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Abstract

The ongoing SARS-CoV-2 outbreak marks the first time that large amounts of genome sequence data have been generated
and made publicly available in near real time. Early analyses of these data revealed low sequence variation, a finding that is
consistent with a recently emerging outbreak, but which raises the question of whether such data are
sufficiently informative for phylogenetic inferences of evolutionary rates and time scales. The phylodynamic threshold is a
key concept that refers to the point in time at which sufficient molecular evolutionary change has accumulated in available
genome samples to obtain robust phylodynamic estimates. For example, before the phylodynamic threshold is reached,
genomic variation is so low that even large amounts of genome sequences may be insufficient to estimate the virus’s
evolutionary rate and the time scale of an outbreak. We collected genome sequences of SARS-CoV-2 from public databases
at eight different points in time and conducted a range of tests of temporal signal to determine if and when the
phylodynamic threshold was reached, and the range of inferences that could be reliably drawn from these data. Our results
indicate that by 2 February 2020, estimates of evolutionary rates and time scales had become possible. Analyses of
subsequent data sets, that included between 47 and 122 genomes, converged at an evolutionary rate of about 1.1�10�3

subs/site/year and a time of origin of around late November 2019. Our study provides guidelines to assess the phylodynamic
threshold and demonstrates that establishing this threshold constitutes a fundamental step for understanding the power
and limitations of early data in outbreak genome surveillance.

Key words: 2019 novel coronavirus (SARS-CoV-2); severe acute respiratory syndrome corona virus 2; molecular clock;
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1. Introduction

Pathogen genome sequence data are increasingly recognised as
a key asset in outbreak investigations. Phylodynamic analyses
of these data can be used to infer the time and location of origin

of an outbreak, the viral evolutionary rate, epidemiological dy-
namics, and demographic patterns (du Plessis and Stadler 2015;
Baele, Lemey, and Suchard 2017). These inferences, however,
rely on the genome data being sufficiently informative.
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The ongoing novel coronavirus outbreak (SARS-CoV-2)
marks the first time that genome sequence data have been gen-
erated and shared publicly as soon as the virus started spread-
ing. The time of origin of SARS-CoV-2 is a pressing question at
early stages of the outbreak because it impacts our understand-
ing of its spread and emergence. In practice, the sampling times
of genomes can be used to calibrate the molecular clock and in-
fer the viral evolutionary rate and the time scale of the outbreak
(Korber et al. 2000). The underlying assumption is that molecu-
lar evolution occurs at a predictable rate over time and that the
sampling window is sufficiently wide as to capture a measur-
able amount of evolutionary change in the sampled genomes.
Under the condition that the sampling window is sufficiently
wide and the evolutionary rate sufficiently high, and genome
sequences long enough, the data can be treated as having been
obtained from a measurably evolving population (Drummond
et al. 2003; Biek et al. 2015). If this is not the case, the data are
considered to have no temporal signal and any estimates from
the molecular clock are therefore spurious (Duchêne et al. 2015;
Murray et al. 2016).

The term ‘phylodynamic threshold’ pertains to the question
of whether a virus has had sufficient time to evolve since its ori-
gin so as to warrant tip-dating calibration, under the assump-
tion that genome data from early stages of the outbreak are
available (Hedge, Lycett, and Rambaut 2013). Therefore, apply-
ing statistical tests of temporal signal to genome data as they
are collected can reveal when the phylodynamic threshold is
reached. Such analyses are essential to determine the limita-
tions of genome data and the range of inferences that can be re-
liably drawn from them over time.

Phylodynamic analyses often involve estimating population
dynamic parameters. Temporal signal in itself does not guaran-
tee that such parameters can be properly estimated, because
they often depend on aspects of the sampling process. For ex-
ample, biased sampling strategies can mislead inference under
phylogeographic and epidemiological models (Duchêne et al.
2019; Kalkauskas et al. 2020). Therefore, our definition of the
phylodynamic threshold, as we use it here, pertains to temporal
signal as a key prerequisite to perform phylodynamic inference.

Root-to-tip regression is typically used as an informal as-
sessment of temporal signal (Rambaut et al. 2016). While not a
statistical test, it is however a valuable visual tool of clocklike
behaviour and of outlier detection (e.g. due to mislabelling, con-
tamination, or sequencing errors). Root-to-tip regression con-
sists of estimating an unrooted phylogenetic tree with branch
lengths in units of substitutions per site and conducting a re-
gression of the distance from the root to each of the tips as a
function of their sampling times (Gojobori, Moriyama, and
Kimura 1990; Drummond et al. 2003). Under clocklike evolution
and with a wide sampling window, the slope corresponds to a
crude estimate of the evolutionary rate, the intercept with the
time axis represents the time of origin, and the coefficient of de-
termination, R2, may reflect the degree of clocklike behaviour.

Formal approaches to assess temporal signal include date-
randomisation tests and Bayesian evaluation of temporal signal
(BETS) (Duchêne et al. 2015, 2020; Murray et al. 2016). Date ran-
domisation tests consist of repeating the analysis several times
with permuted sampling times to generate a ‘null’ distribution
of evolutionary rate estimates. The data are considered to have
temporal signal if the estimate obtained with the correct sam-
pling times does not overlap with those of the randomisations.
In contrast, BETS consists of comparing the statistical fit of
models that include the correct sampling times, no sampling
times, or permuted sampling times. The premise of BETS is that

if the data have temporal signal, using the correct sampling
times should have the highest statistical fit (Duchêne et al.
2020). For example, if the sampling window over which the ge-
nome data have been collected is very short, such that the data
have no temporal signal, then the sampling times are not
meaningful and a model incorporating the correct sampling
times may not have an improved statistical fit over a model
that ignores differences in sampling times. In contrast, if the
sampling window is wide enough as to capture many substitu-
tions, using the correct sampling times is expected to result in
higher model fit than using permuted sampling times or no
sampling times. In a Bayesian context, model fit is determined
through the marginal likelihood, and a model is preferred over
another according to their ratio of marginal likelihoods, known
as the Bayes factor (Kass and Raftery 1995). Marginal likelihoods
are typically reported on a logarithmic scale, where a log Bayes
factors of at least 1 is considered as positive evidence in favour
of a model.

Using BETS and root-to-tip regression, we aimed to find the
point in time when the phylodynamic threshold for SARS-CoV-
2 was reached. This hence constitutes a series of analyses as
the pandemic was starting to unfold and when large-scale se-
quencing efforts still had to be initiated across the affected
countries. We extended this inquiry to explore how other epide-
miological parameters, such as the population growth rate, be-
came reliably estimable. Our approach consisted of applying
these techniques to a growing sample of genomes across eight
time points.

2. Results

We collected SARS-CoV-2 genome data from the Global
Initiative on Sharing All Influenza Data (GISAID) and from
GenBank at eight time points from 23 January to 24 February
2020 (Table 1). The data ranged from 31 to 63 days since the first
genome was collected (23 December 2019). Thus, each time
point represents a ‘snapshot’ of the genome data available to
that date. Our data only included genomic sequences from hu-
man samples, with sequence lengths of at least 28,000 nucleoti-
des and, with high coverage as determined in GISAID (see
Supplementary Table S1 for accession numbers). To minimise
the impact of potential sequencing errors in our alignments, we
deleted obvious errors upon visual inspection and compared
our phylogenetic trees to those obtained by other groups (virolo-
gical.org) and those from Nextstrain (Hadfield et al. 2018).

We conducted Bayesian phylogenetic analyses using BEAST
v1.10 using two molecular clock models; a strict clock (SC) and
an uncorrelated relaxed clock with an underlying lognormal
distribution (UCLN). We set an exponential growth coalescent
tree prior, which is appropriate for the early stages of an out-
break and which has been recently used to infer the basic repro-
ductive number and growth rate of SARS-CoV-2 (Volz et al.
2020). For our model comparison in BETS, we estimated (log)
marginal likelihoods using generalised stepping-stone sampling
(Fan et al. 2011; Baele, Lemey, and Suchard 2016).

Our BETS analyses provided evidence against significant
temporal signal in the genome data available up to 23 January
2020 (n¼ 22 genomes). In this data set, the highest model fit to
the data was found for analyses with permuted sampling times,
followed by those with no sampling times (Fig. 1). Evidence in
favour of models without sampling times was also very strong
with a highest log Bayes factor of 7.5 for models without sam-
pling times relative to those with the correct sampling times.
All data sets obtained subsequently, from 2 February with at
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least forty-seven genomes supported the inclusion of the
correct sampling times, with log Bayes factors of at least
20 for models with the correct sampling times over those
without sampling times. The log Bayes factors for the models
with correct sampling times over those with permuted
sampling times were at least 5, which is considered as very
strong evidence in favour of temporal signal (Kass and
Raftery, 1995).

For comparison, we also conducted root-to-tip regressions
for the eight snapshot data sets (Fig. 2). The R2 values ranged be-
tween 0.11 and 0.2. We did not find an association between R2

and the number of genome samples included. This result may
stand in contrast to the expectation that including more inde-
pendent data should reduce the effect of stochasticity, but the

data sets here have an inherently high degree of non-
independence. The slopes of the regressions ranged from
6.7� 10�4 to 8.8� 10�4 subs/site/year and the intercept with the
X-axis (i.e. the time to the most recent common ancestor)
remaining relatively stable at 2019.83 to 2019.86. Although the
estimates from the root-to-tip regression are comparable to
those previously reported for the virus using explicit phyloge-
netic methods (Andersen et al. 2020), we note that this approach
sometimes produces biased evolutionary rate estimates, possi-
bly due to the fact that internal branches are traversed multiple
times (Duchêne et al. 2016). As such, while root-to-tip regression
is a valuable tool for visual inspection of the data, it is not a for-
mal molecular clock method nor does it constitute a proper test
of temporal signal.

Table 1. Description of data snapshots of SARS-CoV-2.

Publication date range (from
10 January 2020)

Number of genomes Sampling window (from
23 December 2019)

Days since first genome sample

23 January 22 17 January 2020 31
2 February 47 27 January 2020 41
6 February 55 28 January 2020 45
10 February 66 3 February2020 49
15 February 90 7 February 2020 54
18 February 95 9 February 2020 57
21 February 109 9 February 2020 60
24 February 122 10 February 2020 63

Figure 1. BETS results. Each panel corresponds to a snapshot data set collected up to a given month and day in 2020, with a certain number, n, of genomes, and the

number of days since the first genome sample was collected (23 December 2019). The y-axis represents the log Bayes factors, where the best-performing model has a

value of 0. Each bar corresponds to an analysis configuration for BETS, with two possible molecular clock models: the strict (SC) and the uncorrelated relaxed clock

with an underlying lognormal distribution (UCLN). For the UCLN, we considered two possible priors on the standard deviation of the lognormal distribution: an expo-

nential distribution with mean 0.33 or with mean 100, labelled as Exp(0.33) and Exp(100), respectively. The sampling times could be configured using the true values

(dates), no sampling times (none), or permuted, with these latter two options indicating no temporal signal. For the analyses with permuted sampling times and the

UCLN, we used an exponential prior with mean 0.33 for the standard deviation of the lognormal distribution. Black and dark grey bars correspond to analyses with the

correct sampling times with the SC or UCLN clock models, respectively. Dark and light red bars are for analyses with no sampling times with these two clock models,

and all light grey bars are for analyses with permuted sampling times.
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Interestingly, all data sets with temporal signal favoured the
SC over the UCLN model with the exception of that collected up
to 24 February, with 122 genomes, where the log Bayes factor of
the UCLN over the SC was 1.81 (Fig. 1). The fact that the SC had
high support in data sets collected prior to 24 February probably
indicates that they may not be sufficiently informative as to
warrant modelling evolutionary rate variation across branches
through the UCLN, rather than evidence of strict clocklike
behaviour.

A potential reason for why the SC is favoured over the UCLN
in many cases is that the default prior on the standard deviation
of the lognormal distribution of the UCLN is an exponential dis-
tribution with mean 0.33, that has a high density at 0, corre-
sponding to a very low amount of among-lineage rate variation.
Intuitively, if the data have low information content, the prior
may have a strong influence on the posterior, relative to the
data, such that the posterior for this parameter might also be

concentrated on 0. In this case, the UCLN may appear overpara-
meterised and the SC would be favoured. We investigated the
robustness of model selection to the prior on this parameter by
repeating the UCLN analyses with an exponential distribution
with mean 100 as the prior for this parameter. Using this less in-
formative prior consistently resulted in a worse model fit across
all data sets, and thus did not affect our assessment of temporal
signal.

If we restrict our attention to the UCLN with the less infor-
mative prior for the 23 January data set, the model that includes
sampling times is favoured over that with no sampling times,
with a log Bayes factor of 17. If one ignored all other models and
priors, this result would indicate the presence of temporal sig-
nal. This finding stands in contrast to the SC and UCLN with the
more informative prior, which have much higher model fit
(Fig. 1; Supplementary Table S2). Consequently, assessing tem-
poral signal using BETS should involve comparing a range of

Figure 2. Root-to-tip regressions for snapshot data sets. The y-axis corresponds to the root-to-tip distance of phylogenetic trees with branch lengths in units of substi-

tutions per site. The x-axis represents calendar time. Each point corresponds to a tip in the tree. The regression line is the best fitting line using the root position that

maximised R2. The R2, the intercept with the x-axis (x-intercept), and slope are shown for each data set, with the latter two representing crude estimates of the evolu-

tionary rate and time of origin, respectively.
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clock models and careful consideration of the prior on their re-
spective parameters (Duchêne et al. 2020).

We also considered comparisons of prior and posterior dis-
tributions to assess the extent to which the data were informa-
tive about particular parameters. Our expectation is that the
posterior should have a lower variance relative to the prior as
more data are included. We considered our estimates of the
growth rate (r) and scaled population size (U) of the exponential
coalescent tree prior, the virus’s evolutionary rate and the time
of origin of the outbreak. An important consideration here is
that our method of inspecting the prior consists in running the
analyses with no sequence data. Thus, the resulting distribu-
tions represent the ‘effective’, rather than the ‘marginal’ (i.e.
user-specified) prior. The effective prior is the prior conditioned
on the number of samples and their ages, the coalescent pro-
cess and their interaction, whereas the marginal prior is the ac-
tual distribution that one sets in the programme. In practice,
the effective and marginal prior sometimes differs for parame-
ters that pertain to the tree prior (Warnock et al. 2012; Boskova,
Stadler, and Magnus 2018).

Although our marginal priors are identical for all snapshot
datasets, we noted that the effective prior differed between data
sets for r, U, and the time of origin (Fig. 3). The posterior from
the 23 January snapshot, with twenty-two genomes, was very
uncertain for all parameters. For example, the time of origin us-
ing the SC ranged from late 2018 to early December 2019. The
posterior for U was also more uncertain than its effective prior,
which coincides with high uncertainty in the rate and the time
of origin.

Our snapshot data sets collected from 2 February, with at
least forty-seven genome samples, yielded posterior distribu-
tions that were much narrower than their respective effective
priors and those of the 23 January snapshot. Our estimates of
the evolutionary rate from 2 February converged at a mean of
around 1.1� 10�3 substitutions per site per year. The uncer-
tainty in this parameter for the largest data set (24 February,
with 122 genomes) using the UCLN clock model is reflected by a

95 per cent credible interval (CI) of between 7.03� 10�4 and
1.5� 10�3 substitutions per site per year. Similarly, the time of
origin converged to a mean of late November 2019 and with a 95
per cent CI for the 24 February data set of between late October
and mid-December 2019.

Posterior estimates for parameters r and U, differed substan-
tially from their effective priors, although to a lesser extent that
the evolutionary rate and the time of origin. In particular, the
posterior of the time of origin is several times narrower than
the prior in all data sets from 2 February, whereas the posterior
for r in the largest data set (24 February) is only about two times
narrower than its respective effective prior (Fig. 3). Our esti-
mates of r and U did not converge between snapshot data sets,
as was the case for the evolutionary rate and time of origin.
However, we do not necessarily expect this to happen. For in-
stance, U is proportional to the number of infected individuals
at the time of collection of the latest sample (Wallinga and
Lipsitch 2007; Boskova, Bonhoeffer, and Stadler 2014), which is
expected to increase as the outbreak progresses. Similarly, r is
proportional to the reproductive number Re (i.e. the average
number of secondary infections), is expected to decline over
time as the number of susceptible individuals decreases and is
expected to be affected by spatial structure. In reality, interven-
tion measures such as social distancing and travel restrictions
will in most cases result in an earlier decline of this parameter.

3. Discussion

The question of whether a viral outbreak has attained the phy-
lodynamic threshold is a highly relevant concept for emerging
outbreaks, because it is informative about the amount of se-
quence data, their temporal spread, and how much evolution-
ary change has accumulated in the viral genome. The
phylodynamic threshold requires a strong assumption about
the evolutionary rate based on closely related viruses, and it
can be understood as the point in time when sequence data are
sufficiently informative about the evolutionary dynamics that

Figure 3. Prior and posterior densities for parameters of interest using the molecular clock model with best fit for all snapshot data set (SC for all data sets, except for

24 February, where the UCLN was chosen). The y-axis corresponds to parameter values, while the x-axis represents the relative density. Light blue densities correspond

to the effective prior, while those in dark blue show the posterior.
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shape an outbreak, i.e. when the population is measurably
evolving. The routine application of tests of temporal signal can
effectively answer this question in nearly real-time. Our appli-
cation of BETS (Duchêne et al., 2019) to data snapshots from the
early stages of the outbreak revealed that the phylodynamic
threshold of SARS-CoV-2 was reached by about 2 February,
when forty-seven genomes were available sampled over
35 days, and 41 days after the first genome was reported.

Our finding that the phylodynamic threshold was attained
within about two months of the estimated start of the outbreak
demonstrates that Bayesian phylodynamic approaches can cap-
italise on early collected genome data to make inferences about
evolutionary processes, particularly the viral evolutionary rate
and the outbreak’s time of origin. Our estimates of these two
parameters were consistent after the phylodynamic threshold
was reached, and also matched previous estimates posted on
virological.org and elsewhere (Taiaroa et al. 2020; Volz et al.
2020). Increasing the number of sequences leads to more precise
estimates of the evolutionary rate, but we found only marginal
improvements in precision after 109 sequences (21 February).
The SC was preferred over the UCLN in most data sets. The fact
that the UCLN was only supported after 122 sequences were in-
cluded suggests that the statistical power necessary to support
such a relaxed clock model may require more informative data
than those available at the early stages in the outbreak. We an-
ticipate that the UCLN will be favoured over the SC in analyses
of larger data sets of SARS-CoV-2. We also observed a slight de-
crease in the precision of evolutionary rate and tMRCA esti-
mates beyond 6 February (Fig. 2 and Fig. 3, respectively), and for
clock model support as rate variation increases among these
larger samples, a pattern that has been demonstrated previ-
ously (Duchêne et al. 2020).

The relative importance of sample size and time span in
achieving the phylodynamic threshold is difficult to quantify as
this is highly contingent upon the given outbreak. In a recent
simulation study, we found that sequence diversity—measured
as the number of site patterns—is a key factor in the detection
of temporal signal (Duchêne et al. 2020), which could be varied
in simulations by modifying the evolutionary rate or increasing
sequence length. Ultimately a sufficient amount of evolutionary
change will be needed to reach this threshold. However, ongo-
ing work on SARS-CoV-2 has shown that including large
amounts of sequence data can sometimes obscure temporal
signal due to an increase of among-lineage rate variation, indi-
cating that the phylodynamic threshold does not follow a sim-
ple recipe of increasing the number of samples or the sampling
window. As a case in point, the Nextstrain workflow uses a
fixed evolutionary rate to infer the time scale of SARS-CoV-2,
avoiding potential errors in the resulting estimates of evolution-
ary time scales in downstream analyses (Dellicour et al. 2020).

A key consideration concerning the presence of temporal
signal in the data is that this does not necessarily imply that de-
mographic parameters can be reliably estimated using genome
sequence data. Comparing the effective prior and posterior is
important to assess the information content of the data, but it
is not an assessment of the reliability of the estimates. For ex-
ample, U is generally inversely correlated with the root height,
such that if the data have temporal signal, the prior and poste-
rior for this parameter will substantially differ. However, this
parameter is proportional to the number of infected individuals
at present under the assumption that the number of infections
grows exponentially in a deterministic fashion and in the ab-
sence of population structure. Clearly, the extent to which the
data meet these conditions can affect the interpretation and

reliability of such epidemiological parameters. More realistic
tree priors may be warranted here, such as those that account
for population structure and the sampling process (Scire et al.
2020). In sum, whether the phylodynamic threshold coincides
with reliability in estimates of epidemiological parameters
depends on the information content in the data, but also on the
tree prior and its underlying assumptions.

Ongoing analyses of SARS-CoV-2 will reveal important aspects
regarding its evolutionary origin and epidemiological dynamics.
On a global scale, the virus is well beyond its phylodynamic
threshold, but tests of temporal signal, as applied here, will still be
key to understand the time scale of local transmission.

4. Methods

We downloaded genome sequence data from GISAID or
GenBank, and aligned them using MAFFT (Katoh et al. 2002). We
curated the data through comparison with data sets available at
virological.org and visual inspections of our alignments
(Supplementary Table S1). We only included sequences from
humans, that were at least 28,000 nucleotides long, and with
high coverage.

4.1 Bayesian phylogenetic analyses

We analysed each data snapshot in BEAST (Suchard et al. 2018)
using the HKYþC substitution model. We set a Markov chain
Monte Carlo length of 107 steps, sampling every 103 steps. We
determined sufficient sampling by verifying that the effective
sample size of key parameters was at least 200 using Tracer v1.7
(Rambaut et al. 2018). We assessed temporal signal using BETS
(Duchêne et al. 2020). We compared the statistical fit of two mo-
lecular clock models, SC and UCLN, and three configurations of
sampling times; the correct sampling times, no sampling times,
and permuted sampling times, with the latter two correspond-
ing to a lack of temporal signal. For each combination of molec-
ular clock model and sampling times we calculated the (log)
marginal likelihood using generalised stepping-stone sampling
(Baele, Lemey, and Suchard 2016), for which we employed 200
path steps with a chain length for each power posterior of 105

iterations. We chose priors for all parameters that respected
their respective domains, but that were not overly informative,
and all of which are proper (i.e. the area under the curve is 1.0;
Baele, Lemey, and Suchard 2012) (Table 2). According to BETS, a
data set is considered to have temporal signal if (log) Bayes fac-
tors support a model with the correct sampling times (Duchêne
et al. 2020).

Our comparison of the prior and posterior distributions of
key parameters require obtaining the effective, rather than the
marginal prior. The effective prior can be obtained by running
the analysis in BEAST with no sequence data, which is equiva-
lent to ignoring the sequence likelihood and is done by selecting
the option ‘sample from prior’ in BEAUti, the graphical interface
accompanying the BEAST software package (Suchard et al.
2018). All Bayesian phylogenetic analyses were conducted on
the SPARTAN high-performance computing service of the
University of Melbourne (Meade et al. 2017).

4.2 Root-to-tip regression

We estimated phylogenetic trees using maximum-likelihood in-
ference as implemented in IQ-tree v1.6 (Minh et al. 2020), with
the optimal substitution model determined by the programme.
We used these trees to obtain root-to-tip regressions in
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TempEst v1.5 (Rambaut et al. 2016) by selecting the root position
that maximised R2.

Supplementary data

Supplementary data are available at Virus Evolution online.
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