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Abstract

Tumour spheroids are widely used as an in vitro assay for characterising the dynamics and

response to treatment of different cancer cell lines. Their popularity is largely due to the

reproducible manner in which spheroids grow: the diffusion of nutrients and oxygen from the

surrounding culture medium, and their consumption by tumour cells, causes proliferation to

be localised at the spheroid boundary. As the spheroid grows, cells at the spheroid centre

may become hypoxic and die, forming a necrotic core. The pressure created by the localisa-

tion of tumour cell proliferation and death generates an cellular flow of tumour cells from the

spheroid rim towards its core. Experiments by Dorie et al. showed that this flow causes inert

microspheres to infiltrate into tumour spheroids via advection from the spheroid surface, by

adding microbeads to the surface of tumour spheroids and observing the distribution over

time. We use an off-lattice hybrid agent-based model to re-assess these experiments and

establish the extent to which the spatio-temporal data generated by microspheres can be

used to infer kinetic parameters associated with the tumour spheroids that they infiltrate.

Variation in these parameters, such as the rate of tumour cell proliferation or sensitivity to

hypoxia, can produce spheroids with similar bulk growth dynamics but differing internal

compositions (the proportion of the tumour which is proliferating, hypoxic/quiescent and

necrotic/nutrient-deficient). We use this model to show that the types of experiment con-

ducted by Dorie et al. could be used to infer spheroid composition and parameters associ-

ated with tumour cell lines such as their sensitivity to hypoxia or average rate of proliferation,

and note that these observations cannot be conducted within previous continuum models of

microbead infiltration into tumour spheroids as they rely on resolving the trajectories of indi-

vidual microbeads.

Author summary

Tumour spheroids are an experimental assay used to characterise the dynamics and

response to treatment of different cancer cell lines. Previous experiments have demon-

strated that the localisation of tumour cell proliferation to the spheroid edge (due to the
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gradient formed by nutrient diffusing from the surrounding medium) causes cells to be

pushed from the proliferative rim towards the nutrient-deficient necrotic core. This

movement allows inert particles to infiltrate tumour spheroids. We use a hybrid agent-

based model to reproduce this data. We show further how data from individual

microbead trajectories can be used to infer the composition of simulated tumour spher-

oids, and to estimate model parameters pertaining to tumour cell proliferation rates and

their responses to hypoxia. Since these measurements are possible using modern imaging

techniques, this could motivate new experiments in which spheroid composition could be

inferred by observing passive infiltration of inert particles.

Introduction

By the time tumours are clinically detectable in vivo they are typically highly heterogeneous in

terms of their spatial composition [1]. Tumours contain multiple cell types, including stromal

cells (e.g., fibroblasts) and immune cells (e.g., macrophages, T cells) and their growth is sus-

tained by an irregular network of tortuous and immature blood vessels which deliver vital

nutrients such as oxygen to the tumour cells. When characterising tumour cell lines or testing

new cancer treatments it is important to have a reproducible experimental assay. In such situa-

tions, tumour spheroids are widely used due to the predictable manner in which they grow [2].

Tumour spheroids are clusters of tumour cells whose growth in vitro is limited by the diffu-

sion of oxygen and other nutrients, such as glucose, from the surrounding medium into the

spheroid centre. Other factors which may limit the growth of tumour spheroids include inter-

cellular communication, contact sensing, pH levels and/or the circadian clock. In small spher-

oids, all cells receive sufficient nutrients to proliferate and exponential growth ensues. As a

spheroid increases in size, nutrient levels at its centre decrease and may eventually become too

low to support cell proliferation, driving cells to halt division and become quiescent. Slower

growth of the spheroid will occur until nutrient levels at its centre fall below those needed to

maintain cell viability, leading to the formation of a central necrotic core containing dead cells.

Growth will continue until the spheroid reaches an equilibrium size at which the proliferation

rate of nutrient-rich cells in the outer shell of the spheroid balances the degradation rate of

necrotic material at the spheroid centre [2–4]. During necrosis, the cell membrane collapses

causing rapid ejection of cell constituents into extracellular space [5], leading to a reduction in

cell size as liquid matter disperses into the spheroid.

A wide range of models have been developed to describe the growth and mechanical prop-

erties of tumour spheroids [6–8] and organoids [9, 10] and their response to treatment [11,

12]. The simplest models, which include logistic growth and Gompertzian growth, recapitulate

the characteristic sigmoid curve describing how the total spheroid volume changes over time

[13–15]. These phenomenological models are, however, unable to describe the internal spatial

structure of tumour spheroids. More detailed mechanistic models relate the internal spatial

structure of the spheroids to the supply of vital nutrients such as oxygen and glucose [16–20],

and may be adapted to include the effect of anti-cancer treatments. While some models of

spheroid growth account explicitly for factors such as glucose, ATP, pH, and contact inhibition

of cell proliferation (e.g., [21]), it is common in mathematical models of tumour spheroids to

simplify these complex metabolic processes while retaining the qualitative behaviour of the

experimental observations. Most models therefore represent oxygen, glucose and other nutri-

ents via a single diffusible species described variously as “oxygen” or “nutrient”, which is

assumed to be vital for the survival and proliferation of tumour cells (e.g., [22–24]).
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Agent-based models (ABMs), which resolve individual cells, can also be used to model

tumour spheroids. ABMs are often multiscale, linking processes that act at the tissue, cell and

subcellular scales. For example, the cell cycle dynamics of individual cells may be modelled via

ordinary differential equations (ODEs) at the subcellular scale, may depend on local levels of

tissue scale quantities such as oxygen concentration, and may influence cell scale processes

such as cell proliferation. ABMs are termed ‘hybrid’ if they combine different modelling

approaches. For example, a reaction-diffusion equation describing the spatial distribution of

oxygen within a tumour spheroid may be coupled to a stochastic, rule-based cellular automata

(CA) model governing the dynamics of individual tumour cells [25]. ABMs can be formulated

using on- and off-lattice approaches. On-lattice approaches include rule-based CA models

(e.g., [26, 27]) in which each lattice site is typically occupied by at most one cell, and the cellu-

lar Potts model [28–30] where individual cells may occupy multiple lattice sites. CA models

are generally unable to capture realistic cell shapes or intercellular forces. However, while cel-

lular Potts models permit more realistic cell geometries, they are also constrained by a lattice

and do not allow full consideration of mechanical effects.

A weakness of on-lattice models is that cell locations are restricted to discrete lattice sites.

By contrast, off-lattice ABMs allow cells to move in a continuous manner through space.

Examples of off-lattice ABMs include those which track cell centres (cell-centre approaches)

and those which track the cell boundaries (vertex-based approaches). We refer the interested

reader to [31] for a comparison of five ABMs (CA, cellular Potts models, overlapping spheres

[32], Voronoi tesselation [33] and vertex-based methods).

While many groups develop their own ABMs (e.g., [34]), increasing numbers are using

open source software specifically designed for simulating ABMs. The Chaste framework [35,

36] is designed to implement a wide range of ABMs. PhysiCell [37] utilises BioFVM [38] to

obtain efficient simulations involving large numbers of diffusing substrates such as oxygen.

Morpheus [39] focusses on user-friendliness, with a GUI designed to bypass many of the cod-

ing challenges associated with developing agent-based models. Like Chaste, it can implement

models using a range of on-lattice or off-lattice frameworks. CompuCell3D [40] provides an

intuitive way to implement models using the cellular Potts framework [28]. Other software

tools that implement agent-based models include CellSys [41], Biocellion [42], HAL [43] and

Timothy [44]. Advantages of these software tools are that code can be more effectively reused

and benchmarked, and errors in model implementation are more likely to be identified. Taken

together, these frameworks also provide multiple ways of implementing ABMs, so that

researchers can choose the framework (or frameworks) best suited to the questions they seek

to address.

When developing theoretical models of tumour spheroid growth, a key consideration is the

experimental data available to validate and/or parameterise the model. Typically, spheroid

experiments generate dynamic data showing how the total tumour volume changes over time.

These data may be supplemented by spatially-resolved images of spheroid composition at dis-

crete timepoints [3, 45]. In a series of papers, Dorie et al. adopted an alternative approach [46,

47]. They added inert microbeads to the outer edge of well-developed tumour spheroids and

collected time-series data showing how the spatial distributions of the microbeads changed

over time, as they moved radially inwards, towards the centres of the spheroids. This data is

consistent with “passive infiltration”, in which inert particles are advected into the spheroid by

tumour cells which are moving down pressure gradients caused by spatial variation in cell pro-

liferation and death. This cellular flow, induced by mechanical stresses within a tumour spher-

oid, has been proposed as a mechanism by which drugs may exploit advection to enter a

tumour more efficiently [48]. Passive infiltration of this type differs from advection by fluid
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flow, which has previously been implicated as a mechanism by which chemotherapeutic drugs

may enter, or be inhibited from entering, tumours [49, 50].

Several authors have developed continuum models to describe Dorie et al.’s experiments

[51–53]. These continuum models focus on cell populations and, as such, do not resolve indi-

vidual cells. McElwain and Pettet [51] showed that a possible cause of bead internalisation is

pressure gradients caused by differential rates of cell proliferation and death between the pro-

liferative rim and the necrotic core. A modified version of this model [53] also distinguishes

between proliferating and quiescent cell populations. Both models assume that dead cells are

instantaneously removed from the spheroid and do not occupy space. They also require che-

motactic movement of tumour cells in response to the oxygen gradient to reproduce the results

from [46]. Thompson and Byrne [52] developed an alternative continuum model to explain

the observed infiltration patterns, arguing that differences in infiltration can be explained by

non-uniform death and proliferation in the spheroids. Their model assumes for simplicity that

the tumour spheroids do not contain a necrotic core. While it reproduces the observed data,

their model is unable to reproduce predicted infiltration patterns unless the microbeads are

assumed initially to lie strictly inside the tumour spheroid.

In order to reproduce additional data from Dorie et al. [46] describing the infiltration of

tumour cells labelled with tritiated thymidine (3H-labelled cells), McElwain and Pettet [51]

assumed that tumour cells move, via chemotaxis, up spatial gradients in the oxygen concentra-

tion, and neglected proliferation of the labelled cells. Thompson and Byrne [52] assumed that

labelled cells proliferate, but as with their microbead model the labelled cells had to be initially

placed within the tumour spheroid to reproduce infiltration results. By varying chemotaxis

coefficients between the subpopulations, the authors reproduced the observed infiltration pat-

terns. As they use a continuum framework, these models cannot resolve individual microbeads

or labelled cells.

Inspired by the original experiments of Dorie et al. [46], and the increasing use of ABMs,

we develop an off-lattice hybrid ABM to describe the growth of tumour spheroids and their

infiltration by microbeads and 3H-labelled tumour cells. This enables us to resolve the trajecto-

ries of individual cells and microbeads within the model, something which continuum models

are unable to do. We show further how observations of microbead trajectories can be used to

identify the composition of a simulated spheroid and estimate parameters associated with cell

cycle duration and cell responses to hypoxia. After verifying that the model reproduces the

spatio-temporal dynamics of tumour spheroids growing in free suspension in vitro, we use it

to simulate their infiltration by inert microbeads and labelled tumour cells (see Supporting

Information, S5 Appendix: Replication of 3H-labelled cells experiments), obtaining good

agreement with Dorie et al.’s experimental results. A parameter sensitivity analysis reveals how

the growth rate, size and spatial structure of the spheroids change as we vary key model param-

eters. We show how spheroids with the same equilibrium size may differ in their spatial orga-

nisation. We conclude by showing how dynamic data describing the trajectories of individual

microbeads, which cannot be resolved using continuum models, can be used to infer the com-

position of simulated tumour spheroids, and also to estimate model parameters pertaining to

tumour cell proliferation rates and cell sensitivity to hypoxia.

Materials and methods

Model overview

We develop a hybrid agent-based mathematical model to describe the in vitro growth of

tumour spheroids in response to an externally-supplied nutrient, here taken to be oxygen. We

use the model to simulate spheroid infiltration by inert microbeads and 3H-labelled cells. Our
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model is implemented within Chaste (Cancer, Heart and Soft Tissue Environment, available at

https://www.cs.ox.ac.uk/chaste/), an open source simulation package designed to solve com-

putationally demanding, multiscale problems that arise in biology and medicine [35, 36]. We

choose this framework because it provides an efficient means of implementing off-lattice

ABMs, and has previously been used to simulate multicellular spheroids [35, 54]. The exten-

sions to the framework described in this paper will be made available in a subsequent release

of the Chaste software.

A schematic highlighting the key features of our hybrid ABM is presented in Fig 1. Individ-

ual cells are represented using an off-lattice, cell-centre model, and cell movement is deter-

mined via consideration of the force balances on each cell and assuming that inertial effects

can be neglected (Panel C of Fig 1 indicates those forces which act on cells). Interactions

between cells are modelled by connecting cell centres with springs (Fig 1, Panel C), which sim-

ulate both intercellular adhesion and volume exclusion. Through appropriate choice of the

spring lengths associated with each cell, the model includes a notion of cell size which can be

adjusted to account for size differences between developed cells and those which have just pro-

liferated, or which are decaying due to necrosis.

We distinguish two types of agent: tumour cells andmicrobeads. Tumour cell behaviours

(e.g., cell cycle progression, quiescence and cell death) depend on the local oxygen concentra-

tion, which is determined by a reaction-diffusion equation accounting for oxygen consump-

tion by viable tumour cells and oxygen diffusion from the spheroid boundary towards its

centre. The flowchart at the bottom of Fig 1 shows how simulation results are generated. We

note that while this model can simulate spheroid growth in three dimensions, here we restrict

attention to 2D simulations to reduce computational time.

In the rest of this Section, we introduce the agent-based model we have developed to simu-

late tumour spheroid growth and microbead infiltration. We first describe the PDE used to

calculate the oxygen distribution throughout the spheroid, and then discuss the impact oxygen

concentration has on tumour cell behaviour. We outline the rules used to implement prolifera-

tion and death, and the forces which act on different types of agent to determine their move-

ment. Finally, we summarise the different simulations conducted using this model and the

rules used to initialise them.

Oxygen distribution

While we model cells and microbeads as discrete entities, we assume that the concentration of

oxygen ω(x, t) is continuous and can be described via a reaction-diffusion equation, with oxy-

gen consumption by live tumour cells modelled by placing point sinks at the centres of viable

cells. Written in dimensional form, the equation governing the spatio-temporal evolution of

the oxygen concentration is thus

@o

@t
¼ Dor

2o � ko
X

i

dðx � xiÞ ð1Þ

for x 2 O, where xi is the location of viable cell i, the parameter Dω is the assumed constant dif-

fusion coefficient of oxygen, κ is the oxygen consumption rate andO is the simulation domain,

which we take to be a square domain large enough to fully enclose the spheroid. δ(x) is the

delta function (δ(x) = 1 when x = 0; δ(x) = 0 otherwise).

Eq (1) is solved subject to Dirichlet boundary conditions, which are prescribed on the

domain boundary, and suitable initial conditions. We assume that oxygen is maintained at a

constant level in the culture medium surrounding the tumour spheroid and, hence, by
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Fig 1. Overview of our agent-based model for the growth of tumour spheroids. A: As oxygen ω diffuses from the outer spheroid

boundary, it is consumed by live cells. Consequently, the oxygen concentration at the centre decreases as the spheroid increases in

size. We use the oxygen distribution to distinguish up to four different regions, or compartments, within a spheroid: a well-

oxygenated rim, where ωq� ω� 1, contains proliferating cells; a quiescent compartment, where ωh� ω< ωq, contains non-

proliferating viable cells; a hypoxic compartment, where ω� ωh, contains non-proliferating viable cells which will become necrotic if

they remain hypoxic for longer than a prescribed time period; and a necrotic compartment, containing dead cells which degrade over

time. B: Schematic showing how the way in which cells switch between different compartments depends on the local oxygen

concentration. C: Schematic showing the forces which act on individual cells to determine cell movement. All nodes experience
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continuity that the oxygen concentration on the spheroid boundary is also maintained at this

constant value, ω1.

Since the timescale for oxygen diffusion (seconds) is much shorter than the timescale for

cell proliferation (hours), when we nondimensionalise Eq (1), we make the standard, quasi-

steady state approximation (see S3 Appendix: Non-dimensionalisation of oxygen equation for

details) and solve instead

0 ¼ Dor
2o � ko

X

i

dðx � xiÞ: ð2Þ

We solve Eq (2) on a regular tetrahedral finite element mesh which spans O, a square

domain large enough to contain all the cell centres. We fix ω = ω1 at any nodes of the mesh

which lie outside the spheroid.

Tumour cell phenotypes

While microbeads do not consume oxygen and are unaffected by the oxygen concentration,

the phenotype of tumour cells depends on their local oxygen concentration. We distinguish

four types of tumour cell behaviour by introducing the following phenotypes (see Fig 1):

• A tumour cell is proliferative if its local oxygen concentration exceeds a threshold value, ωq.

• If ω(x, t)� ωq, then the cell becomes quiescent and immediately pauses its cell cycle. If ω
increases above ωq then the cell immediately becomes proliferative and resumes its cell cycle.

• If the oxygen concentration falls below a second, hypoxic threshold, 0� ωh� ωq, then the

cell immediately becomes hypoxic. A hypoxic cell can re-enter the quiescent compartment if

its oxygen concentration rises back above ωh. However, if a cell remains hypoxic for suffi-

ciently long (~t i hours) then it will irreversibly become necrotic [55].

• A necrotic cell is dead, and no longer consumes oxygen. Necrotic cells continue to occupy

space for approximately �t hours before being removed from the simulation.

We also simulate cells labelled with tritiated thymidine (3H-labelled cells) to replicate exper-

imental results from Dorie et al. [46] (see Supporting Information, S5 Appendix: Replication

of 3H-labelled cells experiments). In this model 3H-labelled cells are assumed to behave in

the same way as other tumour cells. They adopt the same phenotypes as unlabelled cells in

response to local environmental cues. The only difference between 3H-labelled cells and other

tumour cells is the presence of a label which which is passed on to their daughter cells, enabling

their lineage to be tracked.

Tumour cell proliferation and death

For each individual cell i, proliferation and death are determined by two subcellular dependent

variables: the cell cycle time denoted by Ti, which tracks a cell’s progress through the cell cycle,

and the hypoxia time denoted by ~Ti which determines whether a cell is sufficiently hypoxic to

become necrotic. These internal timers move at a rate which depends on the local oxygen

spring forces due to interactions with their neighbours, a random force which represents local fluctuations in the cell environment,

and a drag force which resists cell movement. Boundary nodes also experience a surface tension force which is directed inwards,

towards the spheroid centroid, and which resists spheroid expansion. D: Flowchart summarising how the ABM is updated on each

timestep—see main text and Supporting Information, S2 Appendix: Algorithm for updating the cell cycle, for details.

https://doi.org/10.1371/journal.pcbi.1007961.g001

PLOS COMPUTATIONAL BIOLOGY Mathematical modelling reveals cellular dynamics within tumour spheroids

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007961 August 18, 2020 7 / 25

https://doi.org/10.1371/journal.pcbi.1007961.g001
https://doi.org/10.1371/journal.pcbi.1007961


concentration ω(x, t). Pseudocode describing how the cell cycle is updated is presented in the

Supporting Information, S2 Appendix: Algorithm for updating the cell cycle.

Cell proliferation. At birth, the cell cycle time of cell i is initialised such that Ti = 0, and

the cell is assigned a cell cycle duration τi drawn from a uniform distribution U(0.75τ, 1.25τ)
where the parameter τ defines the average cell cycle length. The distribution was chosen to be

sufficiently wide to ensure that cell cycles do not become artificially synchronised over time,

while ensuring that τ remains a good descriptor of the average cell cycle duration. If cell i is at

position x at time t then its cell cycle evolves as follows:

dTi
dt
¼ Hðoðx; tÞ � oqÞ ð3Þ

where ω(x, t) is the local oxygen concentration at time t and location x, H is the Heaviside step

function (Hðo � oqÞ ¼ 1 if ω> ωq; Hðo � oqÞ ¼ 0 otherwise). When ω� ωq, the cell cycle

pauses and the cell remains dormant until either ω increases above the threshold (and progress

through the cell cycle resumes) or the cell becomes necrotic (details of this process are

described in the next section). When Ti = τi, cell division occurs and a daughter cell is placed

half a cell diameter away from the parent cell centre in a randomly chosen direction. Both cells

are assigned new cell cycle durations. Their cell cycle times are reset to 0 and evolve according

to Eq (3). The resting spring length of the new cells is adjusted to account for the reduced size

of the new cells (for details, see the description of the spring force laws below).

Cell death. Hypoxic cells at locations where ω� ωh undergo necrotic cell death if they

remain hypoxic for longer than a threshold time ~t i. In a manner similar to that used to model

cell cycle progress, ~t i is drawn from a uniform distribution Uð0:75 ~t; 1:25 ~tÞ where ~t is the

average duration for which a cell is hypoxic before it becomes necrotic. As for the parameter τ,
the distribution around ~t enables us to account for stochastic fluctuations in cell properties

and also to suppress the emergence of artificial oscillations in the number of necrotic cells

caused by multiple cells simultaneously becoming necrotic.

Each cell is assigned an internal hypoxia time, ~Ti , which progresses when a cell is hypoxic

and evolves as follows:

d ~Ti
dt
¼ Hðoh � oðx; tÞÞ; ð4Þ

with ~Ti ¼ 0 at the onset of hypoxia. If the cell moves or the oxygen distribution changes so

that ω(xi, t)> ωh then we set ~Ti ¼ 0, indicating that the cell has received sufficient nutrient to

prevent cell death. A cell becomes necrotic when ~Ti ¼ ~t i. It is then irreversibly marked for cell

death. Once a tumour cell has become necrotic, it is no longer viable and no longer progresses

through the cell cycle. It continues to occupy space, but reduces in size until it is removed

from the simulation over a period of �t i hours where �t i is drawn from a uniform distribution

Uð0:75 �t; 1:25 �tÞ and �t is the average duration of necrosis. As with the cell cycle duration and

the time threshold which triggers necrosis, the range of this distribution is estimated and

reflects variation in the process of cell degradation. Details on how size reduction is imple-

mented are included below.

Force balance

We use Newton’s second law to derive the equations of motion for cells and microbeads. In

the over-damped limit, we neglect inertial effects and obtain the following force balances for
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cell i and microbead j respectively:

n
dxi

dt
¼ Fm

i þ Fr
i þ Fs

i ; ð5Þ

n
dxj

dt
¼ Fm

j þ Fr
j : ð6Þ

In Eqs (5) and (6) we assume that the drag forces on cell i and microbead j are proportional to

their velocities, the constant ν denoting the drag coefficient. We denote the mechanical force

by Fmi , random forces by Fri , and surface tension forces by Fsi . Mechanical and random forces

act on cells and microbeads, whereas surface tension forces only act on cells. Functional forms

for these forces are introduced below.

The timestep dt used to generate numerical solutions is taken to be 1/120 of a dimensionless

time unit, which is equivalent to 30 seconds (see Supporting Information, S7 Appendix:

Table of parameters).

Mechanical forces, Fm
i (cells and microbeads.)

The mechanical spring force acting on a cell or microbead is the net force exerted on it by its

neighbours. We assume that cells/microbeads i and j only interact if the distance between their

centres is less than a fixed value, Rint. In more detail, and following the overlapping sphere

approach outlined in [32, 33, 56, 57], if |xi − xj|< Rint then the interaction force between cells/

microbeads i and j is parallel to the vector xi − xj connecting their centres. The magnitude of

the force depends on the sizes of the cells/microbeads and the distance between them. While

agents in this model are represented as points, each point has an associated size which is imple-

mented by adjusting the resting spring lengths for each cell/microbead. The resting spring

length between two nodes, si,j, is the sum of the equilibrium springs for each cell (si,j = si + sj).
For most cells i, si = RCell is a constant which is approximately equal to the radius of a cell. For

newborn and necrotic cells, cell growth or shrinkage may mean that si< RCell. These processes

are described below.

If the distance between the cell centres of cells i and j is greater than si,j then the cells experi-

ence an attractive force representing intercellular adhesion, but if the distance is less than si,j
then the force is instead repulsive and models volume exclusion. The net force acting on a cell

or microbead i at location xi due to mechanical forces is the sum of the contributions over all

cells and microbeads j within radius Rint:

Fm
i ¼

X

fj j jxi � xjj�Rintg

Fm
i;j: ð7Þ

where Fmi;j is the mechanical force between cells i and j. This force always points in the direction

of the vector between the cells. The magnitude of Fmi;j is defined as follows:

jFmi;jj ¼
msi;j log ð1þ x

si;j
Þ if x < 0 ðRepulsiveÞ

mxsi;j exp ð� l x
si;j
Þ if x � 0 ðAdhesiveÞ

8
<

:
ð8Þ

where x = |xi − xj| − si,j is the overlap between cells i and j, the parameter μ represents the

spring stiffness and the parameter λ determines the strength of intercellular adhesion between

neighbouring cells. A sketch showing how jFmi;jj changes as x varies is shown in the Supporting

Information, S1 Appendix: Spring force magnitude. The adhesive force defined in Eq (8)

grows stronger as the cell centres draw closer, since more intercellular bonds form as the sur-

face area of contact between the cells increases [32, 58].
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Inert microbeads also interact with neighbouring cells and microbeads. Since microbeads

do not adhere to each other we modify the mechanical force described in Eq (8) when i and j
are both microbeads as follows:

jFm
i;jj ¼

mbeadsi;j log ð1þ x
si;j
Þ if x < 0

0 if x � 0

:

8
<

:
ð9Þ

where μbead is the spring stiffness associated with microbeads. Beads therefore resist being

compressed, but do not adhere to other beads.

With the exception of newly divided cells and necrotic cells, we assume that si = RCell for

cells and microbeads (as the radius of a microbead is comparable to that of a cell). For conve-

nience, we rescale lengths according to this lengthscale, assuming that 1 cell diameter = 2RCell

= 20μm. When a cell divides, the radius of the new cells is set to si ¼
RCell

2
and increases linearly

over the course of one hour until si = RCell. For necrotic cells, si decreases linearly over the

course of �t i hours until it reaches 0 and the cell is removed from the simulation. The associated

spring constant of springs attached to a necrotic cell is reduced linearly at the same rate, repre-

senting a weakening intercellular force between a necrotic cell and neighbouring cells as the

necrotic cell degrades. These reductions in cell size are incorporated in the pseudocode in the

Supporting Information, S2 Appendix: Algorithm for updating the cell cycle.

Random forces, Fr
i (cells and microbeads)

We assume that cells and microbeads experience random forces due to heterogeneity in the

surrounding environment and that the random force, Fri ¼ ðF
r
x; F

r
yÞ, acting on cell/microbead i

during the timestep dt is given by:

Fri ¼
ffiffiffiffiffiffiffiffiffiffi
2Ddt
p

x: ð10Þ

In Eq (10), D is a diffusion coefficient and ξ = (ξx, ξy) where ξx and ξy are random variables

drawn from a standard normal distribution.

Surface tension forces, Fs
i (boundary cells only)

Cells on the spheroid boundary experience a force, Fsi , of the form

Fsi ¼ � bx̂ i; ð11Þ

where x̂ i is a unit vector pointing in the direction of the line connecting cell i on the boundary

with the spheroid centroid, and the parameter β determines the strength of the surface tension

force. We define boundary cells as those which belong to the α-shape of the set of cell centres,

where α = RCell [59]. α-shapes generalise the concept of a convex hull to permit concave

boundaries, and can be understood as the set of points which make contact with a ball of

radius α rolled around the edge of the spheroid.

Simulations

We use our ABM to perform three types of simulations: (i) growth of a tumour spheroid, (ii)

microbead infiltration into a well-developed tumour spheroid, and (iii) infiltration of 3H-

labelled cells into a well-developed tumour spheroid (see Supporting Information, S5 Appendix:

Replication of 3H-labelled cells experiments).

Simulations of spheroid growth are initialised by uniformly distributing 300 cells in a circle

of radius 5 cell diameters. The cells are then are allowed to grow for 300 hours, which is suffi-

cient for them to attain a steady state for most parameter regimes examined here. At the start

of each simulation, all cells are randomly assigned a cell cycle time Ti from a uniform
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distribution U(0, 0.75τ). This ensures that the cell cycles are not synchronised. When perform-

ing parameter sensitivity analyses, three model parameters were varied: the average cell cycle

length, τ, the oxygen threshold for quiescence, ωq, and the oxygen threshold for hypoxia, ωh.

We focus on these parameters as they have a significant effect on tumour spheroid composi-

tion, and are known to vary between different tumour cell lines.

For microbead infiltration simulations, 100 microbeads were distributed randomly around

the spheroid edge after 300 hours, and the simulation allowed to evolve for a further 100

hours, reproducing the conditions under which Dorie et al. [46] tracked microbeads experi-

mentally. For 3H-labelled cell experiments, 50 cells on the spheroid boundary were randomly

selected after 300 hours and marked with a label which was transmitted on cell division but

did not affect cell behaviour.

For details regarding the parameter values used here, we refer the reader to the Supporting

Information, S7 Appendix: Table of parameters. Throughout this paper, when estimates of

simulated tumour cell phenotype compartment widths are stated for a particular simulation

realisation, this width is calculated as the difference in radial distance from the spheroid cen-

troid between the innermost and outermost cells with that phenotype.

Units and non-dimensionalisation

We refer to non-dimensionalised times, distances and concentrations. Lengths are non-

dimensionalised with the diameter of a cell, so a dimensionless distance of 1.0 corresponds to

approximately 20 μm. Times are rescaled so one dimensionless time unit corresponds to 1

hour. Concentrations are rescaled with the externally-supplied concentration of oxygen, so a

dimensionless concentration of 1.0 equates to approximately 3.298 × 10−6 m3 kg−1 in dimen-

sional units (using Henry’s law to convert from partial pressure to concentration and following

[12, 60]).

Results

We use our hybrid agent-based model to simulate tumour spheroids whose growth dynamics

and spatial structure replicate those of spheroids cultured in vitro. We first demonstrate that

this model reproduces the sigmoidal growth curves observed in in vitro experiments. we then

show that when microbeads are added to the in silico spheroids their infiltration patterns are

qualitatively similar to those described by Dorie et al. [46]. By performing a systematic param-

eter sensitivity analysis, we show how varying the oxygen thresholds ωq and ωh and the average

cell cycle length τ can generate in silico tumour spheroids with similar growth dynamics and

different spatial compositions. Finally, we demonstrate that resolving the trajectories of indi-

vidual microbeads within our agent-based model provides sufficient information to predict

spheroid composition and infer certain model parameter values.

Model Validation

We first show that our ABM qualitatively reproduces the dynamics and changing spatial struc-

ture that characterises spheroid growth in vitro. Four parameters relating to the proliferation

and death rates of tumour cells were varied: the oxygen thresholds at which cells become quies-

cent or hypoxic, ωq and ωh, the average cell cycle duration τ and the average duration of hyp-

oxia before cell death, ~t (ranges given in Supporting Information, S7 Appendix: Table of

parameters). Typical simulation results generated using representative parameter values (ωq =

0.5, ωh = 0.3, τ = 16, ~t ¼ 8) are presented in Fig 2. We observe a short burn-in period of

approximately 2-4 hours, during which the cells move from their initial positions to form a
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densely packed spheroid. Thereafter the tumour radius grows rapidly, slowing when nutrient

levels at its centre become too low to support cell proliferation, and saturating when the rate at

which nutrient-rich cells proliferate balances the rate at which necrotic cells are degraded [3].

For the parameter values chosen here, the tumour reached its steady state approximately 150

Fig 2. Model validation I: reproducing spheroid growth dynamics. A: Saturating growth curve for one representative parameter set

(Parameters: ωq = 0.5, ωh = 0.3, τ = 16, ~t ¼ 8) showing total spheroid radius over time (mean and standard deviation of 40 realisations). The

spheroid radius decreases during an initial burn in period as cells relax from their initial positions to form a densely packed cluster of cells,

highlighted in red (t = 0 to t = 4). After this burn in period, the simulations show initial rapid growth followed by growth saturation when

spheroid size is sufficiently large. B: Simulation snapshots showing the spheroid composition after 24, 72 and 240 hours for the parameter set in

A. Times of snapshots are marked with a dashed line in A. During the rapid growth phase the spheroid consists primarily of proliferative and

quiescent cells, and the reduction in spheroid growth rate is associated with the formation of the necrotic core.

https://doi.org/10.1371/journal.pcbi.1007961.g002
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hours after beginning the simulation, with a steady state radius comparable to those observed

in the experiments by Dorie et al. [46].

Fig 3 demonstrates that the model reproduces the qualitative behaviour of the radial distri-

bution of infiltrating microbeads which was observed in [46]. These distributions resemble a

wave which becomes increasingly dispersed as it moves radially inwards from the spheroid

edge. The parameter values used in Fig 3 (ωq = 0.7, ωh = 0.1, τ = 8, ~t ¼ 16) were chosen to pro-

duce a distribution which matches that described in [46]. We remark that spheroids generated

using different parameter values may produce microbead distributions which are not visually

distinguishable (see Supporting Information, S4 Appendix: Microbead infiltration histograms

for other parameter combinations). In addition to reproducing the dynamics of infiltrating

microbeads in the experimental data described in [46], this model can also reproduce the

observed distributions of 3H-labelled cells (see Supporting Information, S5 Appendix: Replica-

tion of 3H-labelled cells experiments). In particular, we note that, as for microbead infiltration

patterns, 3H-labelled cell infiltration patterns are strongly affected by variation of the parame-

ters which control tumour cell proliferation and death. We can identify regimes in which the

distribution of 3H-labelled tumour cells closely resembles that described by Dorie et al. In con-

trast to previous models of 3H-labelled cell infiltration, no additional mechanisms are required

to describe differences in the distributions of 3H-labelled cells and microbeads. Instead, differ-

ences in their distributions can be attributed to proliferation of the 3H-labelled cells which

causes the peak of the distribution to remain localised near the spheroid boundary where oxy-

gen levels and, hence, cell proliferation rates are maximal. (For further details, see Supporting

Information, S5 Appendix: Replication of 3H-labelled cells experiments.)

Spheroids with the same equilibrium size may have different spatial

compositions

We systematically vary three key model parameters: the average cell cycle length, τ, and the

oxygen thresholds for quiescence and hypoxia, ωq and ωh. We focus on these parameters as

they are directly linked with the spheroid growth rate, the proportion of cells which are part of

the proliferative rim, and the rate at which non-proliferating cells undergo cell death. As these

parameters vary, we can generate spheroids which exhibit a range of behaviours (see Fig 4).

Panel A of Fig 4 shows spheroid growth curves for simulations generated from three differ-

ent parameter sets. Each simulated spheroid reaches a steady state radius of approximately 14

cell diameters. Simulations i and ii are both generated with ωq = 0.6, and different values of τ
and ωh. While the cells in Spheroid ii proliferate more often than those in Spheroid i, this effect

is offset by the change in ωh which causes cells in Spheroid ii to become necrotic at higher oxy-

gen levels than those in Spheroid i. This difference can be seen in Fig 4, Panel B, which shows

that Spheroid ii has a more pronounced necrotic core and thinner quiescent region than

Spheroid i.

Similarly, Spheroid i and Spheroid iii have the same average cell cycle length τ = 31.25, but

differ in both ωq and ωh. While ωq has been lowered from ωq = 0.6 to ωq = 0.47, they realise

similar equilibrium sizes because ωh increases from ωh = 0.34 to ωh = 0.42. These parameter

changes cause Spheroid iii to have a thicker proliferating rim and narrower quiescent region

than Spheroid i.

By appropriately tuning the proliferation rate and oxygen thresholds at which cells become

quiescent or die, we can generate synthetic spheroids of the same equilibrium size which pos-

sess different internal compositions. This suggests that spheroid composition cannot be pre-

dicted by observing the overall growth dynamics alone. Panels C and D of Fig 4 show the effect

of varying τ and ωq on the steady state size and composition of tumour spheroids, averaged
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Fig 3. Model validation II: reproducing microbead infiltration patterns. A: Realisations of a typical simulation showing microbead infiltration

(yellow circles) over time. Microbeads were added to the spheroid after 300 simulation hours, and permitted to infiltrate the spheroid for a further 100

hours. Times stated are times after microbeads were added. Tumour cells are coloured according to their phenotype (see Fig 1). Parameter values ωq =

0.7, ωh = 0.1, τ = 8, ~t ¼ 16. B: Frequency histograms showing the experimentally observed distribution of microbeads in spheroids (reproduced from

Fig 7 of Dorie et al. [46]. C: Frequency histograms showing the distribution of microbeads in spheroids generated from this model, averaged over 40

iterations of the parameter set in A. For this parameter set, the distribution of microbeads closely resembles that in Panel B. Histograms showing the

distributions obtained for different parameter sets can be seen in S4 Appendix: Microbead infiltration histograms for other parameter combinations.
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over 50 stochastic repetitions for each parameter combination with ωh = 0.1 (Panel C) or ωh =

0.3 (Panel D). For each fixed value of ωh, lowering ωq causes the proliferating rim to become

wider and the spheroid to become larger. Decreasing the average cell cycle length τ causes the

spheroid radius to increase, but this is due mainly to increases in the hypoxic and necrotic vol-

umes of the spheroid.

Results comparing the model with the 3H-labelled data from [46] can also be found in the Supporting Information, S5 Appendix: Replication of 3H-

labelled cells experiments.

https://doi.org/10.1371/journal.pcbi.1007961.g003

Fig 4. Spheroids with similar growth dynamics can have different compositions. A: Tumour radius over time for three spheroids generated

from different parameter sets which give rise to spheroids with approximately the same steady state radius. B: Snapshots of the simulations in A.

Cells are coloured according to their oxygen concentration and phenotype. By varying the thresholds ωq and ωh, and the growth rate τ, we can

generate spheroids with similar growth dynamics and steady state radii which have different internal compositions. Spheroids i and ii have the

same ωq, but differ in ωh and τ. Spheroids i and iii have the same τ, but differ in ωq and ωh. Spheroid i (blue line) contains a large number of

quiescent cells and has a slow growth rate, but has a low oxygen threshold before cells become hypoxic. Cells in Spheroid ii (yellow line)

proliferate more quickly than in Spheroid i, but since ωh is higher the spheroid has a larger necrotic core at steady state. Spheroid iii (green line)

also has only a narrow quiescent region, but possesses a thicker proliferative rim than spheroid ii. C and D: Average spheroid sizes and

compositions change as ωq and τ vary, averaged over 50 repetitions for each parameter set (with ~t ¼ 8 and ωh = 0.1 (C) or ωh = 0.3 (D)). Scale

bars are 10 cell diameters in length.

https://doi.org/10.1371/journal.pcbi.1007961.g004
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This result indicates that data on tumour size alone are not predictive of tumour composi-

tion. Additional data describing spatial structure and heterogeneity in tumour composition

could improve the predictive power of models, particularly their ability to simulate responses

to treatments such as radiotherapy which affect hypoxic and well-oxygenated cells differently.

Bead trajectories change as spheroid composition and growth dynamics

vary

One advantage of using an agent-based framework rather than a continuum model to simulate

passive infiltration [51–53] is that the trajectories of individual microbeads can be tracked in

addition to the bead distribution (given by the infiltration histograms in Fig 3). We can use

these trajectories to better understand why microbead distributions disperse while travelling

radially inwards, but also to move beyond the original experiments in [46] to use beads to pre-

dict both spheroid composition and parameters associated with individual spheroids.

Panel A of Fig 5 shows the radial trajectory of 15 randomly selected beads from spheroids

simulated with the same parameter set (ωq = 0.5, ωh = 0.3, τ = 16, ~t ¼ 8). Microbeads are

Fig 5. The radial trajectory of individual microbeads correlates with simulation parameters. A: Radial trajectories of 15 beads infiltrating a tumour

spheroid (parameters ωq = 0.5, ωh = 0.3, τ = 16, ~t ¼ 8). Solid black line: approximate radius of tumour spheroid; dashed black line: threshold between

regimes based on estimated microbead Brownian motion coefficientDest (Threshold ¼ 0:9� Spheroidradius �
ffiffiffiffiffiffiffiffiffiffiffi
2Destt

p
, see main text for details).

Trajectories are coloured according to the oxygen concentration at the microbead location. We distinguish two phases of infiltration: beads which have

not crossed the dashed threshold appear to move by Brownian motion, while those which have crossed the threshold move predominantly by

advection. B: Average radial velocity (cell diameters per hour) of infiltrating microbeads within 50 repeats of a representative parameter set for three

values of ωq (parameters ωh = 0.3, τ = 16, ~t ¼ 8). Dashed vertical lines show the mean radial velocity for each distribution. C and D: Plots showing how

the average radial velocity Vr and the waiting time Twait change as τ and ωq vary, for fixed ωh = 0.3 and ~t ¼ 8.

https://doi.org/10.1371/journal.pcbi.1007961.g005

PLOS COMPUTATIONAL BIOLOGY Mathematical modelling reveals cellular dynamics within tumour spheroids

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007961 August 18, 2020 16 / 25

https://doi.org/10.1371/journal.pcbi.1007961.g005
https://doi.org/10.1371/journal.pcbi.1007961


coloured according to the oxygen concentration at their position. Fig 5 shows that microbead

trajectories typically have two distinct phases. Initially, microbeads remain in the proliferating

rim close to the spheroid boundary where their movement is characterised by random move-

ment generated by tumour cell proliferation. During cell division, the new daughter cell is

placed randomly in a neighbourhood of the parent cell. This position may be closer to the

spheroid centre than the parent cell, or closer to the spheroid edge. Since the new location is

selected randomly, the forces which act on a microbead that is close to a dividing cell due to

the presence of the new cell are as likely to push the bead radially inwards or outwards. Since

we expect the forces directed outwards to be comparable with those directed inwards over

time, we expect radial movement in this regime to be dominated by Brownian motion and

neglect movement in the tangential direction in our analysis. On leaving the proliferating

region, the microbeads typically move on a linear trajectory towards the spheroid centre.

Although the time microbeads remain in the proliferative rim varies, once they enter the cen-

tral region they appear to move radially inwards at the same velocity. For each bead i, we define

its radial infiltration velocity, Vi
r, to be its average radial velocity from when the bead enters the

second regime until it reaches the necrotic core. Similarly, its waiting time, Tiwait, is the time

taken for a microbead to leave the outer proliferating rim and to enter the inner region. We

denote the average of these quantities as Vr ¼ 1

n

P
iV

i
r and Twait ¼

1

n

P
iT

i
wait, where n is the

number of beads.

We use observations of the microbead velocities to identify the distance from the spheroid

boundary at which cell movement transitions from Brownian dominated to advection domi-

nated. The velocities from the first 5 hours of simulation are used to estimate Dest, the esti-

mated diffusion coefficient for Brownian motion. The expected displacement of a particle

undergoing 1D Brownian motion for a time t is
ffiffiffiffiffiffiffiffiffiffiffi
2Destt

p
, and we use this distance to estimate

the location of the threshold separating the two regimes. As this value is close to 0 when t is

small, we offset this boundary to ensure that microbeads do not cross this threshold during the

first timestep. If a spheroid has radius R at time t after adding microbeads, we estimate that the

threshold between regimes is Threshold ¼ 0:9R �
ffiffiffiffiffiffiffiffiffiffiffi
2Destt

p
. This estimated boundary is shown

as a dashed black line in Panel A of Fig 5.

Panel B of Fig 5 shows distributions of Vr
i for three different values of ωq (ωh = 0.3, τ = 16,

~t i ¼ 8, 50 simulation repetitions). Each distribution has a clear peak which indicates the pres-

ence of a cellular flow of tumour cells from the proliferative rim of the spheroid towards the

dying cells in the necrotic core with an approximately constant radial velocity. The vertical

dashed lines correspond to Vr for each parameter set. Panel C of Fig 5 shows how Vr varies

with τ and ωq, for randomly sampled combinations of the two parameters with all other

parameters fixed. Beads exhibit a faster inward radial velocity when the average cell cycle is

faster, and also when the threshold for quiescence is low (generating a wider rim of proliferat-

ing cells).

Panel D of Fig 5 shows how varying ωq and τ affects Twait, the mean time that a microbead

spends in the random motion dominated regime. Reducing τ lowers Twait, indicating that bead

movement across this part of the spheroid is driven by cell proliferation. Reducing ωq also

increased the time spent near the spheroid edge for small τ, although this effect is less promi-

nent as τ increases.

Inferring spheroid composition and parameters from microbead

trajectories

Fig 4 shows that spheroid composition is correlated with τ and ωq, while Fig 5 shows that

the same parameters are correlated with Twait and Vr. Motivated by these results, we now
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demonstrate that observations of Twait and Vr can be used to identify features of spheroid com-

position. In panel A of Fig 6 we define the quiescent proportion of the spheroid as the area of

the tumour spheroid (Atotal) occupied by the quiescent compartment (Aq). We use a 2D metric,

as our simulations are in 2D; a similar 1D metric based on the relative widths of the tumour

spheroid and quiescent compartment produces similar results. Panels B and C illustrate that

the quiescent proportion can be estimated accurately by observing Twait and Vr for a given

simulation.

In panel B of Fig 6 we present results from simulations involving a range of spheroids gen-

erated using randomly selected values of ωq and τ. The markers are coloured according to the

quiescent proportion of each simulated spheroid, and are scattered according to the values of

Twait and Vr observed in each simulation. Spheroids with similarly sized quiescent regions are

found close together, suggesting that measurements of individual microbead velocities and

waiting times could be used to predict the composition of a tumour spheroid. The same effect

can be observed for spheroids with similarly sized proliferating, hypoxic and necrotic regions

(see S6 Appendix: Predicting spheroid composition from microbead observations).

We applied a k-nearest neighbours classifier [61] (with k = 10) to predict the composition

of the spheroid based on the observed values of Twait and Vr. The simulations were split into

two groups to use as training and testing data for the classifier (100 data points for training, 48

data points for prediction, shown as circles and crosses respectively in Fig 6, panel B). Panel C

of Fig 6 shows that the predictions of this classifier are accurate, with a high R2 value (R2 =

0.86) indicating that the predictions are well correlated with the true quiescent proportions of

the simulated spheroids in the validation set. Similarly, it is possible to predict the size of the

proliferating, hypoxic and necrotic regions (see S6 Appendix: Predicting spheroid composition

from microbead observations).

As well as predicting the spheroid composition, Twait and Vr can also be used to infer

parameters associated with spheroid growth. Panel D of Fig 6 shows scatterplots in which the

true values of τ and ωq for simulations in the validation dataset are compared with the predic-

tions from the nearest neighbours classifier. Observing the trajectories of individual beads

allows accurate prediction of the average cell cycle length (R2 = 0.88) and oxygen threshold for

quiescence (R2 = 0.85) of simulated tumour cells.

Discussion

We have developed a hybrid, off-lattice ABM for oxygen-limited spheroid growth. Our model

reproduces the sigmoidal growth dynamics seen in in vitro spheroids as well as their spatial

structure, consisting of an outer rim of proliferating cells and a central necrotic core (Fig 2).

Our simulations reveal that it is possible to generate synthetic spheroids with similar growth

dynamics but different spatial compositions of proliferating, quiescent, hypoxic and necrotic

cells (Fig 4). These changes in spheroid composition are driven by variations in cell-scale

behaviours such as the average length of the cell cycle or the oxygen thresholds at which cells

are affected by hypoxia.

The model describes the passive infiltration of microbeads into tumour spheroids and

reproduces the distributions of microbeads described by Dorie et al. [46] (Fig 3). It also repro-

duces the dynamics of infiltrating 3H-labelled cells described in [46], and can explain differ-

ences in the spatial distributions of the microbeads and 3H-labelled cells without invoking

additional mechanisms such as chemotaxis (see Supporting Information, S5 Appendix: Repli-

cation of 3H-labelled cells experiments). In contrast to previous continuum models describing

this data, this model can distinguish the trajectories of individual microbeads. This allows us

to derive experimentally measurable properties of microbead infiltration, Twait and Vr, which
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Fig 6. Observations of Twait and Vr can be used to predict spheroid composition and simulation parameters. A: Schematic showing how the

composition of the spheroid was defined in order to make predictions. The proportion of the spheroid which was quiescent is defined as the

area of the quiescent region, Aq, divided by the total spheroid area Atotal. (Comparable results are obtained when defining the quiescent

proportion of the spheroid as the width of the quiescent annulus divided by the total spheroid radius.) B: Proportion of the spheroid radius

accounted for by the quiescent compartment for simulations with randomly selected ωq and τ (with fixed ωh = 0.3 and ~t ¼ 8). Approximately

two-thirds of the simulations (100 out of 148, marked as circles) were used to train a k-nearest neighbours classifier to predict the composition

of spheroids in the remaining simulations (48 out of 148, marked as crosses). C: Results of using 10-nearest neighbours classification to predict

the proportion of each tumour spheroid which was quiescent based on observed values of Twait and Vr for microbeads in each simulation. D:
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permit accurate prediction of both model parameters and the spheroid composition. Twait

describes the average length of time which a microbead spends close to the spheroid edge, and

correlates with the average length of the cell cycle, τ (Fig 5). Vr is the speed at which microbe-

ads move radially inwards once they have moved sufficiently far from the spheroid boundary

to enter the advection dominated regime inside the spheroid, and correlates with both τ and

the oxygen threshold at which cells become quiescent, ωq (Fig 5). Combinations of Vr and

Twait can be used to accurately predict the values of τ and ωq used to simulate a spheroid (Fig

6), as well as the proportion of the spheroid consisting of proliferating, quiescent, hypoxic or

necrotic cells (Fig 6 and Supporting Information, S6 Appendix: Predicting spheroid composi-

tion from microbead observations).

The model enables detailed simulation of the forces acting on microbeads during passive

migration. In common with other agent-based models, it includes a large number of parame-

ters. The results presented here were obtained by fixing many of the parameters at values speci-

fied in S7 Appendix: Table of parameters. While some of these parameters have been informed

by the literature, this model has identified those that should be informed by further experi-

ments to identify the relationship between spheroid simulations and in vitro spheroids. We

restrict our analysis to 2D tumour spheroids, for several reasons. A single realisation of a 2D

simulation may take several hours to run on one core of a desktop PC; by contrast a 3D simu-

lation of a spheroid containing tens of thousands of cells would take several days to complete.

This computational effort would make it prohibitive to conduct in 3D the parameter sensitivity

analyses performed in this paper, particularly as multiple simulations are required for each

parameter set. Further, the 2D simulations described here are sufficiently detailed to identify

qualitative differences in passive migration patterns as parameters relating to tumour cell pro-

liferation and death are varied. Identifying the relationships between models of tumour spher-

oid growth implemented in 2D or 3D, or implemented within different software frameworks,

remains an open problem.

We note that in the necrotic core of some spheroids observed in in vitro experiments, loss

of volume in dead cells due to fluid leakage can cause “cracking”, or fluid filled voids, when

coupled with intercellular adhesion [62, 63]. While this behaviour has been reported in exist-

ing agent-based models of tumour spheroids [32, 37], we note that for our simulations this

effect is only observed when the magnitude of the surface tension force β is close to zero. As

predicted by Landman and Please [64], spheroids featuring this “void” effect frequently pro-

duce travelling wave solutions which do not reach a steady state when this force resisting

spheroid growth is sufficiently small.

Extensions of our model could include the response of tumour spheroids to treatments

such as radiotherapy or chemotherapy which are most effective at targetting proliferating cells.

Our agent-based model could be used to examine the role that tumour composition plays dur-

ing these therapies, as previous continuum models predict that treatment response is highly

dependent on the internal composition of tumours [12]. Advection has also been identified as

being of importance in models of drug treatment efficiency (e.g., [49, 50]). Advection-diffusion

equations have also been used to model the growth of vascular tumours [65], and the develop-

ment of tumour metastasis [66].

This model could also be extended to investigate tumour-immune interactions in which

immune cells, such as macrophages, infiltrate into clusters of tumour cells. Previous contin-

uum models of macrophage infiltration into tumour spheroids and avascular tumours

Comparison of parameter values for (left) τ and (right) ωq based on 10-nearest neighbours classification with the values used to generate the

synthetic data.

https://doi.org/10.1371/journal.pcbi.1007961.g006
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emphasise the role of chemotaxis [67–71] or paracrine signalling [72, 73]. However, to date the

influence of passive migration on the infiltration of immune cells into spheroids and avascular

tumours has not been considered. Much focus has been placed on the impact that immune

cells have on tumour cells, but the impact of solid tumours on the spatial distributions of

immune cells has attracted less attention.

In future work we could also extend the model to account for other metabolites and waste

products which impact tumour spheroid growth, such as glucose, lactate and pH levels [21].

These model extensions could be used to simulate tumour responses to metabolic inhibitors or

treatments that are affected by pH.

We have used an agent-based framework to simulate passive migration into tumour spher-

oids. This migration is caused by the collective movement of tumour cells, which is itself a

consequence of the spatial composition of a tumour spheroid. This model shows that passive

migration is strongly influenced by spheroid composition, and shows how microbead infiltra-

tion experiments similar to those conducted by Dorie et al. [46] could be used to deduce this

composition.
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