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Abstract
Objective
To investigate the genotype–phenotype correlation between neurofibromatosis 1 (NF1)
germline mutations and imaging features of neurofibromas on whole-body MRI (WBMRI) by
using radiomics image analysis techniques.

Materials and methods
Twenty-nine patients with NF1 who had known germline mutations determined by targeted
next-generation sequencing were selected from a previous WBMRI study using coronal short
tau inversion recovery sequence. Each tumor was segmented inWBMRI and a set of 59 imaging
features was calculated using our in-house volumetric image analysis platform, 3DQI. A
radiomics heatmap of 59 imaging features was analyzed to investigate the per-tumor and per-
patient associations between the imaging features and mutation domains and mutation types.
Linear mixed-effect models and one-way analysis of variance tests were performed to assess the
similarity of tumor imaging features within mutation groups, between mutation groups, and
between randomly selected groups.

Results
A total of 218 neurofibromas (97 discrete neurofibromas and 121 plexiform neurofibromas)
were identified in 19 of the 29 patients. The unsupervised hierarchical clustering in heatmap
analysis revealed 6 major image feature patterns that were significantly correlated with gene
mutation domains and types with strong to very strong associations of genotype–phenotype
correlations in both per-tumor and per-patient studies (p < 0.05, Cramer V > 0.5), whereas
tumor size and locations showed no correlations with imaging features (p = 0.79 and p = 0.42,
respectively). The statistical analyses revealed that the number of significantly different features
(SDFs) within mutation groups were significantly lower than those between mutation groups
(mutation domains: 10.9 ± 9.5% vs 31.9 ± 23.8% and mutation types: 31.8 ± 30.7% vs 52.6 ±
29.3%). The first and second quartile p values of within-patient groups were more than 2 times
higher than those between-patient groups. However, the numbers of SDFs between randomly
selected groups were much lower (approximately 5.2%).

Conclusion
This preliminary study identified the NF1 radiogenomics linkage between NF1 causative
mutations and MRI radiomic features, i.e., the correlation between NF1 genotype and imaging
phenotype on WBMRI.
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Neurofibromatosis 1 (NF1) is an autosomal dominant neuro-
genetic disorder caused by mutations in the NF1 gene, located
on the long (q) arm of chromosome 17, at band 11.2
(17q11.2).1 To date, 3,329 different NF1 mutations have been
reported in theHumanGeneMutationDatabase,2 ranging from
single nucleotide substitutions to large deletions.3 NF1 is the
most common neurologic tumor suppressor syndrome, with
a birth incidence of approximately 1:3,000–1:5,000.4–6 The
diagnosis of NF1 is made mainly via a set of clinical criteria7,8 or
via genetic testing.9 NF1 is characterized by a predisposition to
develop neurofibromas, the hallmark lesion of the disease,
which is a benign nerve sheath tumor composed of Schwann
cells, fibroblasts, mast cells, perineurial cells, and collagen.10,11

Pathologically, neurofibromas are classified as discrete neurofi-
broma (DN: involving a single nerve fascicle) or plexiform
neurofibroma (PN: involving multiple nerve fascicles).12

MRI using short tau inversion recovery (STIR) sequence has
emerged as the core imagingmodality for detecting nerve sheath
tumors in patients with NF1.13 Whole-body MRI (WBMRI)
with volumetric imaging analysis provides a quantitative imaging
biomarker for reliablemeasurements of tumor burden in patients
with NF1. These quantitative measurements are essential for
monitoring of tumor progression,14–16 detection of malignant
transformation,17 planning of surgical or oncologic treatments,
and assessment of tumor response to treatments.8

Radiomics is an innovative image analysis technique used for
comprehensive assessment of tumor imaging phenotypes by
applying a large number of quantitative imaging biomarkers that
describe the imaging characteristics of tumors such as signal
intensity (e.g., high or low signal), heterogeneity (e.g., homo-
geneous or heterogeneous), as well as shapes (e.g., round or
spiculated). The identification of the linkage of tumor imaging
phenotypes to the underlying genomic composition of the tu-
mor is termed radiogenomics.18 The underlying hypothesis of
radiogenomics is that genomic and proteomic patterns can be
expressed in terms of macroscopic imaging features (radio-
mics).19 This hypothesis has been sustained by prior studies in
glioblastoma, hepatocarcinoma, and cancers of the lung, head
and neck, and breast using both CT and MRI.20–25 However,
little is known to date regarding the existence of radiogenomics
in NF1, i.e., the correlation between NF1 causative mutations
and imaging characteristics of neurofibromas on WBMRI.

The objective of this study was to investigate NF1 radio-
genomics, i.e., the genotype–phenotype correlation between

NF1 gene mutations and imaging features of neurofibromas
on WBMRI, by using radiomics image analysis techniques.

Methods
Standard protocol approvals, registrations,
and patient consents
Study patients were selected from a previous WBMRI study
performed at our institution, and full informed consent and
assent according to the Declaration of Helsinki was obtained
from each patient for the original prospective study. Our in-
stitutional review board approved this retrospective Health
Insurance Portability and Accountability Act–compliant data
analysis study, in which informed consent was waived, but
patient confidentiality was protected.

Patient cohort
The initial WBMRI study from which this study was derived
was a convenience sample of 247 patients in our NF clinic,
141 of whom had NF1. Among those 141 patients with NF1,
40 patients provided consent and blood sample for genetic
testing. Inclusion criteria for this study were age ≥18 years,
a confirmed pathogenic mutation of NF1, and identified
neurofibromas on coronal STIR sequence in WBMRI.

NF1 mutation analysis
NF1 gene mutation was identified in DNA extracted from the
immortalized lymphoblasts of each patient using a PureGene
DNA isolation kit (Gentra Systems,Minneapolis,MN). Targeted
next-generation sequencing (NGS)was utilized for analysis of the
entire NF1 gene sequence. The sequence reads were mapped to
human reference genome GRCh37 (v.71) using Burrows-
Wheeler Aligner tool (v.0.7.5a-r418).26 NF1 gene mutations
were identified following the best practices workflow of the Ge-
nome Analysis Toolkit (v. 3.1.1),27 and identifiedmutations were
further annotated by ANNOVAR (v.02-01-2016).28

In terms of neurofibromin protein domains related to different
biochemical functions,29 we segmented the NF1 mutation
fragments into 5mutation domains (MDs), as shown in figure 1,
andmapped the specificmutation locations tomutation domain.

c MD-1: aminoacid (AA) 1-542 including the N-terminal
c MD-2: AA543-1197 including the cysteine/serine-rich

domain (CSRD) and the tubulin-binding domain (Tub)
c MD-3: AA1198-1530 including the GTPase activating

domain (GAP), which binds Ras

Glossary
AA = aminoacid; CSRD = cysteine/serine-rich domain; CTD = C-terminal domain; DN = discrete neurofibroma; GAP =
GTPase activating domain; GLCM = gray level co-occurrence matrix; MD = mutation domain; MT = mutation type; NF1 =
neurofibromatosis 1;NGS = next-generation sequencing; PH = pleckstrin homology; PN = plexiform neurofibroma; RL = run-
length; SBD = syndecan-binding domain; SDF = significant different feature; SMOTE = synthetic minority over-sampling
technique; STIR = short tau inversion recovery; Tub = tubulin-binding domain; WBMRI = whole-body MRI.
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c MD-4: AA1531-1816 including the Sec14-like/pleckstrin
homology (PH)–like domain (Sec14/PH)

c MD-5: AA1817-2818 including the C-terminal domain
(CTD) and the syndecan-binding domain (SBD)

WBMRI acquisition
Each patient underwentWBMRI using a coronal STIR sequence
(inversion time 150 ms, relaxation time 4,190 ms, echo time 111
ms, slice thickness 10 mm, no interslice gap, field of view
500mm, echo train 25, matrix 320 × 240, 5 imaging stations) on
a 1.5T MRI scanner (Siemens Medical Systems, Malvern, PA)
with use of the integrated body coil and no IV contrast.15

Image analysis
Tumor volumetric image analysis was performed on our in-
house volumetric image analysis software platform, 3DQI
(3dqi.mgh.harvard.edu/Project/Intro), which was developed
based on open-source packages including Qt (V4.8.4), VTK
(V5.10.1), ITK (V5.10), DCMTK (v3.6), and R (V3.3). The
3DQI platform consists of 3 major components for radiomics
analysis: image segmentation tool for segmentation of tumors,
feature extraction tool for calculation of tumor image texture
features, and texture analysis tool for performing radiomics
analysis including data visualization, statistical analysis, and
machine-learning classification of extracted image features.

Each neurofibroma was identified and segmented by the
consensus of a board-certified radiologist and an image ana-
lyst, who were both blinded to the mutation data at this stage.
Whole-body tumor burden was determined by recording the
number, body location, tumor type (DN vs PN), and volume
(contours) of individual tumors for each patient. Tumor type
was defined in terms of the radiologic appearance; pathologic
diagnosis was not required. After completion of tumor seg-
mentation, mutation data became visible to the image analyst,
who calculated tumor imaging features and linked with the
mutation data for the further radiomics analysis of the study.

For the analysis of image phenotypes of a tumor, we calcu-
lated a total of 59 volumetric imaging features for each tumor
region segmented. These imaging features were categorized
into 6 groups representing the histogram statistics features,
image gradient features, run-length (RL) texture features, gray
level co-occurrence matrix (GLCM) texture features, shape-
based features, and second-order moment features.

c Histogram features: The histogram of a tumor region was
constructed using 200 bins with bin size of 4. The
histogram was normalized in terms of the size of the
tumor (the number of voxels). A set of 14 histogram
statistics features such as mean, SD, skewness, kurtosis,
energy, and entropy was calculated.30

c Image gradient features: The 3D image gradient was
calculated using a Gaussian convolution with an SD σ of
1.5 of voxel size. Themean and SD of the gradients within
a tumor region were calculated.

c RL texture features: 11 RL textures were derived from an
RL matrix characterizing the image coarseness, where an
RL matrix p(i;j) is defined as the number of runs with
pixels of gray level i and run length j. The number of RL
bins was set to 200. Fine textures tend to contain more
short runs whereas coarse textures havemore long runs.30

c GLCM texture features: 22 GLCM textures were
extracted from a GLCM describing the gray-level spatial
dependence, where a GLCM is created by calculating
how often pairs of pixels with specific values and in
a specified spatial relationship occur in an image.31 The
number of GLCM bins was set to 200.

c Shape-based features: 7 shape features were calculated,
depicting the spatial shape of a tumor such as sphericity
and compactness.32,33

c Second-order moment features: 3 second-order central-
moment invariants J1, J2, and J3 describing the stretched/
shrunk factors of a tumor along derivatives were calculated.34

The above 59 imaging features composed the image phenotypes
(radiomics) of NF1 represented by a large vector that charac-
terizes the signal intensity features and shape features of each
segmented tumor. No preprocessing such as noise reduction
was applied while we calculated the imaging features, for pres-
ervation of the original image phenotypes.18 We have observed
that the STIR sequence may have different signal intensity
ranges from different vendors’ scanners. The STIR signal in-
tensity of interest in this study was set between 100 and 900,
which covers the range of STIR signal intensity of NF. Voxels
below 100 were removed to prevent background voxels in tu-
mor segmentation, while those above 900 were rounded to 900.

For visualization of imaging features calculated, we used the
heatmap tool, which is a data visualization technique for gene
expression analysis,35 and is well accepted as one of the main

Figure 1 Five NF1 mutation domains (MDs)

In terms of protein domains, neurofibromatosis 1 mutations are grouped into 5 mutation domains. CSRD = cysteine/serine-rich domain; CTD = C-terminal
domain; GAP = GTPase activating domain; N-term = N-terminal; SBD = syndecan-binding domain; Sec14/PH = Sec14-like/pleckstrin homology–like domain;
Tub = tubulin-binding domain.
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analysis tools for high-dimensional genomic data and other
-omics data. A heatmap may also be combined with clustering
methods that group genes together based on the similarity of
their gene expression patterns.36 This analysis tool can be very
effective for identifying genes that are commonly regulated, or
biological signatures associated with a particular condition
(e.g., a disease or an environmental condition).37

To identify NF1 image feature patterns on WBMRI, we con-
structed the radiomics heatmap by using the complex heatmap
method.38 In the radiomics heatmap, data are displayed in
a grid where each row represents a radiomic feature (i.e., 1 of
the 59 imaging features calculated) and each column represents
a radiomic sample of an NF1 lesion. The color and intensity of
a box represents the Z score (not absolute value) of a radiomic
feature, which is the number of SDs away from the mean value
of a radiomic feature.Z score can be used to determine whether
a radiomic feature is upregulated or downregulated relative to
all other tumor samples. To group similar feature patterns and
similar Z score values, we applied unsupervised hierarchi-
cal clustering using Euclidean distance and complete-linkage

criteria39 of the above 59 imaging features across all resampled
lesion features per tumor or per patient to reorder both col-
umns (radiomics patterns) and rows (radiomics values) in the
heatmap. Consequently, similar imaging features were clus-
tered together to form one feature pattern, which represented
the underlyingWBMRI radiomics pattern shared by a group of
NF1 lesions. The per-tumor and per-patient genotype dis-
tributions within each feature cluster were calculated to identify
the NF1 radiogenomics, i.e., the association between the NF1
genotype and image phenotype on WBMRI. To assess the
association between genotype and phenotype, we conducted 3
statistical tests to determine whether tumor radiomic features
within the same groups of mutation domains or types are more
similar than those between groups with and without mutation.
One-way analysis of variance test was performed to evaluate
whether a feature is significantly different in terms of the null
hypothesis H0: there is no difference for the feature between 2
groups of samples. This null hypothesis was rejected when
p < 0.05 and we claimed that this feature was significantly
different between 2 groups, i.e., a significant different fea-
ture (SDF).

Figure 2 Volumetric image analysis of whole-body MRI

Volumetric imageanalysisofpatient12 (a27-year-oldmanwithneurofibromatosis 1 [NFl]) imagedbywhole-bodyMRIusing short tau inversion recoverysequence. (A)
3Dmaximum intensity projection image of coronal view. (B)One coronal slicewith segmentedNFl lesionsmarkedby red contours. (C) 3D volume-rendering imageof
all segmented NFl lesions: green is discrete neurofibroma (DN); red is plexiform neurofibroma (PN). (D) Detail view of the segmented DNmarked green in C) and its
color-coded bar of radiomics samples. (E) Detail view of the segmented PN (marked red in C) and its color-coded bar of radiomics samples.
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Test 1: Within-group similarity test
Patients were divided into groups by 5 mutation domains
(MD-1 through MD-5) and also by 4 mutation types (MT-1
throughMT-4). There was an average of 10 tumors per patient.
Within eachmutation type ormutation domain, we sampled 10
tumors per patient at random with replacement using the
synthetic minority over-sampling technique (SMOTE)
method.40 A one-way analysis of variance model was fit with
patient ID as a fixed factor for each radiomic feature in each of
the 9 data groups corresponding to the mutation domain and
mutation type. The F test for significance of patient ID was
used to test whether a feature was an SDF between patients
within a data subset. Patient ID was treated as a fixed effect,
rather than a random effect, because the number of patients per
data subset was small (between 2 and 5).

Test 2: Between-group similarity test
For each mutation domain or mutation type, patients were
divided into those with and without the mutation. The
SMOTE method was used as above to balance the number of
tumors in each group, resampling 50 tumors per group. For
each radiomic feature, a linear mixed-effect model was fit with
presence of mutation as a fixed effect and patient ID as
a random effect. The test of significance of presence of mu-
tation was used to test whether a feature is an SDF between
patients with and without the mutation.

Test 3: Between-random-group similarity test
We performed a random permutation test to estimate the
similarity of tumor radiomic features in the study cohort. First,
all tumors in each of 5 mutation domains or 4 mutation types
were resampled using the SMOTEmethod to have 50 tumors.
We then randomly permuted the label, which associated
presence or absence of mutation. We then performed the
between-group similarity analysis as described above for test
2. This permutation test was replicated 1,000 times.

Statistical analysis
To identify genotype–phenotype correlations, a χ2 test fol-
lowed by a Cramer V test was performed to evaluate the
significance and the strength of association between the im-
aging feature clusters and the genomic properties, e.g., the
tumor gene mutation domains and types, in both per-tumor
and per-patient heatmaps. The null hypothesis was that the
clustering of the tumor radiomics features is independent of
their genomics properties. We estimated the p value, the χ2

value, the degrees of freedom, and the effect size Cramer V
value for measures of statistical associations. A p value less
than 0.05 rejects the null hypothesis and indicates a statisti-
cally significant association between radiomics feature clusters
and genomics data. A Cramer V of <0.20, 0.20–0.40,
0.40–0.60, or >0.60 indicates weak, moderate, strong, and
very strong association, respectively.

Figure 3 Per-tumor radiomics heatmap

Radiomics heatmap generated by unsupervised hierarchical clustering of 59 imaging features (Y axis) across 218 identified neurofibromatosis 1 (NFl) lesions
on X-axis revealed 6major image feature patterns. The corresponding NFl mutation gene domain, mutation type, and patient ID that the tumor was derived
from are shown underneath the color bars.
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All statistical analyses were performed by using the open-
source statistical programming language R (V3.3.1) on the
related IDE RStudio (V0.99.903) (rstudio.com/).41

Data availability
Anonymized data will be shared by request from any qualified
investigator: (1) gene sequencing results of 29 patients; (2) the
tumor type and location of 218 neurofibromas identified on
WBMRI in 19 of the 29 patients; (3) theNF1 genemutation and
tumor numbers in 19 of the 29 patients with at least 1 neurofi-
broma identified onWBMRI (doi.org/10.5061/dryad.bd87805).

Results
From 40 tested specimens, 29 patients had confirmed NF1
mutation determined by targetedNGS.Of 29 patients (11male,
18 female; mean age 41 ± 12 years) who had a confirmed
pathogenic mutation in the NF1 gene, 19 patients (8 male, 11
female; mean age 40 ± 12 years) had at least 1 internal neuro-
fibroma reliably identified on WBMRI. No tumors were iden-
tified in the other 10 patients (3 male, 7 female; mean age 42 ±
13 years). There is no statistically significant difference in age (p
= 0.707) or sex (p = 0.694) betweenNF1 pathogenic confirmed
patients with and without tumors identified on WBMRI.

In 19 patients with at least 1 MRI-identified internal neurofi-
broma, the distributions of gene mutation types were splice-site
(n = 5 [26.3%]), nonsense (n = 4 [21.1%]), frameshift (n = 5
[26.3%]), and missense (n = 5 [26.3%]); and the distributions of

mutation domains were MD-1 (n = 3 [15.8%]), MD-2 (n = 5
[26.3%]), MD-3 (n = 3 [15.8%]), MD-4 (n = 2 [10.5%]), and
MD-5 (n = 6 [31.6%]). For the 10 patients without MRI-
identified internal neurofibroma, the distributions of gene muta-
tion typeswere splice-site (n= 3 [30%]), nonsense (n= 2 [20%]),
frameshift (n = 3 [30%]), and missense (n = 2 [20%]); and the
distributions of mutation domains were MD-1 (n = 1 [10%]),
MD-2 (n= 2 [20%]),MD-3 (n= 2 [20%]),MD-4 (n= 1 [10%]),
and MD-5 (n = 4 [40%]). Comparing the relative frequency
distribution of mutation type/domain in 2 groups who had and
did not have identifiable neurofibromas onWBMRI, we observed
that there were no statistically significant differences (p= 1.00) for
NF1 gene mutation type/domain for these 2 groups of patients.

Volumetric image analysis of NF1 tumors
Of the 19 patients who were both mutation-positive and
WBMRI-positive, a total of 218 neurofibromas (97 DN and 121
PN) were identified. The number of lesions per patient ranged
from1 to 42. Of 218 identified neurofibromas, 56% (121/218) of
lesions were plexiform but these tumors contributed 92% of the
total tumor volume. The median tumor volume was 43.3 mL for
PN and 6.1 mL for DN. Locations of neurofibromas were cate-
gorized into 12 different body regions: head/neck (n = 9), thorax
(n = 41), abdomen (n = 22), pelvis (n = 30), left/right arm (n =
20), left/right leg (n = 72), thorax and left/right arms (n = 8), as
well as pelvis and left/right leg (n = 16). The distributions of gene
mutation types were splice-site (n = 102 [46.8%]), nonsense (n =
8 [3.7%]), frameshift (n = 62 [28.4%]), and missense (n = 46
[21.1%]), and the distributions of mutation domains were MD-1

Figure 4 Per-patient radiomics heatmap

Per-patient radiomics heatmap generated by unsupervised hierarchical clustering of 59 imaging features (Y axis) across 19 patients (X axis) who tested
positive for pathogenic mutation of neurofibromatosis 1 (NFl) and had at least 1 neurofibroma identified on whole-bodyMRI revealed 6major image feature
patterns. The corresponding NFl mutation gene domains and mutation types are shown underneath the color bars.
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(n = 48 [22.0%]), MD-2 (n = 54 [24.8%]), MD-3 (n = 34
[15.6%]), MD-4 (n = 17 [7.8%]), and MD-5 (n = 65 [29.8%]).

Figure 2 demonstrates the results of the volumetric image analysis
of the index patient 12, who had a total of 40 lesions (13 DN, 27
PN). The total tumor volume was 4,116 mL (DN: 148 mL; PN:
3,968mL). For individually segmented tumors, we calculated the
radiomics sample (a set of 59 image features), which is repre-
sented in the color-coded bar displayed at the top of panelsD and
E respectively for the indexed DN and PN in panel C.

Radiogenomics analysis of tumors
and patients
The per-tumor radiomics heatmap of 218 radiomics samples is
shown in figure 3, in which yellow represents upregulated im-
aging features and blue represents downregulated imaging fea-
tures. Six feature clusters (P1–P6) were identified in the
radiomics heatmap by the unsupervised hierarchical clustering of
59 imaging features.We observed that NF1 lesions with the same
mutation domains and mutation types were sorted together by
their image feature patterns. Statistical analysis showed per-tumor
genotype–phenotype correlations between image feature pat-
terns and NF1 mutation type (χ2[15] = 162.25; p < 0.001) and
mutation domain (χ2[20] = 302.15; p < 0.001), respectively. In
addition, we calculated the Cramer V to determine the strengths
of radiomics association between image feature patterns andNF1
mutation type (V = 0.524) and mutation domain (V = 0.650),
respectively. These values of Cramer V indicated a strong to very
strong genotype–phenotype association.

In figure 4, we show the per-patient radiomics heatmap of 19
patients by combining tumor radiomics samples in each patient.

The Fisher exact test revealed p value of 0.0098 (χ2[20] = 55.55)
andCramer V= 0.855 formutation domain and p value of 0.0297
(χ2[15] = 27.23) and Cramer V = 0.691 for mutation type. This
indicated that there is a very strong per-patient genotype–
phenotype association between the NF1 mutation types/
domains and imaging features of tumors on WBMRI. Compar-
ing the per-tumor and the per-patient analysis, the latter may less
affected by the within-patient clustering of tumor characteristics.

Per-tumor classification performance predicting mutation
domains and mutation types is shown in table 1, which was
exported by the 10-fold cross-validation of random forest classi-
fier. In prediction of mutation domains, the classifier shows the
best performance to identify N-term mutation gene fragment
(MD-1) with 98.1% accuracy (98.3% sensitivity and 98.0%
specificity), relatively strong performance for identification of
other mutation domains in terms of accuracy. In terms of sensi-
tivity, we observed strong performance to identify CSRD and
Tub gene fragment (MD-2),GAP (MD-3), andC-term including
CTD and SBD (MD-5), and fair performance to identify Sec14/
PH (MD-4) gene fragments. Inmutation type, the image features
have the best sensitivity to predict the splice-site and frameshift
mutation types with sensitivity and specificity above or around
80%, and fair performance to identify other mutation types.

Figure 5 compares the overall p value distributions of features
in each group of 5 mutation domains and 4 mutation types in
the within-patient similarity test (test 1) and the between-
patient similarity test (test 2). We observed that radiomics
features in 4 out of 5 mutation domains (except MD-2) and 3
out of 4 mutation types (except splice-site) are more similar
within same mutation groups than those between mutation

Table 1 Classification performance of neurofibromatosis 1 radiogenomics

Mutation domain Performance, %

MD-1 MD-2 MD-3 MD-4 MD-5 Sensitivity Specificity Accuracy

MD-1 118a 0 0 0 2 98.3 98.0 98.1

MD-2 0 109a 2 0 9 90.8 99.0 97.2

MD-3 1 1 79a 2 7 87.8 98.2 96.4

MD-4 1 1 4 42a 12 70.0 98.5 95.4

MD-5 6 2 2 5 165a 91.7 92.1 91.9

Mutation type Performance, %

Frameshift Missense Nonsense Splice-site Sensitivity Specificity Accuracy

Frameshift 96a 6 4 14 80.0 85.5 84.1

Missense 14 101a 5 30 67.3 86.3 80.5

Nonsense 29 31 63a 27 42.0 96.5 79.8

Splice-site 7 9 3 131a 87.3 78.5 81.3

The confusionmatrixes exported by the random forest classifier show the per-tumor performance to identify theNF1mutation domains andmutation types
by using image features.
a True-positives.
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groups. In table 2, we list the numbers of SDFs in the within-
patient similarity test (test 1) and the between-patient similarity
test (test 2). The number of SDFs within the same mutation
domains (10.9 ± 9.5%; median 6.8%) and mutation types (31.8
± 30.7%; median 31.8%) (test 1) are much lower than those
between patient groups with and without the corresponding
mutation domains (31.9 ± 23.8%; median 39.0%) and mutation
types (52.6 ± 29.3%; median 56.8%) (test 2). However, the first
and the second quartile p values of within-patient groups (test 1)
were more than 2 times higher than those between-patient
groups (test 2). For instance, the first quartile p valueswere 0.309
± 0.194 (within-patient) versus 0.097 ± 0.142 (between-patient)
for mutation domain, and were 0.115 ± 0.149 (within-patient)
versus 0.028 ± 0.052 (between-patient) for mutation types.

In the between-random-group similarity test (test 3), the
mean numbers of SDFs were 3.04 ± 5.82 (5.2 ± 9.9%, median
1.7%) and 2.98 ± 5.29 (5.1 ± 9.0%, median 1.7%) after 1,000
repeats of the random permutation tests in terms of 5 mu-
tation types or 4 mutation domains, respectively, with no
statistically significant difference (p = 1.0). The number of
SDFs in this between-random-group test (test 3) was signif-
icantly lower than those between groups with and without
mutations (test 2), along with the higher first and second
quartile p values in the between-random-group test, indicating

that the mutation domains or types are associated with un-
derlying radiomics features, i.e., the existence of NF1
phenotype–genotype associations in WBMRI.

Discussion
In this preliminary study, we investigatedNF1 radiogenomics on
WBMRI, in specific,NF1 gene mutation domains, and mutation
types are associated with underlying tumor imaging features,
i.e., theNF1 genotype–phenotype correlation onWBMRI. Both
machine-learning heatmap and statistical tests of feature simi-
larity evidenced the genotype–phenotype correlation.

The term “radiogenomics” refers to the hypothesized re-
lationship between imaging phenotype and disease genotype
or gene expression.19 This hypothesis has been sustained by
prior observational studies on both CT and MRI. Early
studies suggested that imaging-based biomarkers quantifying
tumor heterogeneity were related to tumor angiogenesis and
the growth factor expression of lesions in the breast and the
liver in MRI,42 the gene expression differences and the
overexpression of epidermal growth factor receptor in glio-
blastoma in MRI,20 the different gene modules in hepato-
cellular carcinomas in CT,21 and the nucleotide variations in 5

Table 2 Results of similarity tests

Test 1: similarity within same group of mutations, n (%)
Test 2: similarity between 2 groups with and without
mutation, n (%)

SDF (p < 0.05) p Value 1st quartile p Value 2nd quartile SDF (p < 0.05) p Value 1st quartile p Value 2nd quartile

Mutation domain

MD-1 2 (3.4) 0.560 0.773 23 (39.0) 0.009 0.141

MD-2 15 (25.4) 0.047 0.275 1 (1.7) 0.332 0.603

MD-3 4 (6.8) 0.414 0.535 37 (62.7) 0.002 0.013

MD-4 9 (15.3) 0.223 0.464 9 (15.3) 0.130 0.374

MD-5 2 (3.4) 0.303 0.472 24 (40.7) 0.011 0.135

Mutation type

Frameshift 2 (3.4) 0.134 0.305 26 (44.1) 0.005 0.081

Missense 39 (66.1) 0.001 0.012 41 (69.5) <0.001 <0.001

Nonsense 5 (8.5) 0.319 0.515 48 (81.4) <0.001 <0.001

Splice-site 29 (49.2) 0.006 0.058 9 (15.3) 0.105 0.490

Test 3: Similarity between 2 randomly permuted groups with and without mutation

SDF (p < 0.05) p Value 1st quartile p Value 2nd quartile

Mutation domain 3.0 ± 5.8 (5.2 ± 9.9%) 0.250 0.481

Mutation type 3.0 ± 5.3 (5.1 ± 9.0%) 0.256 0.500

Abbreviation: SDF = significant different feature.
The number of SDFs (p < 0.05) and the first and the second quartile p value in test 1: similarity of tumor radiomic features within same groups of mutations;
test 2: similarity of tumor radiomic features between 2 groups with and without a mutation; test 3: similarity of tumor radiomic features between randomly
permuted 2 groups. Lower numbers of SDFs and higher p values indicate a higher level of similarity, whereas higher numbers of SDFs and lower p values
represent a lower level of similarity.
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genes in renal cell carcinoma.43 Radiogenomics can also
predict prognosis or therapeutic response in patients with
lung or head and neck cancer.18 In a recent study, a combi-
nation of 28 image features was used as a surrogate of mo-
lecular assay to predict disease-specific survival in patients
with clear-cell renal cell carcinoma.44

Little is known regarding NF1 genotype–phenotype correlation.
Certain biological correlations have been established in regard to
the complete deletions ofNF1, which are associated with severe
clinical phenotypes (cognitive defects, body or facial dys-
morphisms, early onset of cutaneous neurofibromas), and
truncating mutations, which are associated with increased risk of
cancers.45 In addition, altered endocrine function has been
reported in associationwithNF1mutation in preliminary clinical
report.46 Notably, few imaging correlative studies have been
conducted to identify NF1 genotype–phenotype correlation. An
early study revealed that higher numbers of plexiform tumors,
larger whole-body internal tumor volume, and younger age are
important risk factors for malignant peripheral nerve sheath
tumors.17 This study investigated the genotype–phenotype
linkage betweenNF1 genemutation and tumor imaging features
on WBMRI using radiomics image analysis techniques.

We employed a set of 59 image features in this study, which
covers a variety of statistical textures and shape features in
image analysis. Instead of using bandpass or spatial filters for
preprocessing of images, we examined these features in their
raw state without any preprocessing or correction. Such raw

imaging features may capture important radiomic and radio-
genomic features in 3D space.18 Although bandpass filters may
remove image noise and are expected to generate less-noisy
images, theymay also induce artifacts or remove important data
when extracting features. In our study, we used 3D texture
analysis based on our volumetric tumor segmentation. 3D
texture analysis is more objective and comprehensive com-
pared to manually contoured 2D regions of interest.

Considering the imbalanced number of tumors per patient,
which may bias our observations due to within-patient clus-
tering artifact, we used the SMOTE resampling method40 to
balance the radiomics sampling number in the statistical
analysis. As a result, larger and less specific regions are trained,
thus paying attention to minority class samples without
causing overfitting and bias in data analysis. In addition, to
account for the within-group and between-group tumor
similarity, we performed 3 feature similarity tests within the
same mutation groups, between different mutation groups,
and between randomly selected groups.

On the other hand, we observed that image feature patterns
showed no correlations with tumor size (volume) (p = 0.79) and
tumor location (p = 0.42), which indicates that the extracted
tumor imaging features on WBMRI are independent from the
body parts and size of NF1 lesions. In addition, we demonstrated
that genotype–phenotype linkage between NF1 gene mutation
and tumor imaging features exists. This indicated that our results
were not biased by the different number and size of lesions in

Figure 5 Color maps of overall p values in the within-patient and between-patient tests

Comparison of the overall p values of features in each group of 5 mutation domains and 4 mutation types. In each comparison group, the upper color bar
shows the p values in the within-patient similarity test (test 1) and the lower color bar corresponds to the between-patient similarity test (test 2).
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each patient. Due to the small number of patients and the rela-
tively large number of mutation types and domains, we were not
able to perform the per-patient machine-learning classification
test using random forest as we did in the per-tumor study.
Overall, the results of both machine-learning and statistical
analysis studies are supportive of the radiogenomics of NF1:
neurofibromas may share underlying imaging features related to
mutation domains and types regardless of their locations and
sizes, as well as specific patients. This also demonstrated that our
results were not biased by image artifacts or noise, size, or number
of neurofibromas on WBMRI, as well as specific patients.

This preliminary study had several limitations. The first lim-
itation was the small number of cases and the unbalanced
number of mutation domains and types. For example, MD-4
was present in only a total of 17 (7.8%) lesions and nonsense
types had a total of 8 (3.7%) lesions. These small numbers of
lesion subtypes generated the lowest performance in classifi-
cation of mutation domains and mutation types in per-tumor
study. However, we observed that patients with nonsense
mutation type were all located in P5 and P6 clusters in per-
patient heatmap (see figure 4). This indicates that nonsense
mutation type shares some common imaging features; how-
ever, due to the small number of tumors, we cannot suffi-
ciently train the classifier to predict nonsensemutation type in
per-tumor study. Further studies are needed to validate the
classification performance of these low-prevalent mutation
domains and mutation types. In addition, although we applied
SMOTE resampling to balance the radiomics samples in
statistical tests, further investigation is needed to determine
whether the uneven distribution of tumors with specific gene
mutations have biased the radiogenomics analysis.

Another limitation was the selection of 59 imaging features in
the study. Some of these features may be interrelated, for
example, tumor homogeneity may be calculated and extracted
from histogram, RL matrix, or GLCM. Although this corre-
lation among different features did not diminish the NF1
radiogenomics in this study, it may cause feature suppression
in the selection of the most important imaging features for
machine-learning classification. Reduction of feature re-
dundancy will assist the identification of specific imaging
phenotypes related to NF1 genotypes in our future work. In
addition, signal intensity in MRI/STIR sequence may vary
among different MRI vendors, which may affect the
minimum/maximum thresholds and the bin size or bin
numbers for calculating textures of signal intensity.

Overall, NF research has been held back by poor genotype–
phenotype correlations. Despite the preliminary nature of the
study, we need to emphasize that this radiogenomic study
investigated the genotype–phenotype linkage between NF1
gene mutation and tumor imaging features onWBMRI, which
is the commonly used imaging modality in NF1 surveillance
and thus easily generalizable to many NF centers. Although
the findings of this study warrant validation by larger studies,
it may provide a new dimension for investigating NF1 tumor

genotype–phenotype correlations focusing on prognosis and
behavior of tumors, including the natural clinical history and
growth behavior of NF1 tumors, and the malignant trans-
formation of PNs by using WBMRI. Therefore, NF1 radio-
genomics on WBMRI may become a promising approach for
the risk stratification and management of patients with NF1.
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