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The archives are half-empty: an assessment
of the availability of microbial community
sequencing data
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As DNA sequencing has become more popular, the public genetic repositories where

sequences are archived have experienced explosive growth. These repositories now hold

invaluable collections of sequences, e.g., for microbial ecology, but whether these data are

reusable has not been evaluated. We assessed the availability and state of 16S rRNA gene

amplicon sequences archived in public genetic repositories (SRA, EBI, and DDJ). We

screened 26,927 publications in 17 microbiology journals, identifying 2015 16S rRNA gene

sequencing studies. Of these, 7.2% had not made their data public at the time of analysis.

Among a subset of 635 studies sequencing the same gene region, 40.3% contained data

which was not available or not reusable, and an additional 25.5% contained faults in data

formatting or data labeling, creating obstacles for data reuse. Our study reveals gaps in data

availability, identifies major contributors to data loss, and offers suggestions for improving

data archiving practices.
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Advances in microbiological research have been marked by
the steady development and optimization of sequencing
technologies. Where culture-dependent methods forced

microbiologists to focus on a small portion of the world’s
microbes1,2, high throughput sequencing methods allowed the
field to bypass this limitation and indirectly observe complete
microbiomes at increasingly higher resolutions. As a result, the
last decade has also seen an exponential growth in the number
of studies producing sequencing data, as well as in the quality of
this data3.

In particular, 16S rRNA gene sequencing, by which a section of
the small ribosomal subunit’s RNA gene is amplified, sequenced,
and used as a tag to identify prokaryotic taxa (archaea and bac-
teria), has prospered during this time. 16S rRNA gene amplicon
sequencing has provided microbial ecologists with census data for
microbial communities similar to, or often more complete than,
those obtained by macroecologists during field sampling,
for example. High-throughput sequencing has supported research
into the ecology of microbial communities, and a renewed
interest in microbiome research. To date, individual studies have
found parallels between the ecological patterns of microbiomes
and those found for macroecosystems e.g., ecological scaling,
species-abundance distributions, species-area relationships, and
distance-decay4,5. However, the generalizability of these findings
across ecosystems requires the systematic meta-analysis of
ecological patterns across microbial communities in different
environments5–11.

Importantly, the generally uniform format of sequencing data
has favored archiving practices12,13, and the fields of genetics and
molecular ecology are often cited as pioneers within ecology14. As
microbial ecology has moved towards an increasing reliance on
sequencing, the deposition of the resulting sequencing data into
public genetic databases has become standard practice, and often
a prerequisite for the publication in peer reviewed journals.
Presently, the archiving of sequencing data is centralized in the
three public genetic repositories which are members of the
International Nucleotide Sequence Database Collaboration
(INSDC): NCBI’s Sequence Read Archive (SRA), the EBI’s Eur-
opean Nucleotide Archive (ENA), and DDJ’s Sequence Read
Archives (DRA)15. These databases are regularly synchronized
and support compatible data formats, creating an opportunity for
data reuse and synthesis in microbiome research. Recent meta-
analyses of publicly available sequencing data have advanced the
fields of medicine9,16, microbiology10, and microbial ecology11.

It is expected that future advances in these areas will rely heavily
on sequences which have been archived5,7; however, the degree to
which the data which is currently archived is reusable has not
been evaluated.

For archived data to serve synthesis efforts, they must be stored
in findable, accessible, interoperable, and reusable formats12.
Accordingly, INSDC databases require users to provide experi-
ment and sample-level metadata17 in addition to raw sequence
data. In turn, these databases provide the users with stable
accession numbers and the long-term storage of their data.

To evaluate how much of the currently deposited sequencing
data may serve as a resource for future syntheses, we performed
a comprehensive, in-depth assessment of data availability and
reusability in microbial ecology. Using a combination of
custom-built text parsing algorithms and manual curation, we
surveyed all the literature in 17 microbiome-specific journals,
selected studies which performed 16S rRNA gene amplicon
sequencing and evaluated the extent to which the data were
reusable. Our study shows that the lack of data deposition
to appropriate repositories, improper file formatting and
inconsistent labeling affected more than half of the amplicon
sequencing studies surveyed.

Results and discussion
According to an initial keyword search, we selected the 17 most
popular microbial ecology-related journals, as these were more
likely to have sequence-specific data deposition instructions or
requirements. We surveyed all the articles published in these
journals between January 2015 and March 2019 (n= 26,927
articles, Supplementary Table S1), as concerns over data deposi-
tion practices began to grow in 201514 and were soon followed by
stricter standards for data availability12. A custom-built pattern-
based text extraction algorithm followed by manual curation, we
selected those studies which performed 16S rRNA gene amplicon
sequencing and listed INSDC-compliant accession numbers (n=
2015, Supplementary Table S1; 145,203 samples).

To confirm that our parsing algorithm did not miss accession
numbers in articles containing 16S rRNA gene amplicon
sequencing, we randomly selected 150 articles which mentioned
16S rRNA, but for which no accession numbers were detected, for
manual inspection. Of these, one contained a misspelled accession
number, two had archived their sequences in unconventional
repositories (Google Drive and GEO, a gene expression database,
Supplementary Data 2), and 19 were identified as having
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Fig. 1 Popular locations for data storage. Data for all studies which contained 16S rRNA amplicon sequencing (a), and the V3–V4 subset (b); n= 2656
and n= 635 studies, respectively. For the entirety of the study, studies which contained amplicon sequences but did not deposit them were inferred by
manually checking 150 randomly-selected articles which did not contain INSDC accession numbers or refer to alternative databases, indicated in lighter
yellow. For the V3–V4 subset, studies which contained the keywords “16S rRNA”, “515”, and “806” were selected. Studies for which INSDC-compliant
accession numbers were reported but which did not exist on any INSDC database are shown in lighter blue.
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performed 16S rRNA gene amplicon sequencing, but had not
included any reference to the data. We found no cases in which
accession numbers or sequence data were stored in supplemen-
tary materials. From this group, we estimate that 18% of the
studies in our database (n= 469) performed 16S rRNA gene
amplicon sequencing but did not provide access to the data
(Fig. 1a). Four studies mentioned deposition data in dbGaP18,
and we could verify the existence of three of these studies. We
found that an additional 6.5% of the studies had deposited their
data in the Qiita19, MG-RAST20, and figshare databases (n= 14,
n= 134, and n= 24 studies, respectively). Of the estimated
2,656 studies employing 16S rRNA gene amplicon sequencing,
75.9% deposited their data to an INSDC database in the period
studied (Fig. 1a).

To obtain more precise estimates of the percentage of articles
which deposited their data in each database, we focused on the
subset of 635 studies which sequenced the V3–V4 region of the
16S rRNA gene between base pairs 515 and 806 (heretofore
V3–V4 subset), a target region which has gained popularity
since its development and use by the Earth Microbiome
Project21,22. Of these, 74.5% (n= 474) studies listed INSDC-
compliant accession numbers within the article, but of these,
accession numbers from 5% of the studies (n= 33) were not
findable on any INSDC database. Additionally, 19% (n= 121)
did not provide an identifiable link to the data, and 6.8% of the
studies deposited their data in the Qiita, MG-RAST, and fig-
share databases (n= 9, n= 24, n= 7, respectively, Fig. 1b). Two
studies provided SRA submission IDs rather than accession
numbers, and were also inaccessible.

The increasing popularity of microbial community sequencing
was evident in our data. Over the period studied, the number of
studies in the V3–V4 subset rose from 56 in 2015 to 214 in 2018
(Supplementary Fig. 1a). The proportion of publications which
claimed to deposit data to INSDC databases increased slightly
over time, from 33/56 in 2015 to 172/214 in 2018 (χ2= 6.6, p=
0.01, Supplementary Fig. 1b), suggesting an increasing tendency
towards deposition in INSDC databases. Deposition to alternative
databases decreased (χ2= 14.04, p < 0.001, Supplementary
Fig. 1c), indicating a switch to these standardized databases but
not towards making data accessible in general, as the proportion
of studies which did not deposit their data was remarkably stable
over time (χ2 < 0.28, p= 0.6, Supplementary Fig. 1d). During this
period, the number of studies without publicly available data rose,
from 13 in 2015, to 38 in 2018 (Supplementary Fig. 1d).

Data deposition to any public repository is preferable over no
deposition at all. However, despite the advantage of using the
same platform for the housing, (re-)analysis, and storage of
data, non-INSDC alternatives were not designed for the long-
term storage of 16S rRNA amplicon sequencing data, and thus
are likely to lead to the long-term loss of information. Qiita’s
intended use is “the analysis and administration of multi-omics
datasets” (https://qiita.ucsd.edu/). This platform is not designed
for the long-term archiving of these data, and accordingly, Qiita
includes software to facilitate deposition of sequences to the
ENA, at which point MIMARKS requirements are enforced17.
Similarly, MG-RAST20 is an online platform for metagenomics
analyses which also facilitates sequence deposition to appro-
priate databases. In contrast, figshare is a general repository
which hosts most forms of research output (https://figshare.
com/), but it is neither sequence-specific nor richly searchable,
and does not enforce community standards.

Microbiome research spans a wide range of fields including
ecology, epidemiology, medicine, biotechnology, and agricultural
engineering, and is likely to become more integrative in the
future23. Synthesis efforts to bridge knowledge gaps across
environments6 will likely rely on the ability to find data by

searching databases directly, rather than resorting to a body of
literature which is currently spread across the journals from
various fields. To ensure future reusability, it is therefore essential
that microbiome data is deposited to the appropriate INSDC
databases, which also store searchable metadata and allow for
automatable access to large datasets, and that current databases
continue to make improvements to increase the searchability of
their databases.

Data deposition. Due to the sensitive nature of unpublished data,
INSDC databases allow users to upload their data and receive an
accession number but keep the data private indefinitely24. This
was evident in our data collection. We found that 2.2% of the
studies (n= 45) listed incorrect accession numbers, for example
placeholders (Supplementary Fig. 2b). Over the period studied,
this proportion went up significantly (χ2= 9.18, p < 0.001), from
1.3% in 2015 to 5.3% in 2019. Among the 2,015 articles which
contained accession numbers, 7.2% (n= 146) of the articles had
listed accession numbers correctly but had not made the sequence
data public, and this proportion increased slightly over time from
5.9% in 2015 to 12.2% in 2019 (χ2= 3.9, p= 0.05, Supplementary
Fig. 2c), indicating that recent articles were more likely to have
not made their data public at the time of manuscript publication.
An additional 2.5% of the studies (n= 51) had not made their
sequence metadata public, a trend which increased over the
period studied (χ2= 14.83, p < 0.001, Supplementary Fig. 2d).

Data format. While microbiome sequence data has been lauded
for its uniform format, we found that the sequence files deposited
varied quite widely in the format in which they were deposited,
often rendering them unusable. Among the 441 in the
V3–V4 subset for which INSDC-compliant accession numbers
were available and data was public in the repository (representing
45,440 samples), we found that between 2015 and 2019, 11.8% of
the studies (n= 52) had uploaded a single sequence file for the
entirety of the project, despite analyzing more than one sample
(Fig. 2b). Currently, most sequencing platforms are able to output
demultiplexed data, i.e., one or more sequence file(s) per sample.
However, common legacy formats consisted of one or two files
for the entirety of the run as well as a mapping file, which con-
tained the primer barcodes used to demultiplex the sequences
(i.e., sequence metadata file). INSDC platforms require sequen-
cing data to be demultiplexed prior to deposition, rendering non-
demultiplexed raw data unusable due to elimination of any
header information in the sequence files. Our data reflected this
legacy effect: between 2015 and 2019, the proportion of studies
which contained a single sequence file decreased significantly
from 24.5% to 9.5% (χ2= 16.92, p < 0.001, Fig. 2c). Furthermore,
over this period, the proportion of studies which used Illumina
platforms increased, and the proportion which used the older
454 pyrosequencing technique decreased (χ2= 10.96, p < 0.001;
and χ2= 10.46, p= 0.001, respectively; Fig. 2c). Our findings
shed light on the effect that fluxes in sequencing platform and
file formats have on the scientific community’s ability to access
data later.

Further variability in the formatting of sequence data
complicated data reuse. For example, we found that 1.6% of the
studies (n= 7) contained sequence files which lacked standard
quality scores (Supplementary Fig. 3a). During sequence proces-
sing, quality scores allow users to assess the quality of the data
and to exclude sequence reads with poor quality. Therefore,
sequence data lacking quality scores is not reusable. We also
found that 18.1% (n= 80) of the studies contained putative
primer sequences, but there was no significant change over time
in this proportion (χ2= 2.33, p= 0.13, Supplementary Fig. 3b).
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Primer presence is not a strong determinant of whether data is
reusable, and it is advised that data is archived in the rawest
format possible. However, knowledge of primer presence and
primer sequence identity are essential in the proper reprocessing
of the data in the future, and currently, there are no standard
methodologies for including this information in the metadata.
Without this information, barcode and primer sequences may be
interpreted as regular data. The lack of consensus on primer
presence is one example of the complexities that underlie the
analysis of seemingly reusable data. Other ‘hidden’ obstacles
include the lack of information on the formatting of quality
scores, and a lack of information on the primer sequence and
length. Focusing on the V3–V4 subset allowed us to collect all

possible primer sequences for this region and test for their
presence; however, this is labor intensive, and forces data re-users
to make inferences about the sequence formatting in their
analyses, reducing the quality of research. Including extensive
primer and file formatting information, as well as documentation
of computational processing steps, which is automatically
provided by state-of-the-art pipelines such as QIIME225 or
Snakemake workflows26 in the sequence metadata, may greatly
facilitate data re-use.

Data labeling. Properly labeling sequence data and including
detailed metadata is essential to data reuse27. Among the studies
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in the V3–V4 subset which provided accession numbers, errors in
labeling exceeded any other type of error (Fig. 3). Because our
data collection contained 16S rRNA amplicon sequencing studies
exclusively, we checked whether this information was included
correctly in the sequence metadata. Among these studies, 12%
(n= 53) of them had incorrectly labeled their sequences, using
terms other than “Amplicon”. The percentage of studies with this
error varied widely, from 18.2% (n= 6) in 2015 to 5% (n= 1) in
2019, and no trends were found over time (χ2= 1.41, p= 0.24,
Supplementary Fig. 3c).

A defining development in the field of microbial ecology has
been the advent of paired-end sequencing, by which both ends
of the fragment are sequenced and later aligned in silico,
resulting in a higher read accuracy or in longer read lengths28.
Next-generation sequencers currently output forward and
reverse reads in separate files. We checked whether datasets
labeled as “paired” also contained files corresponding to
forward and reverse reads (i.e., were labeled appropriately).
This was not the case for 16.8% of the studies targeting the
V3–V4 region (n= 74), and exhibited no temporal patterns
(χ2= 2.09, p= 0.15, Supplementary Fig. 3d). Much like datasets
which include putative primer sequences, when data is labeled
as paired-ended and only a single file per sample is available,
future users must infer what the true state of the sequence data
is. Upon a qualitative inspection of these datasets, we found
that a common source of the error was that only the forward
reads or merged reads had been deposited. This labeling error
does not render the data unusable, but makes the sequencing
conditions hard to understand for future users, who must
reverse engineer the methods from the data format and quality
information.

Repopulating the archives. Errors in data deposition may render
entire datasets unavailable for future research, or they may greatly
complicate future data reuse. To this end, we followed the
635 studies which performed amplicon sequencing of the
V3–V4 segment of the 16S rRNA gene (Fig. 3). Throughout the
process of archiving data, we found that 19% were not archived at

all, while 6.3% of the datasets were archived in other databases
which were not designed for this task. A further 6.1% datasets
were improperly deposited to sequence databases, while 11.5%
and 8.9% were made partially (i.e., contained putative primer
sequences) or completely unavailable (i.e., not demultiplexed) due
to errors in data formatting, respectively. Finally, errors in
labeling affected 14.6% of the available data.

Privacy issues, which are common in studies with human
subjects, seem to have played only a minor role in choosing non-
public repositories (4 studies in our dataset reported using
dbGaP). One work-around for keeping microbial community
data open is the removal of potentially identifying human reads.
With the increasing number of more costly shotgun metagen-
omes, community standards for archiving either in closed
databases like dbGaP or the removal step and its documentation
should be formulated in the interest of re-usability without
impeding privacy.

In total, only 34% of the studies identified (n= 216) contained
fully reusable datasets, and 25.5% (n= 162) contained partially
available datasets. A further 40.3% of studies (n= 256) contained
data that was either not available or not reusable, severely limiting
advances in synthetic microbiome research and compromising
some of the fundamental principles in science12. An additional
hurdle to data reuse is the availability of suitable metadata, and an
assessment of the content and informational value of the
metadata supplied for studies in the V3–V4 subset is presented
in Supplementary Figs. 4–6 and 8.

Our findings show the true extent of reusability of the
sequencing data which has been deposited over the past 5 years,
and reveal a serious gap between the sequence data which is
uploaded and that which may serve to inform future research. By
identifying the main reasons for data loss (i.e., loss due to data
location, errors in data deposition, errors in data formatting, and
errors in data labeling), the present study provides the basis of
and concrete recommendations for improved data archiving
practices (Table 1). Given the plethora of pressing environmental,
biotechnological, and medical challenges, preserving microbiome
data is particularly relevant across fields of basic and applied
research.
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Methods
Journal selection. To select journals for our study, a preliminary survey of the
literature was performed in February 2019 on Google Scholar with the following
search query: “bacteria” AND “515” AND “806” to obtain a preliminary assessment
of the literature employing amplicon sequencing V3–V4 region of the 16 S rRNA
gene, which has been recommended and popularized by the Earth Microbiome
Project22. Results were filtered to include only publications since 2015 and yielded
~8600 hits. The software Publish or Perish29 was used to obtain general biblio-
graphic information for the first 1,000 hits for the Google Scholar query (refined to
bacteria AND 515 AND 806 NOT book patent) for each year between 2015 and
2019, yielding 4,635 results (available in Supplementary Table 1). The 17 most
common journals in this list were considered the main publishers of microbial
ecology data (Supplementary Table S1) and were selected for further analyses. The
preprint server bioRxiv was excluded, because we only considered work that had
passed the reviewing process. Similarly, we excluded journals which were not
specialized in microbiology or microbiome research (i.e., PeerJ, Nature Commu-
nications, PLOS ONE), as specialist journals had more specific and stringent
requirements for data deposition, and the authors of articles in these journals were
more likely to be acquainted with microbiome data (Supplementary Data 4).

In March 2019, all articles from each of the selected journals published between
January 2015 and March 2019 were downloaded as follows: the DOIs for all
publications for each journal for the period studied were obtained by querying the
Web of Science, using the Publish or Perish software. The concatenated list of DOIs
was entered into Citavi (https://www.citavi.com) to create a bibliography and to
download the corresponding articles as PDFs. Articles for which the PDFs could
not be downloaded were excluded. The final set included 26,927 articles.

PDF preprocessing, text mining, and article selection. After renaming the entire
corpus, we checked the PDF format for each file using pdfinfo of poppler tools
(https://poppler.freedesktop.org/). We excluded invalid pdfs (n= 12), and applied
the command pdftotext to extract plain text from each pdf. For each article, a
corresponding searchable TEI XML file (https://tei-c.org/) was created using the
GROBID v.0.5.4 command processFulltextDocument (https://github.com/kermitt2/
grobid/). In 218 cases, GROBID was not able to generate such XML documents,
and these were excluded from further analyses.

For the extraction and parsing of each TEI document, we developed and
implemented a customized python package (https://github.com/komax/teitocsv).
Briefly, each TEI document was parsed and searched for occurrences of general
patterns including author, DOI, and journal. From the title, abstract, and main text
fields (excluding references and supplementary materials), we extracted patterns
indicating their relevance to this study, in particular accession numbers
corresponding to INSDC-associated databases (specifically PRJ, ERP, DRP, SRP,
SAME, SAMND, SAMN, ERS, ERX, DRX, SRX, DRR, SRR, ERZ, DRZ, SRZ
followed by up to six digits) and references to the 16S rRNA gene, high throughput
sequencing platforms, and the 16S rRNA gene region sequenced (i.e., primers).
If no INSDC-compliant accession number was detected for an article, we also
recorded whether alternative databases MG-RAST, figshare, or Qiita were
mentioned in the text. These data were outputted as a single CSV file summarizing
the findings for the entire corpus, with each accession number occupying a separate
row (multiple rows per article possible) and each column capturing an aspect of
pattern matching (i.e., DOI, sequencing platform). A detailed flowchart of the
article selection process is included in Supplementary Fig. 7. We also searched all
articles referencing the 16S rRNA gene for mention of the dbGaP database (in any

Table 1 Recommendations for the future improvement of data archiving practices.

Studies
affected

Issue Recommendations

31.4 % Data is not readily accessible
• Data is not deposited
• Data is not deposited to INSDC-
affiliated databases

• Accession numbers are incorrect
• Data is private
• Metadata is private

Researchers:
• Make deposited data available upon a manuscript’s publication.
• Ensure accession numbers are correct in the published article.
• Develop community standards on removal of identifying human reads and storage of
clean microbiome data.

Publishers:
• Require that the sequencing data is available upon article submission, and remind
authors to make the data publicly available by the time of publication42.

• Demand that datasets are deposited to the appropriate INSDC databases prior to
submission in order to guarantee their long-term availability.

Data archives:
• Require that users select a date to make data public during the deposition process.

23.6% Changes in data formatting practices
• Data is uploaded in legacy file formats
• Single sequence files are uploaded for
paired-end data

Researchers:
• Ensure that a minimum set of data is provided in order to allow for reproducibility. This
includes formally collecting and depositing metadata to include experiment, sample, and
sequence information; and recording protocols using modern tools43 (i.e., protocols.io
for laboratory protocols and R Notebooks or Jupyter Notebooks for bioinformatics
code).

Data archives:
• Allow for the deposition of more diverse sequence file types, (i.e., allow for the
deposition of sequence metadata files).

• Develop new standards which require the reporting of metadata on sequencing and
sequence processing. Essential information such as DNA extraction, sequencing, and
computational processing and data provenance should be providable via a DOI.

• Have a common and precise language regarding ‘best practices’ for data deposition
(e.g., the inclusion of primers)17.

• Keep publicly available changelogs of database guidelines, so that users may
understand how and why data was deposited in a particular format in the past.

14.6% Mislabeling
• Amplicon sequences not listed as
‘amplicon’

• Single sequence files are uploaded for
paired-end data

Researchers:
• Become familiarized with the terms associated with sequencing and sequence formats
for proper data upload44.

• Proactive interaction with database holders (i.e., helpdesk) to ensure that data
deposition is done correctly.

Publishers:
• Demand that the metadata tables be included during article submission for peer review.
Data archives:
• Recognize that amplicon sequencing is an increasingly interdisciplinary technique, and
continue the current trend towards improved documentation and explanations. In
particular, users may benefit from more precise guidelines into what constitutes
informative metadata for the purposes of archiving (e.g., listing the environment as
‘human’ vs. ‘human gut’, Supplementary Fig. 4).
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combination of capitalized letters) and verified the existence of the accessions
manually. Since these data are protected, the hits were not included in the following
analyses.

The accuracy of our parsing methodology was confirmed by manually
inspecting 150 randomly-selected articles which mentioned 16 S but for which no
accession number or alternative database was detected (Supplementary Data 2). Of
these, only one article contained an accession number which was incorrectly
reported (i.e., missing characters), and two had deposited their data in
unconventional locations (google drive and the GEO database). Of the 150 articles
inspected, none had deposited sequence files or accession numbers in the
supplementary section. These articles were also used to estimate the number of
articles which described 16 S rRNA amplicon sequences but did not provide an
accession number for the stored data.

To assess the completeness of our data relative to all available amplicon
sequencing datasets currently in existence, we conducted a Web of Science search
for all articles citing the Mothur30 or QIIME25,31 bioinformatic tools for processing
amplicon sequences on March 10, 2020, excluding all publications which were not
articles or early-view articles, and had been published between 2015–2019. These
workflows are the most common tools for processing amplicon sequences, hence
either one is likely to be cited in articles reporting 16 S rRNA gene amplicon
sequencing data. Among our 17 target journals, they were cited by 1984 articles
(Supplementary Data 5).

Data access. To access the sequencing data, ranges of accession numbers within
articles were resolved to single accessions in a two-step process: first, all potential
ranges were defined based on the occurrence of multiple accession numbers with
the same prefix within the same manuscript. Secondly, ranges larger than 40
accessions per study were verified manually and smaller ranges were included
automatically, because all ranges between 30 and 40 were found to contain true
ranges of accession numbers in a manual check. False positive accessions intro-
duced in this step were manually removed during the final analysis.

Run-level metadata in the sequence read archive were mined for all accessions via
the NCBI’s Entrez Direct (EDirect) toolkit’s esearch and efetch (esearch -db sra -q
<ACCESSION > | efetch -format runinfo) on the 28th June 2019. We manually
curated 964 articles containing accession numbers that did not yield any data, or that
yielded metadata which was not labeled with the library strategy “AMPLICON” to
exclude 577 articles from further analysis that did not report amplicon sequencing
results of phylogenetic marker genes. Accession numbers from articles that were
verified to report amplicon sequencing results but did not lead to sequence read
sequencing metadata were manually confirmed on the NCBI web portal.

V3–V4 subset. To assess the validity of the submitted (raw) sequencing data, we
focused on the accessions mined from articles which mentioned the most fre-
quently used primer pair 515F and 806R8,32 (Supplementary Fig. 8). Specifically,
for the 515F primer, we captured any combination of the occurrence of 515F(wd)
or F(wd) 515 which was separated an arbitrary number of white spaces in addition
to barcoded versions of the original and the modified 515F primer. For the 806R
primer, we exhausted all variations of this primer analogously. Our procedure also
captures non-minimal mentions (i.e, 806Rb). For this dataset (referred to as 515F-
806R-subset), 1,000 reads per submitted fastq-file were downloaded on July 2nd

2019 using NCBI’s prefetch, vdb-validate and fastq-dump tools (runs specified in
the library layout field as single-end sequencing: prefetch <RUN-LEVEL
ACCESSION >&& vdb-validate <RUN-LEVEL ACCESSION >&& fastq-dump -X
1000 <RUN-LEVEL ACCESSION > ; runs specified as paried-end sequencing:
prefetch <RUN-LEVEL ACCESSION >&& vdb-validate <RUN-LEVEL ACCES-
SION >&& fastq-dump -X 1000 --split-3 <RUN-LEVEL ACCESSION > 33. In
studies containing only one fastq file, potential barcodes were extracted by trim-
ming reads starting from the 515F or 806R primer sequences using cutadapt
version 1.1834. The number of reads containing potential barcodes of 4–30 base
length adjacent to the primers, and the number of different barcodes per study
were assessed.

Sequencing data evaluation and metadata access. Sequences were searched for
both primers in the degenerate form35,36 and their reverse complements allowing
for 20% mismatches and requiring 10 bases overlap. Read qualities were assessed
using FastQC v0.11.337.

All metadata connected to the samples of the 515F-806R-substudy was accessed
on August 4th 2019 via the biosample accession numbers from the run-level
metadata using the NCBI’s Entrez Direct (EDirect) toolkit (esearch -db sra -query
<BIOSAMPLE_ID > | elink -target biosample | efetch -format docsum | xtract
-pattern DocumentSummary -element Attribute@attribute_name,Attribute)38. The
retrieved metadata was collated per study using R.

Statistics and reproducibility. All analyses and visualizations were performed in
R 3.6.139. To test for changes in the percentage of datasets which fulfilled a par-
ticular condition over time, we used a chi-squared test for trend in proportions. For
the metadata analyses, we focused on the metadata supplied for the V3–V4 subset
of studies. To assess the environments studied in this subset, we looked at the
frequency of different environments reported in the “ScientificName” field.

To assess the informative potential of different metadata fields, we divided the
fields into ‘mandatory’ if they were present in all datasets, and ‘popular optional’ if
they were present in more than 25% of the studies. Note that whether a field is
mandatory may change over time as INSDC deposition policies are improved. To
determine the informative potential of each of these fields, we divided the number
of samples in each study by the number of factor levels.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available as supplementary material
and at https://github.com/drcarrot/Data_availability_study, https://doi.org/10.5281/
zenodo.395330740.

Code availability
The pattern-based text extraction algorithms are available at https://github.com/komax/
teitocsv, https://doi.org/10.5281/zenodo.395331341. The python and R code used for data
extraction and analysis is available at https://github.com/drcarrot/Data_availability_study,
https://doi.org/10.5281/zenodo.395330740.
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