 (6
.9

7–
13

.1
)

6.
05

 (4
.7

5–
7.

70
)

3.
15

 (2
.5

1–
3.

94
)

5.
42

 (4
.3

6–
6.

75
)

1.
83

 (1
.4

9–
2.

24
)

1.
22

 (1
.0

0–
1.

49
)

2.
25

 (1
.8

4–
2.

76
)

1.
47

 (1
.2

0–
1.

79
)

2.
56

 (2
.0

9–
3.

15
)

%
 M

in
or

ity
 p

op
ul

at
io

nb  (q
ua

rt
ile

)

 
Q

1 
(lo

w
es

t)
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00

 
Q

2
3.

11
 (1

.6
4–

5.
87

)
1.

73
 (1

.3
5–

2.
22

)
1.

35
 (1

.0
8–

1.
70

)
1.

76
 (1

.3
8–

2.
23

)
1.

22
 (.

99
–1

.5
0)

1.
28

 (1
.0

4–
1.

57
)

.9
6 

(.7
9–

1.
18

)
.8

5 
(.7

0–
1.

04
)

1.
03

 (.
84

–1
.2

5)
.9

9 
(.8

1–
1.

21
)

 
Q

3
5.

45
 (2

.9
8–

9.
96

)
2.

35
 (1

.8
4–

2.
99

)
2.

40
 (1

.9
3–

2.
98

)
3.

11
 (2

.4
7–

3.
92

)
2.

29
 (1

.8
6–

2.
81

)
1.

39
 (1

.1
3–

1.
71

)
1.

09
 (.

89
–1

.3
4)

1.
23

 (1
.0

1–
1.

50
)

1.
23

 (1
.0

1–
1.

50
)

1.
43

 (1
.1

7–
1.

75
)

 
Q

4 
(h

ig
he

st
)

6.
93

 (3
.8

3–
12

.6
)

2.
03

 (1
.5

9–
2.

60
)

4.
77

 (3
.8

3–
5.

94
)

4.
02

 (3
.2

0–
5.

06
)

3.
98

 (3
.2

2–
4.

91
)

2.
39

 (1
.9

5–
2.

93
)

1.
01

 (.
82

–1
.2

3)
1.

01
 (.

83
–1

.2
4)

1.
56

 (1
.2

8–
1.

91
)

2.
34

 (1
.9

1–
2.

87
)

%
 O

ld
er

 p
op

ul
at

io
nc  (q

ua
rt

ile
)

 
Q

1 
(lo

w
es

t)
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00

 
Q

2
1.

27
 (.

87
–1

.8
6)

.9
1 

(.7
3–

1.
13

)
1.

04
 (.

85
–1

.2
7)

1.
07

 (.
88

–1
.3

2)
.7

9 
(.6

5–
.9

6)
.7

4 
(.6

0–
.9

0)
1.

08
 (.

88
–1

.3
2)

1.
04

 (.
85

–1
.2

7)
.9

7 
(.8

0–
1.

19
)

.8
8 

(.7
2–

1.
07

)

 
Q

3
.9

2 
(.6

1–
1.

38
)

.9
1 

(.7
3–

1.
13

)
.9

1 
(.7

5–
1.

12
)

.7
4 

(.6
0–

.9
1)

.7
6 

(.6
3–

.9
3)

.9
0 

(.7
4–

1.
10

)
.9

3 
(.7

6–
1.

14
)

1.
18

 (.
97

–1
.4

4)
.9

5 
(.7

8–
1.

16
)

.7
6 

(.6
2–

.9
3)

 
Q

4 
(h

ig
he

st
)

.6
6 

(.4
2–

1.
02

)
.5

7 
(.4

5–
.7

2)
.6

3 
(.5

1–
.7

7)
.5

2 
(.4

2–
.6

5)
.4

6 
(.3

7–
.5

6)
.6

3 
(.5

2–
.7

7)
.9

9 
(.8

1–
1.

21
)

1.
19

 (.
97

–1
.4

5)
.8

5 
(.7

0–
1.

04
)

.6
8 

(.5
6–

.8
3)

%
 P

ov
er

ty
 d  (q

ua
rt

ile
)

 
Q

1 
(lo

w
es

t)
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00
1.

00

 
Q

2
1.

70
 (1

.1
2–

2.
56

)
1.

12
 (.

90
–1

.4
1)

1.
28

 (1
.0

4–
1.

57
)

1.
04

 (.
84

–1
.3

0)
1.

00
 (.

82
–1

.2
2)

1.
26

 (1
.0

3–
1.

55
)

.8
9 

(.7
2–

1.
09

)
1.

08
 (.

88
–1

.3
2)

1.
06

 (.
87

–1
.3

0)
.8

4 
(.6

9–
1.

02
)

 
Q

3
.8

1 
(.5

0–
1.

31
)

1.
09

 (.
87

–1
.3

6)
1.

26
 (1

.0
3–

1.
55

)
1.

43
 (1

.1
5–

1.
77

)
1.

33
 (1

.0
9–

1.
63

)
1.

07
 (.

87
–1

.3
1)

.9
4 

(.7
6–

1.
15

)
.8

2 
(.6

7–
1.

01
)

.9
6 

(.7
9–

1.
17

)
.7

7 
(.6

3–
.9

4)

 
Q

4 
(h

ig
he

st
)

1.
73

 (1
.1

5–
2.

61
)

.6
8 

(.5
4–

0.
87

)
1.

32
 (1

.0
7–

1.
62

)
1.

66
 (1

.3
5–

2.
05

)
1.

49
 (1

.2
2–

1.
82

)
1.

32
 (1

.0
8–

1.
62

)
1.

05
 (.

86
–1

.2
9)

.5
9 

(.4
8–

.7
3)

1.
33

 (1
.0

9–
1.

63
)

.8
9 

(.7
3–

1.
09

)

D
at

a 
ar

e 
pr

es
en

te
d 

as
 o

dd
s 

ra
tio

s 
(9

5%
 c

on
fid

en
ce

 in
te

rv
al

). 
Th

e 
re

gr
es

si
on

 a
na

ly
si

s 
w

as
 p

er
fo

rm
ed

 fo
r 

co
un

tie
s 

in
 4

8 
co

nt
ig

uo
us

 s
ta

te
s 

an
d 

W
as

hi
ng

to
n,

 D
C

. 

A
bb

re
vi

at
io

ns
: C

O
V

ID
-1

9,
 c

or
on

av
iru

s 
di

se
as

e 
20

19
; Q

, q
ua

rt
ile

.
a Th

e 
nu

m
be

r 
of

 p
er

so
ns

 p
er

 s
qu

ar
e 

m
ile

 o
f 

la
nd

s.
b Pe

rc
en

ta
ge

 o
f 

ra
ci

al
 a

nd
 e

th
ni

c 
m

in
or

iti
es

.
c Pe

rc
en

ta
ge

 o
f 

pe
rs

on
s 

ag
ed

 6
5 

ye
ar

s 
or

 o
ld

er
.

d Pe
rc

en
ta

ge
 o

f 
pe

rs
on

s 
be

lo
w

 t
he

 fe
de

ra
l p

ov
er

ty
 li

ne
. 



648  •  cid  2021:72  (15 February)  •  Wang et al

Geographic Variation and Trend in Incidence

In the first 6 epi-weeks, COVID-19 cases were reported in 27 
counties from the West Coast and Northeast states with the 
highest county-level incidence of 3.4 per 100 000 persons. 
Starting in the 7th through the 16th epi-weeks, SARS-CoV-2 
spread to broad geographic areas. As of 13 May 92.0% of US 
counties had confirmed COVID-19 cases, and the median 
county-level cumulative incidence rate was 88.0 per 100 000 
persons (interquartile range, 36.1–219.3/100 000 persons), with 
the highest reaching 14 426/100 000 persons (Supplementary 
Figure 1). The incidence of COVID-19 reached a peak in the 
Northeast in the 12th epi-week (214.2/100 000 persons), fol-
lowed by a significant reduction of 16.6% weekly until the 16th 
epi-week. However, the incidence consistently increased in 
the Midwest, South, and West regions from the 10th to 16th 
epi-weeks, with significant EWPCs of 13.2%, 5.6%, and 5.7%, 
respectively. Overall, COVID-19 incidence reached the na-
tional plateau in epi-week 11 (66.6/10 000 persons), followed 
by a slight and nonsignificant decrease in the recent 5 weeks 
(Figure 1B, Table 2).

Figure 3 illustrates the trends in the incidence of COVID-19 
by county characteristics. Over 16 epi-weeks, the incidence was 
significantly higher in metropolitan versus urban/rural areas, 
in areas closest to versus farthest from core airports, in the 
most versus least populous areas, and in areas with the highest 
versus lowest percentage of minorities and in those with 
the lowest versus highest percentage of the population aged 
65 years and older (Figure 3A–E). The incidence dramatically 
increased from the seventh epi-week and reached a peak in the 
11th epi-week in metropolitan areas (75.7/100 000 persons), 
counties closest to core airports (91.7/100 000 persons), most 
populous counties (79.6/100 000 persons), and counties with 
the highest percentage of minorities (100.9/100 000 persons), 
followed by a significant decrease thereafter (EWPCs = 2.0%, 
2.8%, 2.6%, and 4.2%, respectively) (Table 2). Notably, the in-
cidence consistently increased from epi-week 7 to 16 in rural 
(0.04 to 35.0/100 000 persons) and urban (0.1 to 37.5/100 000 
persons) areas (Figure  3A). Unlike in metropolitan areas, 
the incidence continued to increase in rural and urban areas 
after the 11th epi-week, with a significant EWPC of 17.8% 
and 18.1%, respectively (Table  2). Similarly, a consistent in-
crease in the incidence of COVID-19 from epi-week 7 to 16 
was also observed in counties farther from core airports and 
in less populous counties and those with fewer minorities 
(Figure 3B–D, and Table 2). The incidence in counties with the 
lowest or highest percentage of elderly persons increased from 
epi-week 7 to 11 and remained steady thereafter. Overall, ge-
ographic disparities in the incidence of COVID-19 by county 
characteristics decreased from the 11th epi-week. There was 
no significant difference in the incidence of COVID-19 for the 
highest versus lowest percentage of population below the fed-
eral poverty line (Figure 3F).

DISCUSSION

Using a national time-series database of confirmed COVID-19 
cases, we examined the spatiotemporal patterns of COVID-19 
in the United States during the first 16 epi-weeks. COVID-19 
cases sporadically occurred in the West Coast and Northeast 
states in the first 6 epi-weeks and increased rapidly across the 
country thereafter until the 11th epi-week, and then slightly 
decreased from the 12th epi-week. Despite a remarkable re-
duction in newly confirmed cases from the Northeast in the 
recent 4 weeks, the risk of  SARS-CoV-2 infection continued 
to consistently increase in the Midwest, South, and West re-
gions. Geographic clustering of COVID-19 was first identified 

Table 2.  Temporal Trends of the Incidence of COVID-19 by Region and 
County Characteristics in the United States from 5 March to 13 May 2020

Trend 1 Trend 2

Variable Epi-weeks EWPC Epi-weeks EWPC

Overall 7–10 342.0* 10–16 −0.9

Region

  Northeast 7–11 111.4* 11–16 −16.6*

  Midwest 7–10 385.2* 10–16 13.2*

  South 7–10 399.8* 10–16 5.6*

  West 7–10 184.0* 10–16 5.7*

Area

  Metro 7–10 353.6* 10–16 −2.0*

  Urban 7–10 396.7 10–16 18.1*

  Rural 7–11 167.9 11–16 17.8*

Distance to nearest core airports (quartile)

  Q1 (shortest) 7–10 352.4* 10–16 −2.8*

  Q2 7–10 307.4* 10–16 8.4*

  Q3 7–10 393.0* 10–16 12.9*

  Q4 (longest) 7–10 420.8 10–16 1.5

Population density (quartile)

  Q1 (lowest) 7–10 275.8* 10–16 18.5*

  Q2 7–10 344.8 10–16 20.3*

  Q3 7–10 426.5* 10–16 16.9*

  Q4 (highest) 7–10 354.5* 10–16 −2.6*

% Minority population (quartile)

  Q1 (lowest) 7–10 415.0* 10–16 7.2*

  Q2 7–10 332.0* 10–16 7.8*

  Q3 7–10 359.6* 10–16 4.2*

  Q4 (highest) 7–10 336.6* 10–16 −4.2*

% Older population (quartile)

  Q1 (lowest) 7–10 332.3* 10–16 1.7

  Q2 7–10 380.2* 10–16 −7.0*

  Q3 7–10 529.0* 10–16 6.0*

  Q4 (highest) 7–10 385.0* 10–16 1.7

% Poverty (quartile)

  Q1 (lowest) 7–10 347.9* 10–16 −2.3*

  Q2 7–11 79.0 11–16 −4.0

  Q3 7–10 400.4* 10–16 4.1*

  Q4 (highest) 7–11 88.9* 11–16 −11.2

Epi-weeks 7 (5–11 March), 8 (12–18 March), 9 (19–25 March), 10 (26 March–1 April), 11 (2–8 
April), 12 (9–15 April), 13 (16–22 April), 14 (23–29 April), 15 (30 April–6 May), 16 (6–13 May). 
*P < .05 from the Joinpoint regressions. 

Abbreviations: COVID-19, coronavirus disease 2019; EWPC, estimated weekly percentage 
changes from the Joinpoint regressions; Q, quartile.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa934#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa934#supplementary-data
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in southern and northern California, and then rapidly ex-
panded nationwide. Higher risks of COVID-19 clustering and 
incidence were observed in metropolitan versus rural  coun-
ties, counties closest to core airports, the most populous coun-
ties, and counties with the highest proportion of racial/ethnic 
minorities. However, the differences have decreased since the 
11th epi-week, which was driven by a significant decrease in 

the incidence in these counties and a consistent increase in 
other areas in the recent 5 weeks. This might be a result of 
social-distancing measures well implemented recently in high-
risk areas in the early stage of the outbreak, and also suggests 
that recent region-to-region spread and community trans-
mission occurred in other areas. Further studies are needed 
to assess the effectiveness of public health and behavioral 

Figure 3.  Weekly incidence rates of COVID-19 during 11 observation periods (1–6 weeks in combination and each of the 7–16 weeks), 22 January–13 May 2020, by charac-
teristics of counties in the United States, including rurality (A), distances to nearest core airports (B), population density (C), percentage of minority population (D), percentage 
of people 65 years or older (E), and poverty (F). *P < .05 for the comparison: metropolitan versus rural, shortest versus longest distance to nearest core airports, and the 
highest versus lowest shortest versus the longest distance to nearest core airports. Abbreviations: COVID-19, coronavirus disease 2019; Q, quartile.
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interventions on SARS-CoV-2 infection and implemental bar-
riers, which is essential for promoting the strict adherence to 
social-distancing guidelines and enhancing personal protec-
tions (including appropriately wearing face masks as needed 
and timely handwashing) to prevent the spread of SARS-CoV-2 
and thus substantially decreasing the incidence of COVID-19 
locally and nationwide.

A significant association between short distance to core 
airports and COVID-19 clustering suggests a critical role of 
air transportation in the spread of SARS-CoV-2 across the 
country. Air transportation was believed to accelerate and 
amplify the spread of influenza, SARS-CoV, or MERS-CoV 
(Middle East respiratory syndrome coronavirus) [13]. A  re-
cent study showed that rail transport is related to the trans-
mission and regional outbreak of COVID-19 in China [14]. 
In the United States, the airports may have contributed sub-
stantially to the early travel-related region-to-region transmis-
sion. From 18 March to 22 April, at least 42 states, 3 counties, 
10 cities, the District of Columbia, and Puerto Rico joined 
Illinois, New York, and California in the lockdown orders 
[15]. However, airlines, as one of the essential transportation 
services, are generally exempted from the orders and are still 
operating. We flagged the importance of airports in spreading 
COVID-19 even after the lockdown of most regions in mid-
March. Airlines have put in place stringent safeguards for 
those still flying, including supercharged cleaning, reduced 
in-flight services, and the spacing out of passengers on flights. 
It is crucial to maintain strict management and monitoring of 
major airports to maximize the reduction in region-to-region 
transmission.

While COVID-19 incidence in metropolitan areas has de-
creased since the 11th epi-week, we identified a consistent in-
crease in the incidence of COVID-19 in rural areas over the 
16 epi-weeks. This was probably a sign that the local spread of 
COVID-19 extended beyond metro/urban enclaves and sec-
ondary community transmission took place around geographic 
hotspots and spread to rural areas. Rural areas with a lower pop-
ulation density are not safe in this pandemic because rural resi-
dents tend to be older and have limited access to healthcare [16, 
17]. Therefore, restrictive social-distancing measures are neces-
sary in rural areas, and adherence to social distancing should be 
enhanced for rural residents.

The pandemic of COVID-19 poses different challenges for 
US states currently designing their coping strategies. Population 
density is a key driver for transmission of infectious disease. We 
observed that predominantly minority counties were at higher 
risk of COVID-19. This was consistent with the reports of 
African Americans accounting for about 70% of COVID-19–
related deaths but just approximately 30% of the population in 
Chicago, Milwaukee County, and Louisiana [18]. The dispro-
portionate burden of COVID-19 in minority populations may 
largely result from inequities in adherence to social-distancing 

measures. Our analysis indicates that the incidence of COVID-
19 was lower in areas with a higher percentage of elderly people. 
This could partly result from the lower mobility of older versus 
younger people. However, we found a comparable risk of 
COVID-19 clustering in counties with the highest versus lowest 
percentage of elderly people in recent weeks, which might be 
relevant to the outbreaks of COVID-19 in nursing homes in 
some geographic areas [19, 20]. Therefore, areas with a large 
elderly population should not be ignored in the allocation of 
prevention efforts on COVID-19 because elderly individuals 
typically have multiple chronic health conditions and a higher 
risk of developing more serious complications from COVID-19 
[21]. A lack of a stable pattern in the association between pov-
erty and the risk of COVID-19 indicates that socioeconomic 
factors might not play a critical role in the risk of SARS-CoV-2 
infection.

This study has some limitations. The confirmed cases of 
COVID-19 might not reflect the actual number of persons in-
fected with SARS-CoV-2 due to unknown/untested asympto-
matic cases [22–24]. We used reliable governmental records of 
laboratory-confirmed cases of COVID-19 in the first 16 epi-
weeks of the outbreak. Due to limited testing resources, patients 
with symptoms of COVID-19 were given priority for testing at 
the early stages of the outbreak. The results of this study might 
mainly reflect spatiotemporal characteristics of laboratory-
confirmed symptomatic cases of COVID-19. Studies to in-
vestigate the association of local testing capacity and eligible 
criteria with spatiotemporal characteristics of COVID-19 are 
warranted.

This study demonstrated the spatiotemporal characteristics 
and trends of COVID-19 in the United States, which is essential 
to better focus our preventive efforts on COVID-19. A critical 
role of the airports in COVID-19 transmission and clustering 
suggests that national management and monitoring of major 
operating airports should be maintained to decrease the risk 
of region-to-region transmission. At the local levels, social-
distancing measures have been widely implemented by cancel-
ling all public events and shuttering all public places [25–28]. 
The Centers for Disease Control and Prevention (CDC) has 
launched a public education campaign to promote handwashing 
and self-hygiene [25–28]. Many cities are disinfecting subways 
and buses and reducing the metro services [25–28]. Our re-
sults suggest that public health guidelines should be further 
enhanced in high-risk areas of  COVID-19 and behavioral inter-
ventions are necessary to substantially promote strict adher-
ence to social-distancing guidelines and individual protections. 
Future research should identify multilevel strategies to enforce 
behavioral guidelines for COVID-19 prevention, particularly 
in high-risk geographic areas. The increasing trend of the risk 
of SARS-CoV-2 infection in rural areas indicates the public 
health challenges not only in access to healthcare services but 
also in trust in medical system and access to health insurance 
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among rural residents. Multilevel public health interventions  
from government agencies/organizations could be the most ef-
fective strategy in controlling and preventing the long-distance 
spread and local community transmission of SARS-CoV-2 [29–
31]. A full understanding of the spatiotemporal dynamics and 
trends of the COVID-19 epidemic is essential to plan further 
public health interventions for substantially decreasing the in-
cidence, and to inform the decision making with regard to the 
timeline of re-opening businesses and public areas through a 
real-time local risk assessment [32].
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