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Abstract

This study reveals a new microfluidic biosensor consisting of a multi-constriction microfluidic 

device with embedded electrodes for measuring the biophysical attributes of single cells. The 

biosensing platform called the iterative mechano-electrical properties (iMEP) analyzer captures 

electronic records of biomechanical and bioelectrical properties of cells. The iMEP assay is used 

in conjunction with standard migration assays, such as chemotaxis-based Boyden chamber and 

scratch wound healing assays, to evaluate the migratory behavior and biophysical properties of 

prostate cancer cells. The three cell lines evaluated in the study each represent a stage in the 

standard progression of prostate cancer, while the fourth cell line serves as a normal/healthy 

counterpart. Neither the scratch assay nor the chemotaxis assay could fully differentiate the four 

cell lines. Furthermore, there was not a direct correlation between wound healing rate or the 

migratory rate with the cells’ metastatic potential. However, the iMEP assay, through its 

multiparametric dataset, could distinguish between all four cell line populations with p-value < 

0.05. Further studies are needed to determine if iMEP signatures can be used for a wider range of 
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human cells to assess the tumorigenicity of a cell population or the metastatic potential of cancer 

cells.
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1. Introduction

Chemotherapeutic treatment of cancer has focused on the inhibition of invasion and, 

consequently, metastasis. The scratch wound healing assay and Boyden chamber are 

common and well-established methods of evaluating cell migration in vitro [1–5]. The 

wound healing assay involves creating a gap within a cell monolayer and capturing time-

lapse imagery of cell migration. The rate at which the cells travel to “heal” the wound is 

indicative of cell-matrix and cell-cell interactions during cell migration [2–5]. The Boyden 

chamber assay, also known as the transwell assay, consists of two compartments separated 

by a membrane with micropores, where pore sizes can range from 3–12 μm to suit cells of 

interest [1, 6]. The cells are seeded in the top region and the bottom region contains chemo-

attractants. Using this method, migratory behavior is quantified using a plate reader or by 

staining cells and taking images of the cells [1, 4, 6]. Drawbacks of the wound healing 

method are lengthy experimentation time of the assay, the influence of cell proliferation, and 

lack of chemo-attractants. In contrast, the Boyden chamber method typically consumes less 

time, is independent of proliferation, and allows for the usage of chemotactic agents. 

Additionally, microfabricated migration assays have also been developed using microfluidic 

platforms, where researchers have evaluated cell migratory behavior and kinetics of 

endothelial and cancer cells [7–10].

Deformability of cells in the presence of a compressive force is a mechanical property that 

can be used to phenotype cells with different sizes ranging from red blood cells to tumor 

cells [11–14]. The deformability of a cell is influenced by its intracellular structures and is 

particularly dependent upon the cytoskeleton, the kinetic framework of the cell. The 

compliancy of a cell can be used to classify cells according to specific phenotypes, most 

notably, diseased versus healthy tissues. In this regard, phenotyping can provide information 

regarding the immune response, stem cell therapies, cancer diagnostics, etc. Deformability 

assays have become increasingly common in cancer research as it has been observed that in 

most cases more aggressive cancer cells exhibit decreased structural rigidity most likely 

benefitting cellular locomotion and metastasis [11, 13, 15–17].

In order to accommodate the urgency placed upon health-related diagnostic practices, a 

high-throughput method to analyze the compliance and migratory behavior of single cells is 

required. Methods of determining cell deformability already in practice are atomic force 

microscopy (AFM) [18, 19], micropipette aspiration [20], hydrodynamic stretchers [21], 

magnetic tweezers [22], and optical stretchers [13]; however, these techniques require 

specialized equipment and require time-consuming pre-processing, experimentation, and 

post-processing times. In addition, these procedures involve tools that can cause damage to 
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the cells through contact or fixing and staining. Standard migration assays also share similar 

drawbacks, including time-consuming preparation and experimentation. To alleviate these 

issues, constriction-based microfluidic flow cytometry, which operates at a much greater 

throughput, has proven to be a viable method of deformability and migratory analysis with 

the added benefits of cost-effectiveness and low-complexity [11, 12, 15, 16].

Flow cytometry is a versatile tool commonly employed to study cell surface markers and 

biophysical properties under laminar flow using optical scattering or fluorescent tags [23–

26]. Deformability can be observed when a constriction slightly smaller than cell diameter is 

incorporated into the channel, which is the principle of constriction-based microfluidics. 

Data collected from these systems describe the passage time of single cells. Passage time is 

composed of entry time, the time required for a cell to deform and enter the constriction, and 

transit time, the time elapsed between the cell entering the constriction and exiting it. Transit 

time is influenced by friction between the cell and the channel wall, as well as fluid flow 

pressure [11, 15, 16]. Constriction-based technologies have been improved by employing a 

cyclic deformation assay, which involves sequential deformation regions separated by 

relaxation regions. Previously, our group has shown that cyclic deformations can improve 

the detection of breast cancer cells from their normal counterparts [15–17]. The traditional 

method of observing cell velocities as they pass through these constriction points is with a 

high-speed camera; however, this practice is time-consuming in data analysis and the 

equipment is expensive. The post-processing time is further amplified by incorporating 

multiple constriction microchannels as multiple time points need to be obtained for each 

constriction region. These disadvantages are improved through incorporation of electrode 

sensors embedded within the device. Electrodes can measure impedance within the 

constriction channel and impedance peak profiles can be utilized to measure transit times 

[27–33].

Bioelectrical properties of cells are emerging as label-free markers which allow for 

significant differentiation between similar cell types [34–38]. This is due to variations in 

electrical properties of cells, such as membrane capacitance and cytoplasm resistance, 

attributed to differing physiologies between cells. Recently, research has emerged combining 

electrical analysis of cells with deformability microfluidics to produce microfluidic 

impedance devices [27–31]. In this study, it was hypothesized that measuring the impedance 

of single cells in combination with deformability, represented by transit times, allows for 

greater differentiation between similar prostate cancer cell types: LNCaP, LNCaP-C4–2, and 

LNCaP-C4–2B. These cell lines have clinical relevance as they represent the progression 

that human prostate cancer typically goes through, where the prostate cancer gains 

androgen-independence then metastasizes to bone. Thus, they provide a good model to help 

understand the mechanisms of androgen-independence and bone metastasis. Additionally, a 

normal/healthy prostate cell line, PWR-1E, has been included in the study to compare its 

biophysical attributes to those of various cancer cells.

The biosensor reported in this paper consists of five sequential constriction channels 

separated by relaxation regions where biomechanical and bioelectrical attributes of cells are 

obtained simultaneously. Yang et al. developed a multi-constriction microfluidic device with 

embedded 3D electrodes to obtain biomechanical and bioelectrical data of single cells [33]. 
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Our work differs in terms of the device configuration, application and post-processing of 

data. The 3D electrode configuration is advantageous with respect to elimination of 

alignment and sensitivity, however they do not have the flexibility for an inexpensive off-

chip device via planar electrodes [39]. Device configuration also differs as they do not have 

a built-in anti-clogging mechanism. Their work compared chemically treated MCF-7 cells, 

while our platform is used to compare various prostate cell lines with differing cancer 

progression. Lastly, their data analysis requires complex neural network post-processing 

compared to our quick and simple post-processing. We report the first instance of studying 

biophysical attributes of the prostate progression model of LNCaP cell lines, and how it 

compares to a normal prostate cell line counterpart. Additionally, migratory behavior has 

been assessed through scratch wound healing and chemotaxis Boyden chamber assays, and 

results are compared to biophysical attributes obtained from our microfluidic sensor. The 

coupling of these assays provides a comprehensive analysis of cells at different stages of 

prostate progression model and how it compares to a healthy prostate cell line.

2. Materials and Methods

2.1. Cell lines

LNCaP is a human prostate cancer cell line; derived from a metastatic site- the left 

supraclavicular lymph node of a Caucasian 50-year-old male. The C4 cell line constitutes 

the in vitro cultured subline grown from the murine host’s tumor. When the C4 sub-line was 

subsequently co-inoculated with MS osteosarcoma fibroblasts in a castrated athymic male 

nude mouse host for another 12 weeks, prostatic epithelial cells cultured from the resultant 

tumor in this host constituted the C4–2 subline which is androgen-independent. The LNCaP-

C4–2B cell was obtained from bone metastatic C4–2 cells grown in a castrated mouse and is 

also androgen-independent [40]. LNCaP and LNCaP-C4–2B were gifts from Dr. Leland 

W.K. Chung via Dr. Simon W. Hayward and Dr. Magda M. Grabowska (Case Western 

Reserve University). LNCaP-C4–2 cells were a gift from Dr. Warren D. Heston (Cleveland 

Clinic). The PWR-1E cell line is prostate epithelial line derived from a Caucasian male at 67 

years of age and was purchased and verified by ATCC. All lines have been confirmed 

negative for mycoplasma.

2.2. Sample Preparation

Human prostate cancer cell lines LNCaP, LNCaP-C4–2, and LNCaP-C4–2B were grown in 

RPMI-1640 with 10% fetal bovine serum and 1% Pen-Strep ( 100 U/mL penicillin and 100 

ug/mL streptomycin)(GIBCO). The human immortalized prostate epithelial cell line, 

PWR-1E, was cultured in keratinocyte serum-free medium (K-SFM) supplemented with 

0.05 mg/mL of bovine pituitary extract and 5 ng/mL of human recombinant epidermal 

growth factor provided in the K-SFM kit (GIBCO). Cell monolayers were grown in T-25 

cm2 culture flasks at 37 °C in a combination of 95% air and 5% CO2 until cells reached 

proper confluency. To process cell monolayers for experimentation, the cells were detached 

from the inner surface of the flask with a trypsin-ethylenediaminetetraacetic acid solution for 

~5 minutes at 37 °C and gently aspirated to create a single cell suspension. Cell suspensions 

are spun down, rinsed, and resuspended in 1× PBS. Cell counts were ~ 10 × 104 cells/mL for 
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each respective cell line. Cell diameters for LNCaP, LNCaP-C4–2, LNCaP-C4–2B, and 

PWR-1E ranged from 10–16 μm, 10–16 μm, 10–15 μm, and 10–15 μm, respectively [41].

2.3. Device Fabrication

Fabrication of the electrodes (Figure 1) starts with the patterning of a glass wafer with 

photoresist (S1813, MicroChem, Newton, MA) by means of photolithography. Using 

electron-beam (e-beam) evaporation, layers of chromium (~40 μm) and gold (~80 μm) are 

evaporated onto the patterned wafer and electrodes are created using standard metal lift-off 

techniques. To create the microfluidic channels (Figure 1), we patterned a silicon wafer with 

two layers of SU-8 (SU-8 3005 and SU-8 3025, MicroChem, Newton, MA) through 

photolithography to create a master mold. The SU-8 3005 was used to build the constriction 

channels with a height of 8 μm; and the SU-8 3025 was used to build the remaining 

microfluidic channels with a total height of ~30 μm. The mold is then coated with 

tridecafluoro-1,1,2,2-tetrahydrooctyl-1-tricholosilane (TFOCS, Fisher Scientific) for easy 

release of polydimethylsiloxane (PDMS). Using soft-lithography techniques, we use the 

master mold to create the PDMS microchannel. Through plasma activated bonding we align 

and bond the PDMS microchannels onto the glass with electrodes. Each electrode has its 

own bond pad so that wires can be soldered in order to be connected to the impedance 

spectroscope.

2.4. Device Design

The sensor consists of two separate channels, delivery and constriction, to prevent cell 

accumulation at the constriction and clogging (Figure 1). The sample of single cells 

suspended in 1× PBS passes through the channel from an inlet to an outlet. Once cells have 

been introduced to the delivery channel, a vacuum pump applies a negative pressure at the 

outlet. Consequently, cells flow through the delivery channel due to pressure differences. 

The entrance of the constriction channel is located at the center of the delivery channel. A 

separate negative pressure applied at the end of the constriction channel, via a Harvard 

Apparatus syringe pump, in order to initiate flow through the constriction channel. Flow 

through the constriction channel is initiated by applying a constant negative pressure of ΔP= 

~−100 Pa. Once a cell has entered the constriction channel, the flow coming from the 

delivery channel stops until the cell trapped in the constriction channel has passed through 

completely. The constriction channel consists of five constriction regions and four relaxation 

regions, where each region is 50 μm in length, 8 μm in height and 45 μm in width, 

respectively. The device also consists of a pair of two electrodes 20 μm-wide and 120 nm-

tall with a spacing of 625 μm. The electrodes are aligned ~85–90 μm from the entrance and 

exit of the constriction channel.

2.5. Experimental Setup

2.5.1. Scratch Wound Assay—Scratch wound migration assays were performed using 

the 96 well image lock plates (Sartorius) and the wound maker from IncuCyte ZOOM Live-

Cell Analysis System (Sartorius). Cells were plated into each well at 4.5 × 104 - 7.5 × 104 in 

100 μL of medium and allowed to adhere overnight. Cells were wounded using the wound 
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maker, washed, and 200 μL of new media added. Plates were placed in the IncuCyte and 

scanned every two hours until wounds closed, media was changed every 2–4 days.

2.5.2. Chemotaxis Migration Assay—LNCaP, LNCaP-C4–2, LNCaP-C4–2B, and 

PWR-1E cells were plated, in ClearView 96-well chemotaxis plates (Sartorius) with 8 μm 

pore size, in biologically equivalent sextuplicates at 60–120 cells per well using complete 

RPMI-1640 or complete K-SFM and incubated overnight to allow for adherence. To 

establish a chemical gradient, media was changed inside the upper reservoir from complete 

RPMI-1640 to serum-reduced RPMI-1640 supplemented with 1% FBS and complete K-

SFM to growth factor-reduced K-SFM supplemented with 0.01 mg/mL BPE and 1 ng/mL. 

Cell migration towards complete media was monitored using the IncuCyte ZOOM Live-Cell 

Analysis System (Sartorius) by continuous imaging every 2 hours for 72 hours. Migrated 

cell count was quantified using IncuCyte software analysis (Sartorius) and normalized to the 

initial top value.

2.5.3. Microfluidic iMEP Assay—The iterative mechanoelectrical properties (iMEP) 

device is mounted on an inverted microscope (Zeiss Axio Observer LSM-510, Thornwood, 

NY) with a lens magnification of 20×. During experimentation, the electrical impedance 

across the channel was obtained by applying 1V AC signal at 8 different frequencies of 0.5, 

1, 5, 10, 50, 100, 500, and 1000 kHz using the HF2IS Impedance Spectroscope (Zurich 

Instruments, Zurich, Switzerland). Two devices on separate days were used to obtain the 

biomechanical and bioelectrical results, where a minimum of three runs for each cell type 

was used on each individual device. Figure 2 shows a representation of the impedance peak 

collection for a single cell passing through the five constrictions. The electrical properties 

are represented by shifts in magnitude and phase, where the max peak is subtracted from the 

baseline. High-speed videos were obtained at 100 frames/sec via the Motion Xtra NX4-S3 

high-speed camera (IDT, Tallahassee, FL) for cross-verification of cell transit through the 

constriction channels. Data was obtained from the impedance analyzer using Python 3.6.

2.5.4 Statistical Analysis—Statistical significance was determined by two-way or one-

way analysis of variance (ANOVA) with Tukey post-test using the GraphPad Prism 7 

software. For experiments over time, significance was confirmed using linear regression 

models to test for differences and test interactions between cell type and slope of the 

relationship with time with the SAS software. Error bars represent the SEM of experiments. 

* p<0.05, ** p<0.005, and *** p<0.001, and **** p<0.0001.

3. Results

3.1. Scratch Wound Assay

To evaluate sheet migration behavior of normal prostate epithelial cells and androgen-

dependent or independent prostate cancer cells, we performed a scratch wound healing 

assay. Results depicted in Figure 3 below indicate that the normal prostate cell line PWR1-E 

healed the wound the quickest out of all cell lines: 5-fold faster than LNCaP, 1.6-fold faster 

than LNCaP-C4–2, and 4.4-fold faster than LNCaP-C4–2B cells. However, comparing the 

prostate cancer cell lines show that the LNCaP-C4–2 heal the wound the quickest, followed 
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by LNCaP-C4–2B (2.7-fold slower than LNCaP-C4–2) and LNCaP (3-fold slower than 

LNCaP-C4–2). Thus, the two-dimensional migration demonstrates altered migratory 

behavior dependent on the cell line tested with the normal epithelial cells healing the wound 

the fastest.

3.2. Chemotaxis Migration Assay

To evaluate the chemotactic potential of normal prostate epithelial cells and androgen-

dependent or independent prostate cancer cells, we performed a chemotactic migration assay 

using PWR-1E, LNCaP, LNCaP-C4–2, and LNCaP-C4–2B (results are shown in Figure 4). 

LNCaP-C4–2 cells demonstrated the fastest migration through the pores: 3.5-fold faster than 

PWR-1E, 3-fold faster than LNCaP-C4–2B, and 4-fold faster than LNCaP cells. LNCaP-

C4–2B and PWR-1E cells migrated more quickly than LNCaP cells, 1.4-fold, and 1.2-fold, 

respectively. Thus, in contrast to the two-dimensional migration, the normal epithelial cells 

and androgen-dependent prostate cancer cells migrated more slowly than the androgen-

independent prostate cancer cell lines through the pores.

3.3. Microfluidic iMEP Assay

Cell timing information in the iMEP device was obtained in all 5 constriction regions in 

order to compare the four cells lines based on their response to the constriction channel. 

Average values +/− standard error of the mean (SEM) are shown in Figure 5. Comparing the 

timing in constriction #1, which represents both entry and transit time, showed that the 

LNCaP and PWR1E cells are the most and least deformable, respectively. Additionally, the 

LNCaP-C4–2 and LNCaP-C4–2B have comparable constriction 1 values. Lower and higher 

timing in the first constriction are indicative of cells with more and less deformability, 

respectively. However, in the remaining four constriction channels, the cell’s ability to regain 

its shape in the relaxation region and deformability both play a role. After experiencing the 

first constriction, LNCaP cells timing information approached those of the other LNCaP 

derivatives. The PWR-1E cells tended to have higher transit times regardless of the 

constriction region.

In addition to timing information, electrical properties were obtained for each cell line where 

the average +/− SEM of phase and magnitude, measured at respective frequencies of 50 kHz 

and 100 kHz, is shown in Figure 6. Although phase and magnitude were obtained for 

frequencies ranging from 0.5–1,000 kHz, we have included a single example of each due to 

redundancies in data and for the purpose of brevity. Looking at both mean values of phase 

and magnitude, it is clear that each cell line has a distinct difference in bioelectrical 

properties.

4. Discussion

In vitro migration assays are proven techniques for evaluating cell motility, 

chemotherapeutic response, and metastatic potential of tumor cells [1–6]. Here, scratch 

wound, chemotaxis, and constriction-based microfluidic assays have been used to study 

prostate cancer cells of varying aggressiveness in addition to a healthy prostate cell line. 

Each assay provides both differing and overlapping information regarding the cells of 
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interest. Scratch wound healing assays operate by creating an opening in a cell monolayer 

and monitoring how long it takes for the cells to heal the wound. Here, cells maintain their 

cell-to-cell junctions and probe the collective cell migration called sheet migration [2, 5]. 

Our data demonstrate that normal prostate epithelial cells migrate faster than cancer cell 

lines in sheet migration. This is likely due to the role of epithelial cells in healing wounded 

tissues. In contrast, the chemotaxis and our constriction-based microfluidic assay probed the 

single cells by their movement through pores and microchannels where the cell is required to 

deform. This deformation is more relevant to the type of movement required for cancer 

progression. The chemotactic Boyden chamber assay, which relies on chemical stimuli to 

drive cell movement, measures the combination of the cells’ response to the chemicals and 

its ability to deform and transit through the micropores [1, 6]. Our data show that the 

androgen-independent prostate cancer cell lines migrate more quickly through the pores and 

toward serum as a chemoattractant compared with androgen-dependent prostate cancer and 

normal prostate epithelial cells. Our microfluidic biosensor measures the ability of the cells 

to deform and transit through sequential constriction channels separated by relaxation 

regions that allow cells to have the opportunity to regain its original spherical-like shape 

from the rod-like shaped caused by the constriction channel. We demonstrate that normal 

prostate epithelial cells move slowly through the constriction channels, while the androgen-

dependent prostate cancer cell line can deform and recover the most. Additionally, the 

electrical impedance of the cells is obtained, which relate to cell biophysical properties such 

as cell size, membrane capacitance, and resistance. These data were most effective in 

differentiating the different cell lines and when combined with constriction deformability in 

our iMEP device could differentiate among the metastatic cells. Figure S1 in the 

supplementary information illustrates an example of how a multi-parametric analysis can be 

utilized for single cell differentiation. Additionally, this figure shows how combining 

biomechanical and bioelectrical parameters of cells can further distinguish cells. None of the 

standard techniques used in this study could provide this type of single cell differentiation.

The scratch wound healing and chemotaxis assay show that metastatic potential cannot be 

assessed using these methods. In brief, these methods are robust in terms of determining 

sheet migration behavior, response to chemo-attractants, and deformability; however, they 

cannot solely be used to study the metastatic potential of cancer cell lines. For the scratch 

wound assays, the results on the sheet migratory behavior do not correspond with 

aggressiveness in all cases. When comparing the LNCaP-C4–2 and LNCaP-C4–2B to the 

parental LNCaP cell line, the assay correctly indicates that the former cell lines are more 

aggressive than the parental cell line. However, it is not a good indicator of metastatic 

aggressiveness when comparing LNCaP-C4–2 and LNCaP-C4–2B; however, as these two 

cell lines are closely related their grouping together may be more indicative of their 

similarities as androgen-independent prostate cancer cell lines. Additionally, when 

comparing the normal PWR-1E and LNCaP cell lines, it shows that the normal cell line 

migrates much faster than all three cell lines. This is likely due to the role of epithelial cells 

in healing wounded tissues and their ability to migrate as a sheet. For the chemotaxis 

migration assay, we were not able to distinguish between the LNCaP and PWR-1E cell lines 

with statistical significance. The chemotaxis results also show that this assay is not always a 

good indicator of cancer aggressiveness, because the more bone-trophic LNCaP-C4–2B cell 
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migrates at a much lower rate than the less aggressive LNCaP-C4–2 cells. We hypothesize 

that this could be due to changes in the cell generated by exposure to their metastatic niche: 

the bone microenvironment; however, further studies will be needed to tease out this 

association.

Cell stiffness and deformability have been used by our lab and other research groups to 

distinguish cancer cells from their non-tumorigenic counterparts, and untreated versus drug-

treated cells [13, 16, 27, 32]. Cell deformability can be probed while attached to a surface 

such as in atomic force microscopy, or while suspended in liquid solution, such as 

microfluidic-based techniques. Microfluidic technologies are advantageous compared to 

alternative methods in terms of cost, throughput, and experimentation time. Researchers 

have commonly claimed that cell deformability is higher for cancer cells in comparison to 

normal cells and directly related to the aggressiveness of the cancer [42–48]. However, 

contradicting results have been presented, which counteract the narrative that cell stiffness is 

directly correlated to cell aggressiveness [49, 50]. For instance, Bastatas et al. compared 

stiffnesses of lowly and highly metastatic human prostate cancer cells via AFM, where the 

more metastatic cells were reported to be stiffer than the lowly metastatic counterpart [49]. 

Our iMEP results of prostate cells in some cases agree, and others disagree with this 

contradicting narrative, which proves that deformability or stiffness alone is not a reliable 

method of evaluating cell metastatic potential. More specifically, using the biomechanical 

properties manifested in cell transit times, we were not able to accurately predict the 

migratory behavior and metastatic potential of the cancer cells. However, we could clearly 

distinguish between the normal and cancerous populations. Furthermore, we could identify 

all four cell lines using the bioelectrical properties of deformed cells by combining the 

results of phase and magnitude shifts. The timing information was able to separate the 

androgen-dependent LNCaP and androgen-independent LNCaP-C4–2 cell lines providing 

prognostic information on cancer severity. The later constriction points demonstrated 

increasing separation between the androgen-dependent and independent cell lines indicating 

that additional constriction points may lead to an improved ability to separate these two cell 

lines.

The uniqueness of our proposed assay, when compared to the aforementioned standard 

techniques, is its multi-parametric output. Through a combination of cell mechanical 

modulatory behavior extracted by the deformation-relaxation transit times and the 

bioimpedance data of deformed cells, our assay is capable of not only distinguishing 

between normal and cancer cells but also between cancer cells having different metastatic 

potential. Further experimentation and analysis can be done to map these biophysical 

properties to cell attributes for other prostate cancer cells and other cancer types to 

determine if iMEP can be used as a standalone tool to analyze cancer cell invasiveness.

5. Conclusion

Each assay presented in this paper provides differing information about cell biological and 

biophysical properties. For instance, the chemotaxis assay provides information about how 

cell populations migrate through constrictive pores in response to a chemo-attractant 

gradient, while the scratch wound assay probes cell populations’ sheet migration behavior. 
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Although these two standard migration assays provide information about migratory 

behavior, they do not provide the whole story of the metastatic potential. The iMEP device 

provides information about the cell deformability and dielectric properties, but also cannot 

reliably predict metastatic potential. However, the iMEP device is advantageous over the 

other standard migration assays because we can obtain information about the single cells. 

Experimentation time is another advantage of our iMEP assay, as it can analyze a population 

of cells in a matter of minutes. To conclude, our iMEP device has the capability of 

identifying tumor cells from their normal counterparts, as well as distinguishing between 

closely related cancer cells using the average bioelectrical properties of the deformed cells. 

In contrast, the scratch wound assays showed significant differences between the normal and 

cancer cell lines, but the results with the three cancer cell lines did not correspond to the 

cells’ metastatic potential. Additionally, the chemotaxis assay results were not able to 

distinguish between the normal and cancer cell lines, and the results did not correspond to 

the metastatic potential for all cancer cell lines. Thus, the iMEP device presented here 

represents one method to differentiate between normal and cancerous cells and with 

additional development may be able to provide prognostic information on the metastatic 

potential of cancer cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• Prostate cancer cell lines of differing cancer progression and its normal/

healthy counterpart have varying biomechanical/bioelectrical characteristics, 

wound healing times, and chemotaxis response.

• The iMEP assay rapidly obtains a multiparametric dataset on single cell 

biophysical characteristics to distinguish between four different prostate cell 

lines with p-value < 0.05.

• Individual migration assays are not sufficient for assessing the tumorigenicity 

of a cell population or the metastatic potential of cancer cells.
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Figure 1. 
Overview of iMEP device fabrication and microfluidic experimental setup.

Ghassemi et al. Page 16

Sens Actuators B Chem. Author manuscript; available in PMC 2021 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Representative impedance plot of a single cell passing through the sequential constriction 

channels. Each constriction results in its own peak, where timing and impedance information 

can be obtained. (i) Cell before deformation. (ii) Cell within the first deformation. (iii) Cell 

after first deformation. (iv) Cell after transit through all constriction channels.
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Figure 3. 
Normal prostate epithelial cells migrate quickly in two dimensions. Width of remaining 

wound after scratch represented as mean ± SEM. *** represents p<0.001 by two-way 

ANOVA with Tukey post-test.
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Figure 4. 
Androgen independent prostate cancer cell lines demonstrate higher chemotaxis compared 

with the normal epithelial cells and androgen-dependent prostate cancer cell lines. Number 

of cells in the bottom well normalized to the initial top well represented as mean ± SEM. * 

represents p<0.05, ** represents p<0.005, *** represents p<0.001, **** represents 

p<0.0001 by two-way ANOVA with Tukey post-test.
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Figure 5. 
Passage time differentiates normal and cancerous cells. Average time traveled for single cells 

represented as mean ± SEM. * represents p<0.05, ** represents p<0.005, *** represents 

p<0.001 by one-way ANOVA with Tukey post-test. Cell count for each cell line is N = 60, 

66, 41, and 48, respectively.
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Figure 6. 
Bioelectrical measurements differentiate between all four cell lines with cell count N = 60, 

45, 41, and 48, respectively. Phase shift and magnitude for single cells represented as mean 

± SEM. * represents p<0.05, ** represents p<0.005, *** represents p<0.001 by one-way 

ANOVA with Tukey post-test.
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