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Abstract
Objective
Leveraging large-scale genetic data, we aimed to identify shared pathogenic mechanisms and
causal relationships between impaired kidney function and cerebrovascular disease phenotypes.

Methods
We used summary statistics from genome-wide association studies (GWAS) of kidney function
traits (chronic kidney disease diagnosis, estimated glomerular filtration rate [eGFR], and urinary
albumin-to-creatinine ratio [UACR]) and cerebrovascular disease phenotypes (ischemic stroke
and its subtypes, intracerebral hemorrhage [ICH], and white matter hyperintensities [WMH] on
brain MRI). We (1) tested the genetic overlap between them with polygenic risk scores (PRS),
(2) searched for common pleiotropic loci with pairwise GWAS analyses, and (3) explored causal
associations by employing 2-sample Mendelian randomization.

Results
A PRS for lower eGFR was associated with higher large artery stroke (LAS) risk (p = 1 × 10−4).
Multiple pleiotropic loci were identified between kidney function traits and cerebrovascular disease
phenotypes, with 12q24 associated with eGFR and both LAS and small vessel stroke (SVS), and
2q33 associated with UACR and both SVS and WMH. Mendelian randomization revealed
associations of both lower eGFR (odds ratio [OR] per 1-log decrement, 2.10; 95% confidence
interval [CI], 1.38–3.21) and higher UACR (OR per 1-log increment, 2.35; 95% CI, 1.12–4.94)
with a higher risk of LAS, as well as between higher UACR and higher risk of ICH.

Conclusions
Impaired kidney function, as assessed by decreased eGFR and increased UACR, may be
causally involved in the pathogenesis of LAS. Increased UACR, previously proposed as a marker
of systemic small vessel disease, is involved in ICH risk and shares a genetic risk factor at 2q33
with manifestations of cerebral small vessel disease.
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Stroke represents the second leading cause of death world-
wide.1 It is classified into intracerebral hemorrhage (ICH) and
ischemic stroke (IS), the latter being further subclassified into
large artery atherosclerotic stroke (LAS), cardioembolic stroke
(CES), and stroke caused by small vessel disease (small vessel
stroke [SVS]).2

Patients with impaired kidney function experience a well-
established elevated risk of cardiovascular disease.3 Uncertainty
remains regarding the link and potential directionality of the
relationship between impaired kidney function and stroke.
Studies have shown prevalence of chronic kidney disease
(CKD) as high as 35% among stroke patients,4 with 43% in-
creased risk for incident stroke in patients with severely im-
paired kidney function,5 and 25% greater risk of poor outcome
at discharge among patients with stroke with proteinuria.6

These observational studies do not inform on shared patho-
genesis or causal relationships between the 2 traits. Moreover,
the etiologic subtypes of stroke have not been considered in
prior studies, making assessments of shared pathogenic path-
ways more challenging.

Genetics has proven useful in clarifying whether associations of
co-occurring traits reflect a causal relationship or simple cor-
relation. Using Mendelian randomization (MR), a genetic test
of instrumental association, studies distinguished plasma lipid
levels causally related to coronary artery disease from others
simply covarying with them.7 Prior reports have suggested
a genetic overlap between kidney function and risk of IS,8

although none of the polygenic associations passed study-wide
significance thresholds. We hypothesized that new better-
powered genome-wide association studies (GWAS) of kidney-
and stroke-related phenotypes would allow us to demonstrate
shared and potentially causal genetic mechanisms between
CKD and cerebrovascular disease.

Methods
Leveraging data from international consortia,9–11 we aimed to
(1) explore the polygenic overlap between kidney disease and
cerebrovascular disease, including IS, LAS, CES, SVS, white
matter hyperintensities (WMHs), and ICH; (2) identify loci
that pleiotropically affect both the risk of kidney disease and

Glossary
CES = cardioembolic stroke; CI = confidence interval; CKD = chronic kidney disease; eGFR = estimated glomerular filtration
rate; GWAS = genome-wide association studies; ICH = intracerebral hemorrhage; IS = ischemic stroke; ISGC = International
Stroke Genetic Consortium; IVW = inverse variance weighted; LAS = large artery atherosclerotic stroke; LD = linkage
disequilibrium; MR = Mendelian randomization; OR = odds ratio; PPA = posterior probabilities of association; PRS =
polygenic risk scoring; SBP = systolic blood pressure; SNP = single nucleotide polymorphism; SVS = small vessel stroke;
UACR = urinary albumin-to-creatinine ratio; WMH = white matter hyperintensity.
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cerebrovascular disease phenotypes; and (3) use MR to ex-
amine directionality of possible causal effects of kidney disease
on cerebrovascular disease phenotypes. Finally, as a secondary
analysis, we explored whether genetic risk factors shared be-
tween kidney and cerebrovascular disease were also pleiotropic
for higher blood pressure.

Traits and GWAS
To explore kidney function and impairment, we used CKD
diagnosis as well as both estimated glomerular filtration rate
(eGFR) and urinary albumin-to-creatinine ratio (UACR),
since they reflect different aspects of kidney pathophysiology.12

eGFR is considered a measure of the renal clearance function
and can be impaired by different insults in different areas of the
nephron, while UACR is a subclinical marker of pathologic
damage that specifically affects glomeruli. The NICE recom-
mendations (National Institute for Health and Care Excel-
lence) suggest measuring both for a proper kidney function
evaluation.13 The cystatin C–based method for calculating
eGFR was selected over the creatinine-based method given
the higher accuracy and the improved prognostic utility in
determining risks of death and end-stage renal disease of the
former.14–16

CKD diagnosis and eGFR GWAS summary meta-analysis
statistics were obtained from the latest 1000 Genomes–based
CKDGen consortium effort (ckdgen.imbi.uni-freiburg.de/).
The CKDGen consortium, with the correspondent genotypic
and phenotypic assessment procedures that led to the GWAS
results, are described elsewhere.17,18 Briefly, the study includes
meta-analysis results from 33 individual studies of European
ancestry (n = 110,527). eGFR was estimated from serum
cystatin C levels using the established equation15 (n = 24,063).
GWAS results for the UACR trait were derived from the
latest study that leveraged the UK Biobank data11 (publicly
available from the Broad Cardiovascular Disease Knowledge
Portal: broadcvdi.org/informational/data). Compared to
the data from the CKDGen consortium, the study based on
UK Biobank made use of a larger sample size (n = 382,500 vs
111,666 individuals of the CKDGen consortium) and
reported 32 novel genome-wide significant loci for the trait,
in addition to the single one previously detected by the
CKDGen analysis.19

Genetic data for stroke phenotypes were derived from the
MEGASTROKE consortium9 and the International Stroke
Genetic Consortium (ISGC) GWAS for ICH.20 Detailed
descriptions of study populations and stroke subtyping ascer-
tainment are available (cerebrovascularportal.org/). Briefly, we
utilized the GWAS summary statistics of the European ancestry
analysis of the study (40,585 cases; 406,111 controls). The
phenotypes used were (1) IS regardless of subtype; the 3
available etiologic ischemic subtypes (2) LAS, (3) SVS, and (4)
CES; and (5) ICH. Definitions of IS and ICH were based on
clinical and imaging criteria, whereas IS subtypes were based on
the Trial of Org 10172 in Acute Stroke Treatment (TOAST)
classification system.2

We also analyzed WMH volume, a known MRI biomarker of
cerebral small vessel disease,21 using summary statistics of
GWAS analysis for total volume of WMH derived by the UK
Biobank study, as described previously22 (see e-Methods; doi.
org/10.5061/dryad.kd51c5b2b). Essentially, we used volu-
metric measurements based on T1 and T2 fluid-attenuated
inversion recovery of 10,597 participants of European ancestry.
The linear regressionmodel of the GWASwas adjusted for age,
sex, and principal components.

Systolic blood pressure (SBP) summary meta-analysis sta-
tistics were obtained from the latest publicly available
GWAS, which combines data from UK Biobank and the
International Consortium of Blood Pressure (grasp.nhlbi.
nih.gov/FullResults.aspx). The study analyzed 757,601
individuals of European descent.23 Briefly, SBP values were
the average of 2 values and adjusted for pressure-lowering
medication.

Genotyping and bioinformatic genetic analysis of each of the
GWAS cited followed standardized procedures that are har-
monized and comparable across the studies. Details are avail-
able in the studies referred.9,11,17,18,20 In brief, all the results are
obtained from inverse-variance meta-analysis restricted to
participants of European ancestry after adjusting for age, sex,
and principal components reflecting ancestry. eGFR, UACR,
and WMH volume were log-transformed.

Genetic analyses

Linkage disequilibrium (LD) score regression
To estimate the genetic correlation between kidney traits and
cerebrovascular phenotypes, we used the LD score regression
method.24 This method involves regressing summary results
statistics from variants across the genome on a measure of each
variant’s ability to tag other variants locally. As such, LD score
infers the posterior mean effect size of each marker by condi-
tioning on a genetic architecture prior and LD information of
European ancestry from the 1000Genomes Project.25We used
the GWAS summary-level results data described above to es-
timate genetic correlations among pairs of kidney traits and
cerebrovascular disease phenotypes.

Polygenic risk scoring (PRS)
For each of the kidney traits, we used 3 sets of pruned (r2 < 0.1
based on the European 1000 Genomes v3 panel) single nu-
cleotide polymorphisms (SNPs) passing 3 p value thresholds
(p = 0.001, 0.05, and 0.5). The pruning retained the SNP with
the lowest p value for each clump. Following established
methodology,8 polygenic scores for cerebrovascular disease
phenotypes were computed as the sum of reference alleles for
each SNP weighted by the summary regression coefficient for
the kidney trait. Polygenic scores were used for calculating the
regression of the response variable onto the risk score.26 Given
the 6 cerebrovascular disease phenotypes studied for each of
the 3 kidney traits, the Bonferroni-adjusted significance thresh-
old was set at 0.003.
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Pairwise analysis of GWAS
To identify genetic variants that influence pairs of traits, we
used gwas-pw.27 This method uses a Bayesian statistical
model to estimate the probability that a given independent
genomic region contains a genetic variant that influences
both traits of interest (posterior probabilities of association
[PPA]). The input to the model is the set of summary
GWAS statistics for both of the 2 phenotypes under study
aligned to the same effect allele. We applied the analysis to
pairs of kidney traits and cerebrovascular disease pheno-
types. In the sensitivity analysis, we studied SBP and kidney
trait pairs. Genomic regions with PPA ≥0.95 were consid-
ered highly pleiotropic for the pair of traits tested, whereas
regions with PPA ≥0.8 were considered to support pleiot-
ropy between traits, in accordance with previous
approaches.28,29

Mendelian randomization
For MR, we used as instruments genetic variants pruned at
r2 < 0.1 based on the European 1000 Genomes panel that
were associated with CKD, eGFR, or UACR at genome-
wide significance level (p < 5 × 10−8). The instruments are
presented in table e-1 (doi.org/10.5061/dryad.kd51c5b2b).
The genetic association estimates between the instruments
and the odds of the described outcomes were extracted from
the MEGASTROKE and ISGC GWAS summary statistics.
Following extraction of the association estimates and har-
monization of the direction of the estimates across studies
based on the effect allele, we calculated individual MR
estimates for each instrument using the Wald estimator;
standard errors were calculated using the delta method.30

We then pooled the individual MR estimates using fixed-
effects inverse variance weighted (IVW) analyses.30 We
assessed heterogeneity across estimates with the I2 and the
Cochran Q test (I2 > 50% and p < 0.05 were considered
statistically significant) as measures of pleiotropy in the
fixed-effects IVW analysis.30 To control for potential di-
rectional pleiotropy, we used MR-PRESSO31 (and then
repeated the fixed-effects IVW analysis after excluding the
pleiotropic outlier instruments) and the MR-Egger re-
gression.30 We further used the weighted median estimator,
which allows the use of invalid instruments under the as-
sumption that at least half of the instruments used in the MR
analysis are valid.30 All MR analyses were performed in R
(v3.5.0; The R Foundation for Statistical Computing) using
the MendelianRandomization and MR-PRESSO packages
(see e-Methods; doi.org/10.5061/dryad.kd51c5b2b). Fi-
nally, in cases of shared heritability between traits and sig-
nificant MR results, we tested also for the inverse association
using kidney traits as outcomes and cerebrovascular disease
phenotypes as exposures (bidirectional MR).32 Given the 6
cerebrovascular disease phenotypes studied for each of the 3
kidney traits, we set the statistical significance threshold for
our analyses at a Bonferroni-adjusted threshold at a p <
0.003. However, given the lack of power of the MR analyses,
we also considered the associations reaching a p < 0.05 as of
nominal significance.

Standard protocol approvals, registrations,
and patient consents
This study used publicly available deidentified data from
participating studies that had already received approval from
an ethical standards committee on human experimentation.

Data availability
Genetic variants used are available in the supplemental in-
formation (doi.org/10.5061/dryad.kd51c5b2b) and the code
used for all analyses is available on request.

Results
Descriptive characteristics of the participants included in the
GWAS for each kidney trait and each cerebrovascular disease
phenotype are summarized in table 1.

Heritability and genetic correlation
Whereas LD score regression analysis showed no statistically
significant genetic correlations (table e-2, doi.org/10.5061/
dryad.kd51c5b2b), PRS analysis showed an overall genetic
overlap between the kidney traits and cerebrovascular disease
phenotypes, with impairment in kidney function increasing
risk of cerebrovascular events (table 2 and table e-3 [doi.org/
10.5061/dryad.kd51c5b2b]). The correlation between lower
eGFR and higher risk of LAS (odds ratio [OR] per 1-log
eGFR increment, 0.59; 95% confidence interval [CI],
0.46–0.76 for SNPs associated with eGFR at p < 0.001) was
the only one that exceeded the Bonferroni correction
threshold. Overall the variance explained was low, as is
commonly seen in complex traits (table e-3, doi.org/10.5061/
dryad.kd51c5b2b). No UACR-based or CKD-based PRS
showed significant associations with IS or IS subtypes.

Pairwise analysis of GWAS
Pairwise testing of kidney disease and cerebrovascular disease
phenotypes is summarized in table 3. A locus at 12q24 was
found to be highly pleiotropic, driving associations between
eGFR and IS, LAS (figure 1), and SVS. For SVS and eGFR,
a second pleiotropic locus at 16p12 was identified.

A locus at 2q33 showed pairwise associations between UACR
and both SVS (figure 2) and WMH. Testing UACR and IS
revealed 2 loci: 1p36 and 1q24. No common pleiotropic loci
were found between UACR and LAS.

Finally, for CKD, 1q22 was identified as pleiotropic with IS
and 11p11 with SVS.

Pairwise analyses of ICH and kidney disease phenotypes
revealed pleiotropic associations with CKD at 7q36. No
pleiotropic associations were identified between ICH and
eGFR or UACR.

No pleiotropic loci were detected for CES. Figure e-1 sum-
marizes all results of pairwise analyses (doi.org/10.5061/
dryad.kd51c5b2b).

e2584 Neurology | Volume 94, Number 24 | June 16, 2020 Neurology.org/N

Copyright © 2020 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
https://doi.org/10.5061/dryad.kd51c5b2b
http://neurology.org/n


The sensitivity analysis focused on the cerebrovascular disease
phenotypes that were found to share pleiotropic regions with
kidney traits (IS, LAS, and SVS). gwas-pw analysis did not
identify any locuswith pleiotropic effects on SVS and SBP (figure
e-2, doi.org/10.5061/dryad.kd51c5b2b) but highlighted 1
shared pleiotropic locus (7p21.1) between LAS and SBP (figure
e-3, doi.org/10.5061/dryad.kd51c5b2b) and several pleiotropic
loci for all-cause IS and SBP. Among these, only 2 (1p36.22 and

12q24.12) were shared with loci identified in our gwas-pw
analysis of kidney and cerebrovascular disease phenotypes (figure
e-4, doi.org/10.5061/dryad.kd51c5b2b and table 3).

Mendelian randomization
Using fixed-effects IVW MR analyses, we found genetically
determined lower eGFR to be significantly associated with
a higher risk for LAS (OR per 1-log decrement in eGFR, 2.10;

Table 2 Polygenic risk score (PRS) testing the effect of kidney traits on stroke phenotypes

Trait SNPs, n

IS LAS CES

p Value OR (95% CI) p Value OR (95% CI) p Value OR (95% CI)

CKD (yes vs no) 108 0.016 1.03 (1.01–1.05) 0.007 1.09 (1.03–1.16) 0.320 1.02 (0.98–1.06)

eGFR (1-log decrement) 276 0.319 1.05 (0.95–1.16) 8.12 × 10−5a 1.70 (1.32–2.19) 0.151 1.16 (0.95–1.41)

UACR (1-log increment) 96 0.021 1.77 (1.08–2.89) 0.567 1.42 (0.42–4.8) 0.450 0.58 (0.14–2.41)

Trait No. of SNPs

SVS ICH WMH

p Value OR (95% CI) p Value OR (95% CI) p Value β (95% CI)

CKD (yes vs no) 108 0.537 1.02 (0.96–1.08) 0.006 0.79 (0.68–0.93) 0.635 0.008 (−0.03 to 0.05)

eGFR (1-log decrement) 276 0.005 1.43 (1.12–1.79) 0.358 0.68 (0.31–1.54) 0.177 0.08 (−0.04 to 0.20)

UACR (1-log increment) 96 0.359 1.70 (0.55–5.30) 0.161 6.42 (0.47–87.08) 0.020 0.70 (0.11 to 1.29)

Abbreviations: CES = cardioembolic stroke; CI = confidence interval; CKD = chronic kidney disease; eGFR = estimated glomerular filtration rate; ICH =
intracerebral hemorrhage; IS = ischemic stroke; LAS = large artery stroke; OR = odds ratio; SNP = single nucleotide polymorphism; SVS = small vessel stroke;
UACR = Urinary Albumin-to-Creatinine Ratio; WMH = white matter hyperintensity.
OR and 95% CI for regressing the response (cerebrovascular disease phenotypes) onto the genetic risk score for each of the kidney traits studied. PRS
reported here use instruments with p value ≤0.001 (see table e-3 [doi.org/10.5061/dryad.kd51c5b2b] for alternate p value cutoffs).
a Significant p value after Bonferroni correction.

Table 1 Characteristics of participants included in the genome-wide association studies utilized for the analyses

Traits Consortium Participants, n Women, % Mean age, y (SD) Trait mean value (SD)

Kidney traits

CKD CKDGen 118,147 54.8 58 (9.9)

eGFR 24,063 52.7 57 (7.8) 87.6 (8.5) mL/min/1.73 m2

UACR 382,500 54.0 56.9 (8.3) 9.8 (2.7) mg/g

Cerebrovascular disease
phenotypes

IS MEGASTROKE 10,307 41.7 67.4 (12.3)

LAS 3,808 48.9 65.9 (10.4)

CES 3,697 46.4 68.1 (9.4)

SVS 2,206 45.5 65.6 (12.4)

ICH ISGC 1,545 45.1 67.0 (10)

WMH UK Biobank 10,597 52.7 54.9 (7.5) 4,607 (6,021) mm3

Blood pressure

SBP UK Biobank/ICBP 757,601 52.6 55.63 (8.9) 139 (20)

Abbreviations: CES = cardioembolic stroke; CKD = chronic kidney disease; eGFR = estimated glomerular filtration rate; ICBP = International Consortium for
Blood Pressure; ICH = intracerebral hemorrhage; IS = ischemic stroke; LAS = large artery stroke; SBP = systolic blood pressure; SVS = small vessel stroke; UACR
= urinary albumin to creatinine ratio; WMH = white matter hyperintensities.
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95% CI, 1.38–3.21; p = 0.001). Furthermore, we found an
association of nominal significance between genetically ele-
vated UACR and risk of LAS (OR per 1-log increment in
UACR, 2.35; 95% CI, 1.12–4.94; p = 0.024). Genetically
determined eGFR and UACR were not associated in MR
analyses with the other IS subtypes or the overall IS pheno-
type (figure 3). There were further associations of nominal
significance between genetic predisposition to CKD and IS
risk (OR, 1.07; 95% CI, 1.01–1.15; p = 0.035), as well as
between genetically elevated UACR and risk for ICH (OR,

5.09; 95% CI, 1.02–26.41; p = 0.047). MR analyses did not
show any effects of genetically determined kidney traits on
WMH volume (table e-5, doi.org/10.5061/dryad.
kd51c5b2b). There was no significant heterogeneity as de-
fined by the Cochran Q test (all p > 0.50), no outlier
instruments were detected using MR-PRESSO, and the
intercepts from theMR-Egger regression were not statistically
significant (all p > 0.40) for each of these MR analyses, sup-
porting a lack of significant pleiotropy in the analysis. Fur-
thermore, the weighted median and the MR-Egger regression

Table 3 Pairwise analysis of kidney disease and cerebrovascular disease trait, with locus and the mapped genes that
show a pleiotropic effect (posterior probabilities of association [PPA] ≥ 0.8) for the corresponding traits

Kidney
disease

Cerebrovascular
trait Locus PPA

Genes mapped
on the top SNPs Other genes in the highlighted chunk

CKD IS 1q22 0.85 PMF1,a

SLC25A44a,20
YY1AP1, SCARNA26A, DAP3, MSTO2P, GON4L, SCARNA26B, SYT11, SCARNA4,
SNORA80E, ARHGEF2, KIAA0907, RXFP4, RIT1,UBQLN4, SSR2, LMNA,MEX3A, RAB25,
LAMTOR2, SEMA4A,b TMEM79, TSACC, SMG5, PAQR5, BGLAP, GLMP, VHLL, CTT3,
TSACC

LAS — —

SVS 11p11.2 0.95 NUP160,a,48

FNBP4
DDB2, ACP2, NR1H3, MADD, MYBPC3, SPI1, SLC39A13, PSMC3, RAPSN,b CELF1,
C1QTNF4, PTPMT1,b FAM180B, NDUFS3, KBTBD4, MTCH2, AGBL2, PTPRJ, OR4B1,
OR4X1, OR4X2, OR4S1, OR4C3, OR4C45, OR4C5

CES — — —

ICH 7q36 0.80 PRKAG2a,18 AGAP3, GBX1, ASB10, SMARCD3, CHPF2, ABCF2, IQCA1L, NUB1, WDR86, WDR86-
AS1, CRYGN, RHEB, AS1, GALNTL5, GALNT11, KMT2C

WMH — — —

eGFR IS 12q24.12c 0.99 ATXN2,a SH2B3b,49 CCDC63, MYL2, CUX2, FAM109A, BRAP, ACAD10, ALDH2, MAPKAPK5, MAPKAPK5-
AS1,b ADAM1A, TMEM116, ERP29, NAA25

LAS 12q24.12c 0.87 ATXN2,a SH2B3b As above

SVS 12q24.12c 0.96 ATXN2,a SH2B3b As above

16p12.3 0.86 PDILT,a UMOD,a,17

GP2
ACSM5, ACSM2A, ACSM2B, ACSM1, THUMPD1, ACSM3, ERI2, DCUN1D3, LYRM1,
DNAH3

CES — — —

ICH — — —

WMH — — —

UACR IS 1p36.22c 0.98 CASZ1b,9 DFFA, CORT, APITD1-CORT, CENPS, PGD, RNU6-2, KIF1B, UBE4B, PEX14

1q24.3 0.81 PRRC2C MROH9, FMO3, FMO6P, FMO2, FMO1, FMO4, TOP1P1, MYOC, VAMP4, METTL13,
DNM2-IT1, DNM3b

LAS — — —

SVS 2q33.2 0.96 WDR12,a ICA1L,a,9

FAM117B
NBEAL1, KIAA2012, SUMO1, NOP58, SNORD11, SNORD11B, SNORD70, SNORD70B,
BMPR2, CARF, CYP20A1, AB12

CES — — —

ICH — — —

WMH 2q33.2 0.80 WDR12,a ICA1L,a

FAM117B
As above

Abbreviations: CES = cardioembolic stroke; CKD = chronic kidney disease; eGFR = estimated glomerular filtration rate; GWAS = genome-wide association
studies; ICH = intracerebral hemorrhage; IS = ischemic stroke; LAS = large artery stroke; SNP = single nucleotide polymorphism; SVS = small vessel stroke;
UACR = urinary albumin to creatinine ratio; WMH = white matter hyperintensity.
a Genes identified in previous GWAS and corresponding references.
b Genes identified in previous GWAS for blood pressure.
c Identifies loci in common with the pairwise analysis between systolic blood pressure and cerebrovascular disease traits.
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analyses provided association estimates that were direction-
ally consistent and of similar magnitude as the ones derived
from the IVW analyses, although with wider CIs, as expected
given the lower statistical power of these approaches (table
e-5, doi.org/10.5061/dryad.kd51c5b2b).

Given the presence of shared genetic susceptibility between
LAS and both eGFR and UACR, to exclude potential reverse
associations, we performedMR exploring the effects of LAS on
eGFR and LAS. We found no significant associations between
LAS and eGFR (IVW β, 0.007; 95% CI, −0.008 to 0.022;
p = 0.388) or UACR (IVW β, −0.007; 95% CI, −0.020 to
0.006; p = 0.262) (table e-6, doi.org/10.5061/dryad.kd51c5b2b).

Discussion
Our analyses demonstrate genetic associations between kid-
ney and cerebrovascular disease both across the genome and
at specific pleiotropic loci. Beyond confirming prior epide-
miologic observations, these results advocate for a cere-
brorenal paradigm and suggest that this relationship is driven
by shared genetic factors and pathways. Taken together, our
pairwise and MR analyses demonstrate that LAS and SVS are
both influenced by disease mechanisms that simultaneously
affect kidney function. Impairment in hemofiltration assessed
by eGFR and glomerular function assessed by UACR appear

to play a causal role in stroke related to atherosclerosis of large
vessels. Furthermore, our results provide supportive evidence
that 2q33 may play a role across small vessel pathologies in
both the kidney and brain through microalbuminuria, SVS,
and WMH. Finally, we have reidentified the 1q22 locus,
previously detected through GWAS of ICH and all-cause
IS,9,20 now found to demonstrate evidence of pleiotropy with
CKD diagnosis.

Prior epidemiologic studies have shown associations between
kidney disease and stroke,33,34 but such studies are inevitably
limited by the presence of residual confounding variables and
possible reverse causation, even after a thorough adjustment for
traditional risk factors.5 This is a challenge particularly in stroke
given the high levels of vascular comorbidity that patients with
stroke often exhibit. While not without their own flaws and
methodologic challenges, genetic approaches such as those
employed in this study can help to limit confounding present in
traditional observational studies. In fact, genetic variants, which
are predisposed and randomly assigned at birth, are often less
confounded indicators of particular traits compared to the
correspondent conventionally measured exposures. In addi-
tion, the use of genetic variants as instrumental variables pre-
cludes reverse causation, in which the outcome affects the
investigated risk factors, because genotypes confer phenotypes
and not vice versa.35 As such, MR permits clarification of the
direction of demonstrated associations.36

Figure 1 Miami plots of the 12q24.12 region highlighted by gwas-pw analysis

Publicly available single nucleotide polymorphism association p values for each trait of the pair are plotted. Genes that mapped under the locus at 12q24.12
highlighted in the analysis between estimated glomerular filtration rate (green) and large artery stroke (orange).
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Our work extends previous findings that used PRS to associate
kidney dysfunction and risk of IS through shared heritability.8

Deploying the most recent and far larger MEGASTROKE
dataset, we have confirmed the suggested association between
risk of LAS and impairment in eGFR first identified byHolliday
et al.,8 this time applying both PRS and MR approaches. The
primary mechanism that underlies both phenotypes would
appear to be atherosclerosis. LAS results from atherosclerosis of
large vessels, and prior studies have reported inverse associa-
tions between eGFR and carotid intima media thickness.37

The hypothesis of eGFR being implicated in LAS risk is further
supported by our pleiotropy analysis, which found an associa-
tion between the 2 traits through the 12q24.12 locus. Defining
the key gene at this locus will require further work, but the top
SNP lies within the ATXN2 gene, mutations within which have
been demonstrated to cause cystic dilation of the renal
tubules.38,39 The SH2B3 gene at the same locus was found to be
associated with high blood pressure23 in previous GWAS.
Therefore, high blood pressure, a well-established risk factor for
both stroke and kidney disease, might explain part of the shared
genetic predisposition between the 2 diseases. However, as the
pairwise analyses for stroke and SBP did not identify any other
pleiotropic signal common with the ones for kidney disease,
our results suggest other pathways independent of blood
pressure underlie this shared genetic predisposition.

Our MR analysis also showed an association of nominal sig-
nificance between genetic predisposition to higher UACR and
a higher LAS risk, while further excluding the possibility of
reverse causation. The mechanistic basis for this observation is
less clear, as UACR is considered a biomarker of endothelial
dysfunction at the glomerular level. However, the finding is
consistent with known epidemiologic associations between
UACR and carotid intima media thickness.40 Furthermore, the
prior PRS-based study by Holliday et al.8 also identified a link
between LAS and UACR, although it should be noted that the
dataset used to identify that association is also a component of
MEGASTROKE.9 Finally, a recent separate MR analysis not
only associated genetic predisposition to UACR with risk of
cardiometabolic diseases such as coronary artery disease and
stroke (the most common manifestations of atherosclerosis),
but also demonstrated a bidirectional relationship between al-
buminuria and blood pressure.11 We can therefore hypothesize
that increasing albuminuria could worsen hypertension and
consequentially atherosclerosis, ultimately culminating in LAS.

Our results suggest pleiotropic genetic effects across small
vessel disease phenotypes ofWMH, SVS, and UACR, at 2q33.
This locus encodes the ICA1L, WDR12, and NBEAL1 genes
and is known to be pleiotropic in cerebrovascular disease,
having been linked previously to both SVS risk and WMH
burden.9,41 Our results extend these previous findings to

Figure 2 Miami plots of the 2q33 region highlighted by gwas-pw analysis

Publicly available single nucleotide polymorphism association p values for each trait of the pair are plotted. Genes that mapped under the locus at 2q33
highlighted in the analysis between urinary albumin to creatinine ratio (gray) and white matter hyperintensity (blue).
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include UACR, supporting the concept of a shared common
pathway among cerebral and renal manifestations of small
vessel disease. Although we could not establish pleiotropy for
2q33 in ICH, potentially due to statistical power in the smaller
sample size of ICH, our MR analysis showed a possible causal
association between UACR and ICH risk, suggesting that the
overall genetic predisposition to endothelial disease of the
kidney has an influence on ICH as well.

Our analysis of all-cause IS and CKD diagnosis reidentified the
1q22 locus, which was first discovered in association with ICH
and more recently found to influence both IS risk as well as the
burden of WMH in population cohorts.9,20,42 Whereas it is
perhaps unsurprising that it appears again in this analysis, the
fact that pleiotropy was identified only for CKD diagnosis and
not eGFR or UACRwarrants further investigation to determine
whether a single mechanism or collection of mechanisms cul-
minating in CKD is responsible for the observed association.

The only evidence we observed for genetic overlap between
renal function and CES was when we used a PRS with more

instruments. Prior epidemiologic studies have suggested asso-
ciations between CKD and atrial fibrillation, the most impor-
tant CES risk factor. We cannot rule out the possibility of
a genetic association of low magnitude between kidney disease
and CES below our statistical power threshold.

Our study has several limitations. Our initial LD score re-
gression analysis did not achieve significant results, although
the directions of effect of the genetic overlap between traits was
congruous with our significant PRS analyses. Recent studies
have shown that the genome-wide LD score regression ap-
proach has less power to detect heritability that is spread more
evenly across the genome and is not concentrated in specific
genomic regions.43,44 We cannot exclude the possibility of
confounding by cryptic pleiotropy, which is an established
limitation of MR analyses.45 However, our multimodal ap-
proach including methods for quantifying pleiotropy and
multiple MR approaches with different modeling assumptions
regarding the use of pleiotropic variants in the analyses pro-
vides some reassurance for the validity of our MR models.
Although our MR analysis supports a causal relationship

Figure 3 Mendelian randomization associations between genetically determined kidney disease traits and cerebrovas-
cular disease phenotypes

Shown are the results derived from fixed-effects inverse variance weighted Mendelian randomization analysis. CI = confidence interval; eGFR = estimated
glomerular filtration rate; OR = odds ratio; UACR = urinary albumin-to-creatinine ratio.
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between kidney impairment and stroke risk, the results of our
pleiotropy analysis do not fully obviate the possibility of
a shared pathologic genetic pathway that predisposes to both.

Our analyses were restricted to individuals of European an-
cestry, which limits the generalizability of our results to other
ancestral populations. This is particularly unfortunate given
the known disparities in kidney disease and stroke risk and
outcomes in traditionally underserved populations such as
black and Hispanic populations.46,47 Future studies building
on our approach in these and other populations are needed to
replicate and extend our findings.

Despite these limitations, our study benefits from the use of the
largest and newest GWAS datasets available, includes pheno-
typic characterization of stroke into its etiopathologic subtypes,
and deploys multiple orthogonal methods to confirm and
validate the findings. Altogether, these results highlight im-
portant genetic pleiotropy between kidney and cerebrovascular
disease and suggest that at least some of these genetic liabilities
are causal. Further exploration of shared disease mechanisms
may highlight novel opportunities for treatment of these
prevalent and debilitating conditions.
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