Table 3.
Average results for the five tested classification approaches, i.e., average of the results for the two splits.
Method | Macro Average | Micro Average | |||||
---|---|---|---|---|---|---|---|
Precision | Recall | F1-score | Precision | Recall | F1-score | MCC (RK) | |
Pre-Trained ResNet-50 | 0.589 | 0.536 | 0.530 | 0.839 | 0.839 | 0.839 | 0.826 |
Pre-Trained ResNet-152 | 0.639 | 0.605 | 0.606 | 0.906 | 0.906 | 0.906 | 0.898 |
Pre-Trained DensNet-161 | 0.640 | 0.616 | 0.619 | 0.907 | 0.907 | 0.907 | 0.899 |
Averaged ResNet-152 + DenseNet-161 | 0.633 | 0.615 | 0.617 | 0.910 | 0.910 | 0.910 | 0.902 |
ResNet-152 + DenseNet-161 + MLP | 0.612 | 0.606 | 0.605 | 0.909 | 0.909 | 0.909 | 0.902 |
Random Guessing | 0.044 | 0.038 | 0.034 | 0.044 | 0.044 | 0.044 | 0.000 |
Majority Class | 0.004 | 0.043 | 0.008 | 0.108 | 0.108 | 0.108 | N/A |