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Abstract
Objective
To explore the accuracy of combined neurology expert forecasts in predicting primary end-
points for trials.

Methods
We identified one major randomized trial each in stroke, multiple sclerosis (MS), and amyo-
trophic lateral sclerosis (ALS) that was closing within 6 months. After recruiting a sample of
neurology experts for each disease, we elicited forecasts for the primary endpoint outcomes in
the trial placebo and treatment arms. Our main outcome was the accuracy of averaged pre-
dictions, measured using ordered Brier scores. Scores were compared against an algorithm that
offered noncommittal predictions.

Results
Seventy-one neurology experts participated. Combined forecasts of experts were less accurate
than a noncommittal prediction algorithm for the stroke trial (pooled Brier score = 0.340, 95%
subjective probability interval [sPI] 0.340 to 0.340 vs 0.185 for the uninformed prediction), and
approximately as accurate for the MS study (pooled Brier score = 0.107, 95% confidence interval
[CI] 0.081 to 0.133 vs 0.098 for the noncommittal prediction) and the ALS study (pooled Brier
score = 0.090, 95%CI 0.081 to 0.185 vs 0.090). The 95% sPIs of individual predictions contained
actual trial outcomes among 44% of experts. Only 18% showed prediction skill exceeding the
noncommittal prediction. Independent experts and coinvestigators achieved similar levels of
accuracy.

Conclusion
In this first-of-kind exploratory study, averaged expert judgments rarely outperformed non-
committal forecasts. However, experts at least anticipated the possibility of effects observed in
trials. Our findings, if replicated in different trial samples, caution against the reliance on simple
approaches for combining expert opinion in making research and policy decisions.
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Many decisions in neurology draw on expert judgments about
the risks and benefits of new treatments. In the context of policy,
experts are often called upon to provide judgments whenmaking
recommendations in clinical practice guidelines where high-level
evidence is lacking.1–4 In research, combined (i.e., averaged)
expert judgments, like those that might emerge from grant re-
view panels or ethics committees, often inform decisions about
which trials to fund, the selection of effect sizes underlying power
calculations, or the risk/benefit appraisal of a trial. The unusual
challenges in financing and conducting neurology trials also call
for methods that elicit the most accurate judgments possible
regarding the promise of new treatments.

Little is known about how well pooled neurology expertise can
anticipate responses for treatments in trials. In clinical care
settings, individual neurointensivists showed some ability to
predict outcomes for mechanically ventilated patients, but
limited ability to predict quality of life.5 In another study, in-
dividual neurosurgeons tended to offer overly optimistic pre-
dictions about the outcome of patients with severe head injury.6

Some commentators argue that public funding of neuroscience
research initiatives reflect overly optimistic projections of im-
pact.7 Outside of neurology, individual oncologists tend to
overestimate the survival of patients.8,9

However, none of the above studies directly measured whether
pooled expert judgments can be used to predict treatment
responses in clinical trials. According to the principle of clinical
equipoise, expert communities should not be able to reliably
predict the outcome of clinical trials.10 However, for 3 reasons,
expert communities should in principle manifest at least a mo-
dicumof skill in predicting trial outcomes on primary endpoints.
First, pooled expert opinion should, in principle, be able to
provide reasonably accurate predictions of disease progression
for patients assigned to placebo, since such populations re-
semble those in clinical care (assuming the sample is similar to
the general population). Second, even uncertain forecasts im-
plied by clinical equipoise are potentially more informative than
misinformed forecasts. Consider how this works in weather:
a series of 50% predictions for rain might be highly uncertain
and clinical equipoise–like, but nevertheless more accurate and
informative than a series of 90% predictions if, in fact, it never
rains. Third, whereas primary endpoints in trials typically con-
cern a single measure of efficacy, clinical equipoise entails
judgments about safety and quality of life as well as efficacy.
Whereas primary outcome effects might be somewhat predict-
able in a trial, uncertainties underwriting clinical equipoise often

concern the relationship between the magnitude of benefit and
safety as well as quality of life concerns.

We used 3 randomized neurology trials to explore whether
combined neurology expert predictions could outperform
uninformative predictions in anticipating primary outcomes.
Second, we tested whether the averaged predictions of coin-
vestigators associated with these trials were more accurate
than those of independent experts, and characterized the
prediction accuracy of individual experts in our sample.

Methods
Trial sample
We sought randomized interventional trials in 3 different
areas of neurology that had the following characteristics: (1)
relatively high-profile and hence likely to be familiar to experts
not affiliated with the trial; (2) prospectively registered on
ClinicalTrials.gov; (3) specifying an expected primary com-
pletion date between June 2015 and Jan 2016; (4) principal
investigators of trial receptive to our using their trial for our
prediction study, and sharing primary outcome results within
a reasonable time frame; (5) access to a roster of coinvesti-
gators. We further sought to have one trial in a disease area,
relapsing-remitting multiple sclerosis (MS), where the base-
line probability of a positive outcome was higher.

We used 3 trials thatmet these criteria: Effect of Natalizumab on
Infarct Volume in Acute Ischemic Stroke (ACTION) (testing
natalizumab in stroke),11 Supplementation of VigantOL® Oil
Versus Placebo as Add-on in PatientsWith Relapsing Remitting
Multiple Sclerosis Receiving Rebif® Treatment (SOLAR)
(testing vitamin D in relapsing-remitting MS),12 and Efficacy,
Safety and Tolerability Study of 1 mg Rasagiline in Patients
With Amyotrophic Lateral Sclerosis (ALS) Receiving Standard
Therapy (Riluzole): An AMG Trial With a Market Authorized
Substance (ALS-Rag) (testing rasagiline in ALS).13 For all 3
trials, blinded interim analyses had been performed for data
monitoring at the time predictions were elicited; the only in-
formation communicated to investigators at this time was
a recommendation to continue recruitment. All 3 trials ulti-
mately reached their target enrollment; outcomes on primary
endpoints were statistically nonsignificant for all 3.

Expert sample
We sampled coinvestigators and neurologists who had no af-
filiation with the trials (independent experts). First, we solicited

Glossary
ACTION = Effect of Natalizumab on Infarct Volume in Acute Ischemic Stroke;ALS = amyotrophic lateral sclerosis;ALS-Rag =
Efficacy, Safety and Tolerability Study of 1 mg Rasagiline in Patients With Amyotrophic Lateral Sclerosis (ALS) Receiving
Standard Therapy (Riluzole): An AMG Trial With a Market Authorized Substance; CI = confidence interval; MS = multiple
sclerosis; SOLAR = Supplementation of VigantOL® Oil Versus Placebo as Add-on in Patients With Relapsing Remitting
Multiple Sclerosis Receiving Rebif® Treatment; sPI = subjective probability interval.
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all coinvestigators for each trial and reconfirmed their status as
coinvestigators. Second, we recruited a sample of independent
preclinical and clinical experts for each trial based on coau-
thorship on recent research articles related to the trial. For the
latter, we searched PubMed using MeSH terms for disease
name and either drug name or drug type. For example, for
ACTION, we searched for articles about stroke and natalizu-
mab or inflammation. Authors on original publications were
extracted in order of appearance to compile a list of approxi-
mately 50 eligible experts. Experts were approached up to 3
times by email, at weekly intervals. We sought a target of 10–15
experts per stratum for each trial. This sample size target was
selected based on findings in judgment aggregation research
that suggest sample sizes of 514 forecasters can be sufficient to
achieve crowd accuracy better than the best individuals.
Whereas these studies feature forecaster selection based on past
performance, sample selection for our study was based on field
expertise rather than performance. Target sample sizes used in
our study reflect our secondary goal of probing for differences in
forecast skill between coinvestigators and independent experts.

Forecast elicitation method
A schematic depiction of how we collected forecasts, and how
they were scored for accuracy, is provided in figure 1. We
elicited subjective probability distributions for primary out-
come measures of evolution of disease in placebo and treat-
ment arms, using an approach based on the Sheffield Elicitation
Framework (SHELF), a well-established approach for collect-
ing forecast distributions and scoring their accuracy.15 At in-
vitation and before elicitation, experts were encouraged to
review the ClinicalTrials.gov registration record, which con-
tained details about sample size, patient eligibility, and

treatment. The elicitation began by explaining the importance
of trying to provide the most accurate predictions possible. It
then proceeded to ask experts to forecast upper and lower 95%
confidence boundaries (hereafter termed subjective probability
intervals [sPIs], because they represent probabilistic beliefs
obtained from participants rather than values estimated from
a sampled population)16,17 on the primary endpoint for the
placebo arm. For example, in our ALS study, experts were asked
the highest 18-month patient survival rate (i.e., the proportion
of patients surviving 18 months). In this context, the 95% sPI
should be selected such that 95% of the actual predicted out-
comes would be within the lower and upper bounds. The
elicited intervals were then divided into up to 10 bins (aiming
for bins of 2, 5, or 10 units), depending on how the interval
could be reasonably divided. Experts were then given 20
“chips”—each representing approximately 5% of their proba-
bility belief—and asked to place one at each boundary (2 total).
We then asked them to distribute the remaining 18 chips within
the bins. The same procedure was repeated for the treatment
arm. Before finalizing predictions, experts were asked to review
their 2 distributions in relation to each other and revise their
predictions if desired. Each expert was asked to offer forecasts
for the placebo and treatment arms of only one trial. Experts in
our sample used a median of 8.5 bins for their forecasts. In
accordance with best practices in crowdsourcing predictions,18

judgments were elicited independently; that is, no information
was shared among experts when the judgments were collected.

Interviews
Predictions were collected over the course of a 20–30 minute
interview, face-to-face, by telephone, or by video chat. Experts
were offered 5 minutes of standardized instruction on our

Figure 1 Collection and scoring of predictions

(A) Elicitation. Predictions were collected from each expert in 3 steps. First, experts were asked to state the upper and lower boundary of treatment response
they expect (subjective probability interval). Here, the expert is expressing that he or she is 95% certain themeasured effect for treatment arm (proportion of
patientswithmultiple sclerosis [MS] who have disease-free status at week 48) will fall between 20%and 50%. Next, the expert was given 18 chips and asked to
fill in his or her distribution. In the third step, the prediction is mathematically smoothed. In the top panel, the expert has assigned the highest probability to
37% of patients being free from disease activity at 48 weeks. (B) Scoring. In the above illustration, consider predictions elicited from 2 experts (A and B) about
outcomes in the treatment arm for the MS trial. The dashed line at 40% indicates the actual proportion of disease-free patients at 48 weeks reported for the
trial. Note that A’s predictions are sharp, assigning greater probability to a narrow range of outcome possibilities; B’s predictions aremore uncertain because
they include awider range of possible results. Both A andB have captured the actual outcomewithin their distribution, but a large amount of their predictions
include values that are much higher or lower than actual measured results. The noncommittal prediction algorithm (NC) assigns the same probability for all
outcomes between 2.5% and 97.5%. In this example, B’s prediction skill will be scored as better (i.e., a lower ordered Brier score) than A’s, because A produced
a subjective probability distribution that exhibited higher confidence in values that were distant from the observed trial outcome.
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elicitationmethod. Experts were free to ask questions about the
elicitation approach, and individuals performing elicitations
could intervene when experts provided responses that in-
dicated they might have misunderstood the task (e.g., after
specifying a range, placing chips outside the range; using more
than 20 chips). Then, basic demographic information was
collected, followed by the forecast elicitation as described
above. All interviews were conducted from March to Novem-
ber 2015 (stroke trial), March to September 2015 (MS trial),
and July to December 2016 (ALS trial).

Analysis
Results of trials were obtained from publications or Clin-
icalTrials.gov. Combined predictions in each of the placebo
and treatment arms for each trial were calculated by averaging
individual forecast distributions across experts using the al-
gorithm provided within the SHELF framework, which
combines forecast distributions of individual forecasters into
one combined distribution per question. Estimates of differ-
ences between outcomes in placebo and treatment arms were
based on the median estimates of each forecaster.

Combined and individual forecast distributions were scored
for accuracy using the ordered Brier scoring rule. This
scoring rule adapts the Brier score, which is normally used
to score prediction skill for binary events (e.g., the occur-
rence or nonoccurrence of an event) to predictions across
a continuous variable. Brier scores measure the average
squared deviation between a prediction and the true answer,
coded as 1 if an event occurs, and 0 otherwise. As implied,
Brier scores penalize confident, inaccurate forecasts espe-
cially strongly.

We use the variant of the score adapted to ordered catego-
ries.19 Ordered scoring rules penalize experts less if their
predictions approach the actual results. Thus, ordered scores
tend to be lower than those used to assess binary forecasts,
holding skill levels constant. Experts receive better scores if
their predictions are closer to the actual results. The mini-
mum score of 0 denotes perfect accuracy, while the maxi-
mum possible score of 1 denotes perfect inaccuracy. In the
context of the current elicitation of forecasts across ordered
categories, Brier scores should not be interpreted as high or
low in an absolute sense, as scores vary across cases for
reasons other than prediction skill. As an approximate guide,
ordered Brier score values denote skill if they are lower than
those earned by noncommittal prediction algorithms, as
discussed below.

As a secondary outcome measure, we calculated a rescaled
ordered Brier score, in which the scores across participants for
each trial were rescaled to a distributionwith amean of 0 and an
SD of 1. This enables comparisons of relative accuracy scores
across trials, similar to combining scores in a meta-analysis
across different scales of pain or other metrics. Brier scores for
each expert were derived by averaging their Brier scores for
treatment and placebo arm predictions.

To benchmark forecast skill, we calculated Brier scores based
on noncommittal prediction algorithms. For the MS and ALS
trials, which both used a proportion primary endpoint, the
noncommittal prediction was defined as a flat probability dis-
tribution ranging from 0% to 100%. More specifically, we di-
vided the range of possible outcomes for the primary efficacy
endpoint (proportions of patients, for both trials) into 10 bins.
The bottom border of the lowest bin was 2.5% and the top
border of the highest bin was 97.5%. This setup was identical to
the maximum number of bins available to the experts. The
range of probabilities was then divided equally across the 10
bins, the equivalent of placing 2 out of 20 chips in each of 10
bins. For the stroke trial, we defined the noncommittal pre-
diction as a uniform distribution ranging from complete dis-
appearance of the infarct (i.e., −100%) to a growth in infarct
volume that, based on consultation with a stroke neuroimaging
specialist, would be expected to be fatal in 80% of patients
(+1,500%). These distributions are uninformed, but also rela-
tively cautious, so they do not produce extremely high Brier
scores, that is, high squared errors denoting extreme inaccuracy.
In contrast, highly confident (i.e., very sharp) forecast dis-
tributions may yield very low or very high Brier scores.

Our primary analysis probed whether averaging the forecasts of
our expert sample resulted in predictions that weremore accurate
than noncommittal prediction algorithms. Sampling variationwas
estimated through bootstrapping, running 500 iterations by
resampling forecast distributions, while keeping the number of
observations equal to the actual number per trial and arm.

Secondarily, we probed average forecast skill of individual
experts. We calculated ordered Brier scores for each pooled
distribution, calculated for each bootstrap iteration.

To assess the accuracy of individual experts, we calculated how
often the observed value of each endpoint fell within the middle
95% of the probability distribution for each individual expert’s
forecasts (referred to as individual expert 95% sPI). To account
for sampling error in estimating trial outcomes, we also calcu-
lated the proportion of individual experts’ 95% sPIs that con-
tained values within 2 standard errors of the observed outcomes.
We also used a linear mixed-effects regression model with ran-
dom intercepts for study arm to test the relationship between
forecast skill and the following characteristics of individuals:
coinvestigators vs independent experts (binary), h-index (con-
tinuous variable), and trial experience (categorical variable with
levels high, low, and unknown). We defined statistical signifi-
cance as p ≤ 0.05. As all analyses were exploratory, adjustments
for multiple comparisons were performed only as a sensitivity
analysis, by using wider 99% confidence intervals (CIs) in ad-
dition to 95% CIs in aggregate accuracy comparisons.

Standard protocol approvals, registrations,
and patient consents
Our protocol received ethics approval from McGill IRB and
Charité. All participants provided written informed consent
prior to the interview.
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Table 1 Participant demographic characteristics

Stroke MS ALS

Coinvestigators
(n = 12)

Independent
(n = 20)

Total
(n = 32)

Coinvestigators
(n = 9)

Independent
(n = 11)

Total
(n = 20)

Coinvestigators
(n = 5)

Independent
(n = 14)

Total
(n = 19)

Age, y 46.2 (6.5) 44.4 (7.5) 45.0 (7.1) 43.8 (9.0) 43.3 (11.8) 43.5
(10.1)

45.2 (2.5) 49.2 (8.5) 48.1 (7.5)

Trial experience,
y

18.0 (11.4) 13.3 (7.5) 15.1
(17.6)

18.7 (8.2) 21.5 (11.8) 20.2
(17.7)

10.5 (7.9) 7.2 (8.5) 8.1 (6.0)

H-index 32.8 (14.6) 37.6 (23.9) 35.8
(20.8)

14.3 (10.5) 37.2 (30.3) 26.9
(25.8)

21.2 (14.4) 18.3 (14.4) 19.1
(14.0)

Degree, n

MD 8 11 19 8 7 15 4 8 12

PhD 0 7 7 0 1 1 1 0 1

MD/PhD 2 2 4 0 3 3 0 5 5

MD/MSc 2 0 2 1 0 1 0 1 1

Location, n

Europe 10 16 26 8 5 13 5 0 5

US/Canada 2 2 4 1 3 4 0 14 14

Asia 0 1 1 0 0 0 0 0 0

Other 0 1 1 0 3 3 0 0 0

Abbreviations: ALS = amyotrophic lateral sclerosis; MS = multiple sclerosis.
Age, trial experience, and h-index are shown as mean (SD). Trial experience represents the number of trials in which participants reported having been involved in their career. H-indices were double-extracted from Scopus.
Location was taken as the location of the participant’s affiliated institution.
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Data availability
Anonymized data will be made available upon request to the
corresponding author.

Results
Expert sample
We invited 220 disease experts; 71 agreed to participate in
our survey (32% response rate). All participants who started
the survey also completed it. Demographic characteristics of
survey respondents are provided in table 1.

Primary outcome aggregated
absolute predictions
Combined absolute predictions on primary outcome measures
for placebo response were similar to those for experimental
intervention for all 3 trials (figure 2A). Combined estimates of
outcomes for placebo and treatment arms did not consistently
point to an expectation that experimental interventions would
show a large advantage over placebo (figure 2B). For all 3 trials,
the interquartile range across experts of theirmedian predictions
of treatment effects did not capture reported treatment effects.

Combined expert prediction skill
Forecast skill for combined expert predictions in each of the 3
trials is reflected in figure 3; scores are presented against

a noncommittal prediction algorithm, whereby forecasts were
uniform across the range from worst to best possible outcomes
for all patients.

Combined predictions of experts resulted in predictions that
were significantly less accurate than the noncommittal algo-
rithm for the stroke trial, yielding identical mean Brier scores
for each of the 2 arms = 0.340 (95% CI 0.340–0.340, as both
limits of the prediction distributions were situated above the
observed value) vs 0.185 for the noncommittal algorithm.
Combined predictions were approximately as accurate as the
noncommittal algorithm for both the MS study (mean pooled
Brier across 2 arms = 0.095, 95% CI 0.081–0.133 vs 0.098 for
the noncommittal algorithm) and the ALS study (mean pooled
Brier across the 2 arms = 0.103, 95% CI 0.081–0.185 vs 0.090
for the noncommittal algorithm). The pattern for all the 3 trials
was identical when using wider 99% bootstrap CIs rather than
95% CIs.

Forecasts for the placebo arms in the MS and ALS studies were
somewhat more accurate than the noncommittal algorithm:
mean Brier = 0.085, 95% CI 0.081–0.098 vs 0.098 for non-
committal algorithm in MS and mean Brier = 0.087, 95% CI
0.081–0.133 vs 0.090 for noncommittal algorithm in the ALS
study. Forecasts for the treatment arms were less accurate than
the noncommittal algorithm: mean Brier = 0.105, 95% CI

Figure 2 Aggregated predictions of response and treatment effects

(A) Probability density functions for efficacy endpoints. Horizontal axes have been scaled so that more favorable clinical outcomes are represented farther to the
right. Gray distributions reflect averaged predictions for placebo arms; black distributions are averaged predictions for experimental arms. Solid vertical lines
denote medians of aggregated forecast distributions for placebo and experimental arms; dotted lines denote median observed values in trial publication. (B)
Predicteddifferences betweenexperimental treatment and control. Predicted treatment differenceswerederived fromprobability densities by subtractingmedian
placeboprediction for each forecaster fromthemedian forecast for theexperimental treatment; positive values thusdenoteapredictedpositive clinical effectof the
experimental treatment. Dotted line represents actual difference observed in trial. ALS = amyotrophic lateral sclerosis; MS = multiple sclerosis.

Neurology.org/N Neurology | Volume 95, Number 5 | August 4, 2020 e493

Copyright © 2020 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


0.081– 0.133 vs 0.098 for noncommittal algorithm in MS and
mean Brier = 0.119, 95% CI 0.98–0.185 vs 0.090 for non-
committal algorithm in ALS (figure 3B).

Combined forecasts of coinvestigators did not show greater
optimism about the efficacy advantage of treatment over pla-
cebo arms vs the combined forecasts of independent experts
(data not shown). When each group’s forecast distributions
were combined, coinvestigators and independent experts had
similar accuracy in predicting primary endpoint outcomes
across the 2 arms (Brier scores: 0.340 for coinvestigators vs

0.340 for independent experts in the stroke study, 0.133 vs
0.090 for the MS study, and 0.116 vs 0.107 for the ALS study).

Individual expert prediction skill
The 95% sPI of each expert’s individual forecast distribution
contained the observed trial outcomes among 3.1%, 81.6%, and
71.8% of stroke, MS, and ALS experts, respectively. A sensitivity
analysis calculated the proportions of individual experts’ 95%
sPIs containing values within 2 standard errors of the observed
outcomes. The estimates were only available for the MS and
ALS trials, which utilized proportions as efficacy outcomes.

Figure 3 Ordered Brier scores for all forecasters for 3 neurology trials

(A) Combined placebo and treatment arms. (B)
Separated placebo and treatment arms. Each
forecaster is represented with a circle. Box plots
show medians and 25% and 75% percentiles of
distributions across participants. Dotted black
lines denote Brier scores for noncommittal fore-
cast algorithms. Black triangles display the mean
Brier scores for the aggregated distribution across
all experts. ALS = amyotrophic lateral sclerosis; MS
= multiple sclerosis.
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These proportions were 89.5% and 82.1% of MS and ALS
experts, respectively. For all 3 trials, prediction skill of individual
experts generally underperformed the noncommittal algorithm.
Few experts (3%) predicted more accurately than the non-
committal algorithm for stroke, whereas 15% and 47% of
experts provided more accurate predictions than the non-
committal algorithm for MS and ALS, respectively. Individual
expert skill in predicting outcomes was similar for placebo and
treatment arms.

The accuracy of combined estimates exceeded the accuracy of
individual experts for 2 of the trials (stroke and MS). Spe-
cifically, combining predictions generally resulted in Brier
scores that were lower (better) than 69% and 75% of in-
dividual predictions for the placebo and treatment arms of the
stroke trial, 81% and 56% for the MS trial, and 53% and 37%
for the ALS trial.

Factors associated with individual
prediction skill
The proportions of individual coinvestigators and independent
experts who made predictions that were more accurate than the
noncommittal algorithm were as follows: 8% for coinvestigators
vs 0% for independent experts in the stroke trial, 22% vs 9% in
the MS trial, and 40% vs 50% for the ALS trials. Across the 3
trials, independent experts and coinvestigators did not differ
significantly in forecast accuracy (table 2). Within each in-
dividual trial, independent experts achieved approximately equal
Brier scores relative to coinvestigators for the stroke trial
(coinvestigators mean 0.38 [SD 0.09] vs independent 0.37
[0.05]), the MS trial (coinvestigators 0.25 [0.14] vs in-
dependent 0.18 [0.12]), and the ALS trial (coinvestigators 0.14
[0.10] vs independent 0.15 [0.13]) (figure 4). Independent
experts and coinvestigators did not show large skill differences in
predicting responses in either placebo or treatment arms.

We performed exploratory analyses to test for association be-
tween expert characteristics and forecasting skill (table 2). Ex-
perience in trials had a negative association with accuracy:
experts with above-median years of trial experience registered
higher (worse) Brier scores than those with below-median ex-
perience. Research output and impact, as measured by the
h-index, was not associated with better or worse Brier scores.
Age was also unrelated to accuracy.

Discussion
Combining predictions of neurology experts did not produce
accurate predictions of primary endpoint outcomes for treat-
ment arms any better than a noncommittal algorithm, which
assigns the same probability of trial outcomes across the full
range of possibilities. Combined judgments for the control arms
outperformed the noncommittal algorithm by a small margin
for 2 out of the 3 trials. The stroke trial proved especially difficult
for experts to forecast. This likely reflects the unbounded format
of the outcome variable, percentage change in infarct volume. It

also likely underscores the limited familiarity and clinical
actionability for the imaging endpoints used in that trial.
However, the endpoints used in theMS andALS trials—disease
activity free status and survival rate, respectively—are common
and should be readily interpretable by experts in these disease
areas. That the wisdom of expert communities failed to out-
perform uninformative forecasting, like the noncommittal al-
gorithm, might be taken as evidence that our sample of experts
was poorly informed about the trials they were asked to forecast.
However, 37.5% of our sample were coinvestigators and hence
well-acquainted with the design characteristics and eligibility of
patients entering the trial. That coinvestigators did not show
major differences with independent experts suggests a complete
misunderstanding of trial methods is less plausible. We further
note that combined expert opinion did exhibit realistic skepti-
cism regarding the relative effectiveness of treatment vs placebo.
Our inability to use crowdsourcing to predict outcomes in the
treatment arm of all trials is consistent with studies of oncolo-
gists predicting cancer trial outcomes and researchers predicting
preclinical cancer replication study outcomes,20,21 but contrasts

Table 2 Predictors of forecast accuracy, expressed in
terms of standardized Brier scores, based on
responses across 3 trials

Values
(t statistics)

Model 1: Role in trial

Intercept 0.11 (0.80)

Coinvestigator Reference

Independent −0.17 (−1.00)

Model 2: H-index

Intercept 0.01 (0.10)

Below median Reference

Above median −0.02 (−0.15)

Model 3: Age

Intercept 0.11 (−0.90)

Above median Reference

Below median 0.16 (−0.90)

Not reported 0.34 (1.29)

Model 4: Trial experience

Intercept −0.30 (−2.45)

Below median Reference

Above median 0.67 (3.71)

Not reported 0.26 (1.24)

Values for categorical predictorsdenote regression coefficients for differences
vs the reference group. Positive values denote worse accuracy, for example,
for those with Above Median trial experience vs the Below Median reference
group. For t statistics (shown in parentheses), larger absolute values indicate
higher confidence that estimated accuracy differences are not due to chance.
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with success using crowdsourcing to accurately forecast
medical prognoses,14 diagnosis,22,23 and emergence of epidemic
diseases.24–26

At the level of individual experts, 19% of neurologist experts
outperformed the noncommittal algorithm. Focusing only on
the MS and ALS trials, approximately 76% of individual 95%
sPIs captured the mean observed result, indicating moderate
overconfidence in relation to observed outcomes, in line with
what others have seen with prediction in other areas.27 It
should be noted that estimates provided in trials themselves
reflect random variation. If we account for this and credit
experts for forecasts that come close to the observed out-
comes, the proportion of 95% sPIs capturing the observed
outcomes increases to 90% for MS experts and 82% for ALS
experts. That 95% sPIs for most MS and ALS experts con-
tained the actual outcome for each trial arm indicates some
skill in anticipating outcomes.

While combining forecasts for placebo arms resulted in
better predictions than the noncommittal algorithm for 2 of
the trials, and experts expressed generally realistic expect-
ations about differences between placebo and treatment
arms, expert forecasts underperformed the noncommittal
algorithm for treatment arm estimates. It is possible that
providing experts with model-based information on expec-
ted response in placebo arms would enable greatly improved
prediction of disease response in treatment arms. The lim-
ited prediction skill exhibited by individual neurology
experts somewhat conflicts with evidence elsewhere showing
neurologists have moderate to good skills in predicting

outcomes for critically ill neurologic patients5 and functional
outcomes after intracerebral hemorrhage.28,29

Our findings should be interpreted in light of several limi-
tations. First, with only 6 events (2 arms in 3 trials) and no
previous studies of prediction in neurology research, the
present study should be understood as hypothesis generating,
and patterns observed in this study may not generalize to
other neurology trials. The observed outcomes of the trials are
subject to potential biases and random variation. Expert
forecasts may have fared better had they been assessed relative
to an idealized “true” outcome for each trial. However, such
values would be impossible to obtain absent numerous rep-
etitions of the trials in our study. As none of the 3 trials
resulted in a positive outcome, our study was not able to
measure howwell expert forecasts could discriminate between
effective and ineffective treatments tested in trials. This limi-
tation reflects the practical constraints our team encountered
in identifying neurology trials that met eligibility criteria.
Second, though our participants were either coinvestigators in
each trial or productive researchers with relevant expertise, we
cannot exclude the possibility that a different sample of
experts might have shown greater skill. It might also be in-
formative to examine predictions generated by a wider pool of
knowledgeable individuals, including practitioners. Third, we
did not directly elicit estimates of differences between treat-
ment and placebo. Thus, our observation that predicted dif-
ferences were realistically skeptical is based on assumptions
about independence between treatment and placebo pre-
dictions and should be interpreted with caution. Fourth, that
predictions were so far off for the stroke study demonstrates

Figure 4 Ordered Brier scores for efficacy outcomes, combined across placebo and treatment arms, by coinvestigator
(Co-I) vs non-coinvestigator (Indep) role

Box plots reflect interquartile range andmedians.
ALS = amyotrophic lateral sclerosis; MS = multiple
sclerosis.
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the sensitivity of our methodology to familiarity with end-
points. Fifth, our results are based on a particular method of
eliciting forecasts and aggregating them. It is possible that
other elicitation approaches, stronger performance incentives,
or different methods for combining predictions might pro-
duce greater accuracy. At the same time, it is possible that the
settings in which research decisions actually take place would
produce worse forecasts due to factors like groupthink or risk
aversion.30 Finally, the noncommittal algorithm yields iden-
tical predictions for the placebo and treatment arms. There-
fore, they would not be expected to perform as well if the trials
observed large treatment effects.

The fact that at least some experts (but not all of them) enter-
tained the possibility of disease responses in treatment arms for
each of the trials in our study is consistent with there having been
a state of clinical equipoise at the time of elicitation. Moreover,
even the extreme and confident pessimism expressed in the ALS
trial does not rule out equipoise. Given the safety profile of
rasagiline, the nonavailability of effective disease-modifying
treatments, and the inexorable course of ALS, harboring a low
but nonzero expectation of observing a treatment benefit is
compatible with the trial having fulfilled clinical equipoise.
However, the observation that most experts were unable to
outperform a completely noncommittal prediction algorithm,
even for the placebo arm, suggests deficits in prediction skill,
rather than intrinsic unpredictability of trial outcomes.

Decision-making in research by definition entails high levels
of uncertainty. If replicated in other studies, our findings
would have several possible implications for decision-making
in research. First, if combined forecasts outperform the ma-
jority of individual estimates, synthesizing diverse viewpoints
is critical for good decision-making about trial design and
priority setting.18 Second, our findings suggest that simple
wisdom of the crowd approaches for estimating treatment
effects are unlikely to be an adequate substitute for random-
ized trials in neurology. Finally, in our study, coinvestigators
were no more optimistic and no more skilled at prediction
than independent investigators. Such findings, should they
generalize, are reassuring for human protections and informed
consent. They suggest that the individuals who enroll their
own patients are not any more likely than independent
experts to harbor biases that would interfere with balanced
communications about risk and benefit.
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