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Ion mobility collision cross-section atlas for known
and unknown metabolite annotation in untargeted
metabolomics
Zhiwei Zhou 1,2, Mingdu Luo1,2, Xi Chen1,2, Yandong Yin1, Xin Xiong1, Ruohong Wang1,2 &

Zheng-Jiang Zhu 1✉

The metabolome includes not just known but also unknown metabolites; however, metabolite

annotation remains the bottleneck in untargeted metabolomics. Ion mobility – mass spec-

trometry (IM-MS) has emerged as a promising technology by providing multi-dimensional

characterizations of metabolites. Here, we curate an ion mobility CCS atlas, namely AllCCS,

and develop an integrated strategy for metabolite annotation using known or unknown

chemical structures. The AllCCS atlas covers vast chemical structures with >5000 experi-

mental CCS records and ~12 million calculated CCS values for >1.6 million small molecules.

We demonstrate the high accuracy and wide applicability of AllCCS with medium relative

errors of 0.5–2% for a broad spectrum of small molecules. AllCCS combined with in silico

MS/MS spectra facilitates multi-dimensional match and substantially improves the accuracy

and coverage of both known and unknown metabolite annotation from biological samples.

Together, AllCCS is a versatile resource that enables confident metabolite annotation,

revealing comprehensive chemical and metabolic insights towards biological processes.
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Untargeted metabolomics enables comprehensive mea-
surements of a significant number of metabolites in
complex systems, and identifies the accrued metabolic

changes with physiological and pathological status, such as
diseases1,2. Metabolites in the metabolome include knowns and
unknowns generated from biotransformation of endogenous and
exogenous compounds, and have a vast diversity of chemical
structures3. Metabolite identification remains the central bottle-
neck in liquid chromatography—mass spectrometry (LC–MS)-
based untargeted metabolomics3–5. The standard strategy for
metabolite identification is to match accurate mass and tandem
mass spectra (MS/MS or MS2) with standard spectral libraries
(e.g., METLIN6, MASSBANK7, and NIST) and/or in-silico pre-
dicted MS/MS spectra8. However, standard spectral libraries
suffer from the limited coverage, while the in-silico prediction
lacks high accuracy4. Other bioinformatic approaches (e.g.,
GNPS9, MetDNA10) also use MS2 spectra and molecular net-
working algorithms for metabolite annotations. All of these
strategies require unique and high quality of experimental
MS2 spectra. However, low molecular-weight metabolites usually
have very sparse MS2 spectra and lack characteristic product ions
for structural elucidation4. Some metabolite isomers share highly
similar MS2 spectra. Many experimental factors, such as high
sample complexity, low concentration and co-elution of isobaric
and isomeric metabolites, present challenges to acquire high
quality of MS2 spectra4. In addition, annotation of unknown
metabolites with new chemical structures is still a challenge in
untargeted metabolomics3,11. These issues cause low coverage and
high false-positive rate of metabolite annotation, suggesting that
other physiochemical properties should be developed for meta-
bolite annotation.

Recently, ion mobility–mass spectrometry (IM–MS) has
emerged as a promising technique for untargeted metabolomics by
providing multi-dimensional separation and high selectivity12–15.
Importantly, ion mobility can rapidly separate metabolite ions
based on their differences in rotationally averaged surface area or

collision cross-section (CCS)16,17. It enables to distinguish the
isomeric metabolites that commonly exist in biological sam-
ples18–21. Unlike retention time (RT) and MS/MS spectra that are
prone to be affected by many experimental factors, CCS is highly
reproducible across instruments and labs, and it is much more
feasible to be standardized16,22. The IM-derived CCS value is a
unique physiochemical property to improve the accuracy of
metabolite annotation. Significant efforts have been made to
curate large-scale experimental and calculated CCS databases23.
For example, Baker group24 and McLean group25,26 measured
chemical standards to construct experimental CCS databases with
>1000 CCS values. Nevertheless, these CCS resources are reported
in quite different formats, and lack appropriate procedures and
tools for data collection, collation, standardization, and sharing.
Our group and others developed machine-learning-based pre-
diction (e.g., MetCCS27,28, LipidCCS29, DeepCCS30) and quan-
tum chemistry-based theoretical calculation (e.g., ISiCLE31)
approaches to generate large-scale CCS values for metabolites,
lipids and other compounds. Coupling IM–MS with LC separa-
tion and data-independent or data-dependent MS/MS techniques
(e.g., MSE, AIF, and PASEF) enables simultaneous acquisition of
four-dimensional metabolomics data within one analysis,
including MS1, RT, CCS, and MS/MS32,33. However, limited
studies have integrated multi-dimensional properties in IM–MS
towards the large-scale annotation of both known and unknown
metabolite in untargeted metabolomics11.

Here, we curate an ion mobility CCS atlas, namely, AllCCS, to
embrace both experimental and predicted CCS values, and
develop an integrated multi-dimensional match strategy to enable
annotation of both known and unknown metabolites in IM–MS-
based untargeted metabolomics (Fig. 1). The AllCCS atlas
includes >5000 experimental CCS records and ~12 million pre-
dicted CCS values for >1.6 million compounds. The newly opti-
mized machine-learning-based prediction utilizes a large training
dataset with high diversity of chemical structures and a repre-
sentative structure similarity (RSS) score to evaluate the accuracy
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Fig. 1 Overview of AllCCS atlas and annotation of known and unknown metabolites. The AllCCS atlas hosts 5119 experimental CCS records, 3539 unified
CCS values, and ~12 million predicted CCS values for ~1.7 million compounds. AllCCS can be integrated with in-silico MS/MS spectra to enable the multi-
dimensional annotation for known and unknown metabolites in untargeted metabolomics.
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of predicted CCS values. Our data shows that AllCCS outper-
forms other CCS calculation tools in terms of both coverage and
accuracy. We further demonstrate that the use of AllCCS atlas
and/or in-silico MS/MS spectra improves the annotation perfor-
mances for both known and unknown metabolites in untargeted
metabolomics. Taken together, AllCCS atlas is a valuable and
unique resource to support IM–MS-based multi-dimensional
metabolomics. It facilitates expanding the chemical coverage of
annotation and extending the assessment of metabolic pathways
and activities, further revealing comprehensive chemical and
metabolic insights towards biological processes.

Results
Unified AllCCS database. To curate ion mobility CCS atlas, we
develop the unified AllCCS database to store, standardize, and
share the experimental and predicted CCS values. First, we col-
lected 5119 reported experimental CCS values for 2193 com-
pounds from 14 datasets, four laboratories, and two commercial
IM–MS instruments (Supplementary Table 1). Then, we devel-
oped a five-step standardization procedure to clean up and unify
all experimental CCS records, including collection of meta
information, quality check, outlier removal, calculation of unified
CCS values, and assignment of confidence levels (“Methods” and
Supplementary Fig. 1). As a result, a total of 3539 unified CCS
values with different adduct forms were calculated for 2193
compounds with definitive confidence levels (Fig. 2a). AllCCS
provides wide-coverage of experimental CCS values for small
molecules. Compared to other CCS databases, AllCCS is a plat-
form to unify different CCS values, and overcomes the variations
among different instruments and labs. The removal of outliers
using trend line technique improved the accuracy, and has been
validated in recent publications30 (Supplementary Fig. 2). The
unified CCS values are divided into level 1, level 2, level 3 and
conflict with 462, 448, 2491, and 138 values, respectively (Sup-
plementary Table 2). For example, 3,5-Diiodothyronine has a
unified CCS value of 195.5 Å2 for [M+H]+ with confidence level
1, because it has been reported twice on drift tube IM-MS
(DTIM-MS) from different labs and the maximum difference is
within 1% (Supplementary Fig. 3). Currently, the unified CCS
values comprises of 2423 cations and 1116 anions, and covered
nine and six adducts in positive and negative modes, respectively
(Fig. 2b and Supplementary Table 3). In terms of chemical
diversity, they covered 15 super classes, 144 classes and 257 sub-
classes according to the definition of ClassyFire34 (Fig. 2c and
Supplementary Table 4). Among them, lipids and lipid-like
molecules, organheterocyclic compounds, and benzenoids are the
major super classes. We also compared the structural diversity of
compounds in experimental AllCCS database with human
metabolome database (HMDB) and DrugBank. The results
showed that experimental CCS values covered 51.3% and 78.4%
of chemical spaces of HMDB and DrugBank, respectively (Sup-
plementary Fig. 4). These results demonstrated that compounds
in AllCCS have a high diversity and representativeness of che-
mical structures. The unified CCS values are accessible in AllCCS
webserver (http://allccs.zhulab.cn/).

CCS prediction and performance benchmark. In AllCCS, we
further employed the new unified experimental CCS database,
and optimized our machine-learning algorithm to predict CCS
values of small molecules in a large-scale. Compared with
MetCCS, AllCCS has several distinct features: (1) a large training
dataset with high diversity of chemical structures (1873 com-
pounds in total; Supplementary Data 1); (2) reduction of mole-
cular descriptors to 15 and 9 for positive and negative modes,
respectively; (3) development of representative structure

similarity (RSS) score to estimate prediction accuracy. The details
for machine-learning-based prediction were provided in “Meth-
ods”. Now, AllCCS includes a total of 1,670,596 compounds and
11,697,711 predicted CCS values, and covers seven popular
compound databases—KEGG35, HMDB36, LMSD37, MINE38,
DrugBank39, DSSTox40, and UNPD41. To the best of our
knowledge, AllCCS is the largest and most comprehensive CCS
database (Fig. 2d). All predicted CCS values were specified to
confidence level 4, and have been deployed in AllCCS webserver.
These records of compounds can be easily retrieved with different
identifiers, such as SMILES, InChI, and InChIKey. AllCCS also
supports users to predict CCS values for new compounds by
inputting SMILES structures.

We validated the performance of AllCCS using two indepen-
dent and external datasets, including validation set 1 (662 CCS
values for metabolites and lipids; Supplementary Data 2), and
validation set 2 (229 CCS values for drugs and natural products;
Supplementary Data 3). Excellent consistencies between experi-
mental and predicted CCS values were observed in both datasets
(Fig. 2e, f and Supplementary Table 5). Specifically, for
metabolites and lipids, the median relative errors (MREs) were
1.66% and 1.74%, while R2 were 0.9901 and 0.9850 in positive and
negative modes, respectively (Fig. 2e). For drugs and natural
products, MREs were 1.81% and 2.25%, while R2 were 0.9687 and
0.9230 in positive and negative modes, respectively (Fig. 2f).
These results demonstrated AllCCS can predict CCS values with
low errors for both endogenous and exogenous small molecules.
Consistently, similar results were also obtained for different
chemical classes and types of ion adducts (Fig. 2g and
Supplementary Fig. 5). Taken together, AllCCS can accurately
predict CCS values for small molecules with a vast diversity of
chemical structures.

We also benchmarked the performance of AllCCS with
MetCCS27, DeepCCS30, and ISiCLE31 using validation sets
(Fig. 2h–j and Supplementary Data 4). The results revealed that
AllCCS made pivotal improvements of prediction accuracy.
Specifically, there were 84% of CCS values with relative error <4%
in AllCCS, and only 70%, 62%, and 28% for MetCCS, DeepCCS
and ISiCLE for metabolites and lipids, respectively (Fig. 2h).
Similar results were also observed for drugs and products,
wherein 81%, 65%, 62%, and 35% of CCS values with relative
error <4% were in AllCCS, MetCCS, DeepCCS, and ISiCLE,
respectively (Fig. 2i). In addition to accuracy, AllCCS also has
advantages in the prediction coverage and applicability. Specifi-
cally, AllCCS demonstrated the best prediction accuracy for most
chemical super classes (8 out of 10), such as alkaloids and
derivatives, benzenoids, and organic nitrogen compounds
(Fig. 2j). For super classes such as alkaloids and derivatives and
lipids and lipid-like molecules, only AllCCS can accurately
predict CCS values with MRE <2%. Some examples were
provided in Supplementary Fig. 6. Finally, AllCCS has made
other seminal improvements compared with other tools, includ-
ing implementation, time consuming and visualization (Supple-
mentary Table 6). Collectively, these results demonstrated that
AllCCS outperforms other tools in calculating CCS values in
terms of accuracy and coverage.

Structural similarity and CCS prediction accuracy. We
demonstrated that the structural similarity between the inputted
chemical structures and the training dataset determines accuracy
of predicted CCS values. To validate it, we divided our training
and validation datasets into five super classes using ClassyFire in
both positive and negative modes. We intentionally removed the
compounds of one super class from the training dataset (for
example, lipids and lipid-like molecules), and built machine-
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learning-based prediction model using the rest compounds as
usual (Fig. 3a). Then, CCS values in validation sets were predicted
and divided into two types: the excluded super class (i.e., lipids
and lipid-like molecules) and other super classes, and further
compared with the results in Fig. 2g. Taken lipids and lipid-like
molecules as examples, the predicted CCS values in validation set

showed significantly larger errors after excluding lipids from the
training set (Fig. 3b). We also observed that other super classes
have similar prediction errors between before and after excluding
lipids from the training dataset. Then, we repeated the process for
each super class, and observed similar results (Fig. 3c). The results
demonstrated that the prediction errors of the excluded super
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classes (MRE= 3.14%) were significantly larger than that of
included super classes (MRE= 1.63%, Fig. 3d). Specifically, the
prediction errors of CCS values in excluded super classes had an
average relative error (ARE) as high as 9.16%. As a comparison,
the included super classes only had an ARE of 2.20%. Therefore,
the results confirmed that the structural similarity between the
inputted chemical structures and the training dataset determines
the CCS prediction accuracy.

Representative structure similarity for accuracy evaluation. In
AllCCS, we further developed the representative structure simi-
larity (RSS) score to quantify the structural similarity between the
given compound and the training dataset, and to evaluate its
relationship with the accuracy of predicted CCS values. RSS was
calculated using molecular fingerprinting, and ranges from 0 to 1,
representing completely different to highly similar structures
compared to the training dataset (see “Methods”). Then, we found
that there was a strong and significant correlation between RSS
scores and the relative errors of predicted CCS values generated in
the designed experiment in Fig. 3a (p-value= 3.19 × 10−42; Fig. 3e).
We empirically divided the RSS scores into small (RSS ≤ 0.6),
medium (0.6 < RSS ≤ 0.8), and large (RSS > 0.8) groups. Large RSS
group had significantly smaller MREs in CCS prediction than the
small RSS group (1.56% vs. 5.90% in Fig. 3e). In AllCCS, we further
validated the use of RSS score to evaluate CCS prediction accuracy
in validation datasets (Fig. 3f). Compounds with small RSS had
larger MRE (2.6%) than those with large RSS (1.7%). For examples,
the CCS value of cardamonin was accurately predicted with a
relative error 0.4% since it has a high RSS score of 0.9363. As a
comparison, the CCS value of triclocarban had a large prediction
error of 14.9% since it has a low RSS score of 0.5645 (Fig. 3g).
Finally, we also calculated the RSS scores for compounds in com-
mon databases—KEGG, HMDB, LMSD, MINE, DrugBank,
DSSTox, and UNPD, and found that >80% of compounds have
high or medium RSS scores, and should be generated accurate CCS
values (<2%) using AllCCS (Fig. 3h). Altogether, we proved that
RSS implemented in AllCCS is able to evaluate and reflect the
accuracy of CCS prediction, and AllCCS has a wide applicability for
different small molecules.

AllCCS improves known metabolite annotations. With the
large-scale AllCCS atlas, we first investigated its application for
annotation of known compounds using the validation set 2 as
examples. We matched the experimental m/z and CCS values of
each compound to the whole AllCCS database (with ~1.67 mil-
lion compounds). The average of candidates was significantly
reduced from 1046 to 255 (76%) with the addition of CCS match
(Fig. 4a and Supplementary Data 5). Similar results were obtained
when performing multi-dimensional match using experimental
m/z, as well as MS/MS and CCS values predicted by AllCCS and
CFM-ID, respectively. The average of candidates was also sig-
nificantly reduced from 553 to 144 (74%) with the addition of
CCS match (Fig. 4a). We also demonstrated this using

experimental MS/MS spectral library from GNPS42 with a total of
13,499 compounds. Similarly, the average candidates were
reduced from 7.3 to 1.7 (77%) with the addition of CCS match
(Supplementary Fig. 7). Therefore, ~75% of annotated candidates
were filtered with the addition of CCS match. In addition, the
candidate reduction through adding CCS match is effective with
different database scales (Supplementary Fig. 8).

We also demonstrated that the addition of CCS match into the
multi-dimensional match improved the rank of correct candi-
dates (m/z+MS/MS+CCS vs. m/z+MS/MS matches; Fig. 4b).
We found that the addition of CCS match improved the rank for
most candidates ranging from 81.2% to 88.8% when different in-
silico MS/MS tools (i.e., CFM-ID43, MetFrag44, and MS-
FINDER45) were used (Fig. 4b). Similar results also were obtained
in negative ionization mode (Supplementary Fig. 9). Taken the
annotation of 6-hydroxycoumarin as an example, with the
addition of CCS match, the number of potential candidates
decreased from 956 to 181, and the rank for the correct candidate
increased from 129th to 6th (Fig. 4c). Other annotation
improvement examples were also provided in Supplementary
Fig. 10.

Next, we demonstrated the annotation of known metabolites in
biological samples with multi-dimensional match using m/z, CCS,
and MS/MS spectra (Fig. 4d). Here, the KEGG and HMDB
databases were used. For mouse embryonic fibroblast (MEF) cell
sample, we putatively annotated a total of 2729 peaks from the
acquired multi-dimensional liquid chromatography–ion
mobility–mass spectrometry (LC–IM–MS/MS) data with multi-
dimensional properties (Supplementary Fig. 11). Similarly, we
validated that the average of candidates for these peaks was
effectively reduced from 9.2 to 4.5 with the addition of CCS
match (Fig. 4e, f). Similar results were also obtained for other
biological samples, such as human plasma and fruit fly tissues
(Fig. 4f and Supplementary Fig. 12). We found that 2038 out of
2729 peaks (75%) had reduced candidates with different degrees
(Fig. 4g). Taken the feature M137T285C127 as an example, the
annotated candidates were reduced step-wise from 9 to 2 with the
integration of multi-dimensional match, and was finally anno-
tated as hypoxanthine (1st rank; Fig. 4h). More examples were
provided in Supplementary Fig. 13. In addition, we found the
percentages of candidate reduction ranged 40–76% from high to
low abundant features, indicating the better improvement for low
abundant features (Supplementary Fig. 14). Combined, the
integration of multi-dimensional properties especially the CCS
match improved the annotation confidence with reduced false
candidates and improved ranks.

AllCCS enables unknown metabolite annotation. Unknown
metabolites are generated from uncharacterized resources, such as
enzymatic transformation of endogenous metabolites, bio-
transformation of exogenous compounds (e.g., from environ-
ment) and gut microbiota. Here, we further investigated the
integration of multi-dimensional properties (i.e., m/z+CCS+
MS/MS) for unknown metabolite annotation in biological

Fig. 2 Unified AllCCS atlas for both experimental and predicted CCS values. a Statistics of compounds and unified CCS values in AllCCS and other
databases12,24,26; b statistics of adduct ions for unified CCS values in AllCCS; c chemical diversity for compounds with unified CCS in AllCCS, which was
analyzed using ClassyFire; d statistics of compounds and predicted CCS values in AllCCS and other databases27,31; e, f correlations between predicted and
experimental CCS values for external validation sets 1 (e) and 2 (f); g median relative errors (MREs) of predicted CCS values for 10 super classes of
chemical structures; h, i cumulative percentages of predicted CCS values with indicated relative errors for external validation sets 1 (h) and 2 (i). The insert
bar plot displayed the percentages of predicted CCS values within a certain relative error obtained from different tools; j heat map displaying the
comparative prediction errors of ten super classes of chemical structures obtained from different tools; median relative error for each super class is shown
in the pane while the color of pane is MRE normalized as Z-score. The symbol “*” represents that AllCCS has the lowest prediction error among these tools.
Source data are provided as a Source Data file.
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samples (Fig. 5a). First, we generated the possible unknown
metabolites from knowns in KEGG. We used all 16,023 meta-
bolites in KEGG, and a total of 178 metabolic reactions and 117
enzymes to perform the in-silico enzymatic reaction46 (Supple-
mentary Data 6). Through this procedure, we have created a total
of 100,404 possible unknown compounds via a 2-step in-silico
enzymatic reaction, and expanded the chemical space of KEGG
by sevenfolds (Fig. 5b). Among them, there are 5704 known
unknowns (5.7%) for those included in PubChem but not in

KEGG, and 94,700 unknown unknowns (94.3%) for those not
included both in either PubChem or KEGG (Supplementary
Fig. 15). For example, the in-silico enzymatic reaction of phos-
phoenolpyruvate generated three unknown metabolites (Fig. 5c).
For all generated unknown metabolites, we have calculated and
predicted the m/z and CCS values using AllCCS and MS/MS
spectra using MS-FINDER. This extended unknown database
provides a potential for unknown metabolite annotation. With
the multi-dimensional match to this database, we annotated both
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known and unknown metabolites in mouse liver tissue samples. A
total of 1223 features with 6092 metabolites were putatively
annotated, including 2275 KEGG metabolites and 3817
unknowns (Fig. 5d and Supplementary Data 8). Among them,
67.0% of features had an unknown annotation. For example, the
feature M384T767C189 (m/z: 384.1129; RT: 767s; CCS: 181.9 Å2)
had 22 possible candidates in the extended database (Fig. 5e).
Among them, 4 and 21 candidates were further reduced with

multi-dimensional match. Finally, an unknown metabolite
(ExtDB016054) was annotated and further confirmed with the
chemical standard (Fig. 5f and Supplementary Fig. 16).

We further investigated how AllCCS facilitated characteriza-
tion of metabolic activities through unknown metabolite annota-
tion. First, we analyzed 368 dysregulated metabolic features
associated with aging in mice (p-value ≤ 0.05; 36-week vs. 104-
week; Fig. 6a), and performed pathway enrichment analysis using
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KEGG metabolites. Five metabolic pathways were enriched
(p-value ≤ 0.05; Supplementary Fig. 17) and showed declined
activities with aging (left panel in Fig. 6b), such as purine
metabolism, nicotinate and nicotinamide metabolism, phenylala-
nine metabolism. The observations were consistent with previous
reports10. Second, we extended the analysis from known KEGG
metabolites to their related unknowns. Clearly, the unknown
metabolites generated from five enriched metabolic pathways also
had declined activities with aging (right panel in Fig. 6b). For
example, adenylosuccinic acid and its derived unknown
(ExtDB016054) were decreased during mouse aging (Fig. 6c).
Interestingly, unknown metabolite ExtDB016054 showed more
significant changes compared with its reactant precursor. Finally,
we also performed chemical structure enrichment analysis for
unknown metabolites, and 14 out of 174 subclasses were enriched
(Supplementary Fig. 17). Among them, we found that several
chemical subclasses related to purine metabolism showed
declined activities with aging, such as pyrimidines and pyrimidine
derivatives, and hydropyridines (Fig. 6d, e). Altogether, AllCCS
facilitated expanding the metabolite coverage of annotation and
extending the assessment of metabolic pathways and activities by
providing new chemical structures.

Discussion
In this work, we developed a large-scale ion mobility CCS atlas,
namely, AllCCS, to support metabolite annotation in IM–MS-
based metabolomics. Although several experimental CCS data-
bases have been developed22,24,26,47, AllCCS is unique because it
provides a unified platform to store, standardize and share
experimental CCS values from different labs and instruments.
One possible concern is the inconsistency across different IM–MS
instruments. A recent work from Schmitz group observed that
most compounds have <1% errors between traveling wave IMS
(TWIMS) and DTIMS, but some compounds showed larger
deviations up to 6.2%48. Therefore, in AllCCS, we developed a
five-step standardization procedure to automatically clean up and
unify the experimental CCS records, which facilitates overcoming
the variations from different instruments and labs. We believe the
consistency of reported CCS values will be further improved with
the launch of guidelines from IM–MS research community17. In
addition, every user could access AllCCS webserver to view, cal-
culate and download both experimental and predicted CCS values
in AllCCS. We are also working on deploying CCS values into
HMDB and other popular databases to make it available for the
wider community. With the rapid growing of reported CCS

a c

O

OH

OH

HO

O

O

P

C00074 (KEGG)
Phosphoenolpyruvate

ExtDB000497 (Unknown)
2-hydroxyacrylic acid

O

O

O

OH

O

OH

OH

HO

O

P

OH

HO

O

ExtDB000498 (Unknown)

OH

O

OH

O

OH

O

C00022 (KEGG)
Pyruvate

OH

OH

OHHO

O

OH

O

OO

ExtDB000502 (Unknown)

d

e
ExtDB016054

KEGG

Known Unknown
117 enzymes

178 metabolic reactions

Generation of unknown metabolites

Unknown metabolite annotation

ExtDB

Predicted CCS

In-silico MS/MS

CCS
MS/MS

m/zLC-IM-MS/MS

b

Unknown

KEGG

KEGG Extended DB

16,023 16,023

100,404

0

60,000

120,000

C
om

po
un

ds

7-fold increasement

M384T767C189 f

140 180 220 260

1.0

0.0

1.0

m/z

R
el

at
iv

e 
in

te
ns

ity

Standard MS/MS

Experimental MS/MS

N

N N

N

O

OH

HO

HO

NH

O

OH

O

O

10

20

30

40

0 200 400 600 800 1000 1200

D
rif

t t
im

e 
(m

s)

Retention time (s)

KEGG
Unknown

Candidate type

Candidate number

1
2-5
5-9
≥10

2275 KEGG compounds, 3817 unknown compounds

22.5

23.0

23.5

760 780

RT (s)

D
T

 (
m

s)

m/z + CCSm/z

m/z + CCS + MS/MS
0

10

20

C
an

di
da

te
s

22

18

1

Fig. 5 AllCCS enables unknown metabolite annotation. a Schematic illustration of generation of possible unknown metabolites from KEGG and prediction
of CCS and MS/MS spectra to support multi-dimensional match-based annotation; b number of unknown metabolites; c generation of unknown
metabolites from phosphoenolpyruvate; d annotation of known and unknown metabolites in mouse liver with the multi-dimensional match; the inner pie
plot is the composition of known and unknown metabolites; e an unknown metabolite annotation for the feature M384T767C189; f validation of unknown
metabolite using chemical standard. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18171-8

8 NATURE COMMUNICATIONS |         (2020) 11:4334 | https://doi.org/10.1038/s41467-020-18171-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


values, AllCCS will be continually expanded and updated, making
it as a valuable resource for both IM–MS and metabolomics
research.

Different strategies have been developed for CCS calculation,
such as MetCCS27, LipidCCS29, DeepCCS30, ISiCLE31, Dark-
Chem49, CCSbase50 etc. However, the efficiency, accuracy and
generalization capability for these methods need further
improvements. Here, we demonstrated that AllCCS outperforms
other tools in terms of efficiency, accuracy and coverage. The
improvements of CCS prediction are attributed by three major
factors (Supplementary Table 7): (1) AllCCS used large and wide-
coverage CCS records to train the machine-learning-based pre-
diction model; (2) the use of a five-step standardization strategy
and unified CCS values overcome the biases across different
instruments and labs and improved the data quality of the
training set; (3) the selection of optimized molecular descriptors
(MDs) improved the prediction accuracy. In addition, AllCCS
includes the representative structure similarity (RSS) score to
estimate the prediction accuracy for one compound. However,
some limitations in CCS prediction are still presented. For
example, most of metabolite ions have their unique CCS values,
but some may have multiple CCS values for different con-
formations. Currently, AllCCS and other tools can only predict
one CCS value for one conformation, presumably the most

compact one. The introduction of quantum chemistry for con-
formation generation and 3-D molecular descriptors into the
machine-learning-based prediction may help to address this
challenge. The second challenge is the CCS prediction of isomers
(e.g., cis-trans isomers in lipids). Although the CCS prediction
has made effective improvements to ~2% prediction errors,
identification of metabolite isomers is still a challenge due to the
limit resolution of ion mobility separation (e.g., 40–60 for DTIMS
and TWIMS). We demonstrated this challenge with an example
of four monosaccharide phosphate isomers, which were poorly
separated with IM (Supplementary Fig. 18). However, these iso-
mers would be partially separated with an IM resolution of 200,
and baseline separated with an IM resolution of 500. Therefore,
both CCS prediction and annotation accuracy will be further
improved with the availability of high-resolution IM instruments,
such as TIMS and cyclic IM. Finally, although we focus on
metabolites, AllCCS also supports the CCS prediction for other
small molecules, like drugs, natural products, pesticides etc.

Metabolite annotation is one of the major bottlenecks for
untargeted metabolomics. Metabolite annotation usually requires
high quality of experimental MS/MS spectra. However, many
experimental factors, such as high sample complexity, low con-
centration and co-elution of isobaric metabolites, present chal-
lenges to acquire high quality of MS2 spectra. In contrast, the
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measurement of CCS value is less affected by experimental fac-
tors, and could be accurately acquired from molecular ions even
with low abundances. Now, the use of multi-dimensional match,
including CCS match provides multi-dimensional characteriza-
tion of metabolites. For example, ~75% of low abundant features
have reduced candidate numbers with the addition of CCS match
(Supplementary Fig. 14). We demonstrated that the addition of
CCS values to the multi-dimensional match improved the
annotation confidence with reduced false candidates and
improved ranks of correct candidates. Currently, AllCCS does not
directly process raw IM–MS data files. Instead, we aim to
incorporate AllCCS into other data processing tools (e.g., MS-
DIAL451) to accelerate the workflow from raw data processing to
compound identification. In addition, developers could also
integrate AllCCS with other data processing software tools such
as XCMS52 and MZmine53.

Unknown metabolites are generated from endogenous and
exogenous resources, and have no standard MS/MS spectra
available. Currently, unknown metabolite annotation is mainly
performed using in-silico MS/MS tools (e.g., MS-FINDER45 and
SIRIUS54). In this work, we further demonstrated that AllCCS
provided a promising strategy to integrate the predicted CCS and
in-silico MS/MS tools for unknown annotation, and facilitated
extending the assessment of metabolic pathways and activities
with new chemical structures. These unknown metabolites were
created from KEGG compounds via in-silico enzymatic reactions,
because KEGG covers ~6000 species and various compounds,
including primary metabolites, secondary metabolites from plant
and bacterium, and xenobiotic compounds55. In the future, other
databases such as RECON56 are also good choices for metabolic
reconstruction towards human metabolism study. Finally, we
believe this strategy will have more powerful prospects when
combined with other data processing tools (e.g., MS-DIAL4) and
advanced algorithms (e.g., GNPS9 and MetDNA10). Taken
together, the AllCCS atlas has provided a high-quality and unified
CCS database for IM–MS, and further opens a new avenue for
known and unknown metabolite annotation in IM–MS-based
untargeted metabolomics.

Methods
Curation of the unified CCS database. A total of 5119 experimental CCS values
were collected from 14 datasets, 4 independent labs, and 2 instrument platforms
(Supplementary Table 1), which were reported in recent publications from
2015–2018. To curate the unified CCS database, each dataset was cleaned and
standardized with a five-step procedure as follows (Supplementary Fig. 1).

(1) Collection of meta information. For each CCS record, the chemical
translation service57 [http://cts.fiehnlab.ucdavis.edu/] was utilized to gen-
erate the chemical identifiers for compounds, such as InChIKey, CAS
number, PubChem CID, etc. Then, the SMILES structure for each
compound was generated using an R package rinchi [https://github.com/
CDK-R/rinchi]. The compound formula and exact masses for different
adducts (Supplementary Table 8) were calculated using an R package rcdk
[https://cran.r-project.org/web/packages/rcdk/index.html]. Finally, the che-
mical classification for each compound was obtained using ClassyFire34

[http://classyfire.wishartlab.com/].
(2) Quality check. Some CCS records were intentionally removed for those

without chemical structures, with ion adducts not included in Supplemen-
tary Table 8, or having large m/z errors (>10 ppm). Then, for each dataset,
we also removed the inconsistent CCS records from the same instrument
platform. For one ion adduct with more than one CCS record, the
maximum differences between CCS records were calculated. If the
maximum difference was >0.5%, the related CCS records were removed.
Otherwise, the averaged CCS value was calculated and assigned as the CCS
record.

(3) Outlier removal. The CCS outliers were further removed using the CCS
trend lines, which was similar to the CCS compendium26. The trend line of
each super class (n ≥ 10) was fitted by a power function, and the CCS
records exceeding 99% of the predictive interval were removed. A total of
103 CCS outliers were removed, and two examples of outliers were
confirmed in a recent publication30 (Supplementary Fig. 2).

(4) Calculation of unified CCS values. The CCS values from different
instrument platforms were further merged as unified CCS values. The
unified CCS value is an average of CCS values from different instrument
platforms, which is specific to the compound and its adduct. Specifically, for
one ion adduct, if it had multiple CCS records obtained from DTIM-MS, the
unified CCS value was the average value from the CCS records in DTIM-
MS. Otherwise, the unified CCS value was calculated using all CCS records
from different platforms. A total of 3539 unified CCS values were generated.

(5) Assignment of confidence levels. For each unified CCS value, we assigned a
confidence level using the following rules: Level 1: the unified CCS is
calculated using experimental CCS records from ≥2 independent datasets in
DTIM-MS instruments, and the maximum CCS difference is ≤1%; Level 2:
the unified CCS is calculated using experimental CCS records from ≥2
independent datasets in different commercial instruments (DTIM-MS,
TWIM-MS, or TIMS-MS), and the maximum CCS difference is ≤3%; Level
3: the unified CCS is only reported in one dataset from commercial
instruments (DTIM-MS, TWIM-MS, or TIMS-MS); Conflict: the unified
CCS is calculated using experimental CCS records from ≥2 independent
datasets in different commercial instruments (DTIM-MS, TWIM-MS, or
TIMS-MS), but the maximum CCS difference is >3%. All predicted CCS
values were assigned as level 4 in AllCCS.

Training and validation sets for CCS prediction. AllCCS employed the unified
CCS values for CCS prediction and validation. Specially, 80% of unified CCS values
(1851 and 795 CCS values in positive and negative modes, respectively) were
randomly selected as the training set (Supplementary Data 1). Here, we only kept
seven most common adducts ([M+H]+, [M+Na]+, [M+NH4]+ and [M+H-
H2O]+ for positive mode; [M-H]-, [M+Na-2H]-, [M+HCOO]- for negative
mode), and removed CCS values with the confidence level of conflict. In addition,
two datasets were used for performance validation: (1) external validation set 1
(metabolites and lipids) consists of 463 and 199 CCS values in positive and negative
modes, respectively (Supplementary Data 2); (2) external validation set 2 (drugs
and natural products) consists of 107 and 122 CCS values in positive and negative
modes, respectively (Supplementary Data 3). Both validation sets were acquired
using chemical standards on Agilent DTIM-MS 6560. The acquisition of CCS
values and the standard MS/MS spectra followed the previous publications27.

Molecular descriptor calculation and selection. For each compound, a total of
221 molecular descriptors (MDs) were calculated using the SMILES structure and
the R package rcdk. Among them, non-differential MDs were first removed. The
missing values for the rest MDs were imputed using the KNN algorithm. All MD
values were normalized to Z-score and subjected to selection using the recursive
feature elimination with cross validation (RFECV) algorithm (Supplementary
Fig. 19). In order to eliminate the scale effect of the training set, 50%, 60%, 70%,
80%, or 90% of the training set were used for RFECV. For each condition, the
RFECV was performed by 200 times (1000 times in total). In each RFECV, the least
important MD was recursively removed according to the coefficient of the LASSO
regression via a tenfold cross validation. The MD combination with highest scores
in the cross validation were kept. Finally, MDs with the frequency >700 in 1000
RFECV replications were ultimately selected. In positive and negative modes, 15
and 9 MDs were selected, respectively (Supplementary Table 9). We also
demonstrated that the selected MDs showed smaller prediction errors than those
obtained from the step-wise selection or the random selection (Supplementary
Fig. 20 and Supplementary Table 10). The python software sklearn [https://scikit-
learn.org/stable/] was used for RFECV.

Support vector regression-based CCS prediction. The support vector regression
(SVR) algorithm was used to develop the CCS prediction using the selected MDs
and CCS values in the training set. The general workflow was similar as our
previous publications29. Briefly, two hyper-parameter cost of constraints violation
(C) and gamma (γ) were optimized from 105 combinations via a tenfold cross
validation with 100 repeats. Seven groups of C value (0.001, 0.005, 0.025, 0.05, 0.1,
0.25, 0.5)/NMD and 15 groups γ-value (2 to 215) were set for parameter optimi-
zation. Radial basis function was employed for kernel function. NMD represented
the number of selected MDs. Finally, the hyper-parameter combinations were
selected as follows: C, 0.1/15 and 0.1/9 in positive and negative modes, respectively;
γ, 28 and 213 in positive and negative modes, respectively. As a result, 1.67% and
1.72% of MREs were obtained for the training set in positive and negative modes,
respectively (Supplementary Table 11). In addition, the high gamma parameters
indicated that the optimized parameters in SVR prediction make the model
towards a linear regression, but has better performances comparing to multiple
linear regression (Supplementary Table 12).

Representative structure similarity. The representative structure similarity (RSS)
was calculated to characterize the structure similarity between the inputted
structure and the training set (Supplementary Fig. 21). The molecular fingerprint of
inputted structure was first computed using the R package rcdk. Then, the structure
similarity between the inputted structure and each structure in the training set was
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calculated using the tanimoto coefficient (TC) shown as follows:

TC StrA;StrBð Þ ¼
NStrA\StrB

NStrA þ NStrB � NStrA\StrB
ð1Þ

where NStrA and NStrB were the molecule fingerprints of structures A and B,
respectively, and TC(StrA,StrB) was the TC between structure A and structure B.
Here, structure A was the inputted structure and structure B was a structure in
training set. NStrA∩StrB was the intersection set of structure A and B. Then, RSS
score of the inputted structure was calculated using the average of top five TCs:

RSSStrA ¼
X5

i¼1

TCi=5 ð2Þ

where RSSStrA was the RSS of the inputted structure A, and TCi represented top i
tanimoto coefficient.

Benchmark of CCS prediction performance. The generation of CCS values using
MetCCS27, DeepCCS30, and ISiCLE31 for compounds in the external validation sets
was performed as follows. For MetCCS, the webserver [http://www.zhulab.cn/
MetCCS/] was used to predict CCS values. The inputted molecular descriptors of
each compound were calculated by ChemAxon MarvinSketch (Version 16.10.24)
and ALOGPS [http://www.vcclab.org/web/alogps/]. For DeepCCS, CCS values
were calculated using the SMILES structures and the python package downloaded
from the internet (https://github.com/plpla/DeepCCS, on April 2nd, 2019). For
ISiCLE, CCS values generated from ISiCLE Lite v0.1.0 were directly downloaded
from the webserver [https://metabolomics.pnnl.gov/ccs/] on March 11th, 2019. All
CCS values were provided in Supplementary Data 4.

AllCCS webserver. The AllCCS webserver was hosted on a Linux server from
Alibaba Cloud, and free-accessible for non-commercial use via http://allccs.zhulab.
cn/. AllCCS webserver has three major functions: (1) the unified and predicted CCS
databases, (2) the CCS prediction, and (3) metabolite annotation. The predicted
AllCCS database contains a total of 1,670,596 compounds and 11,697,711 predicted
CCS values. These compounds are downloaded from KEGG35, HMDB36, LMSD37,
MINE38, DrugBank39, DSSTox40, and UNPD41 databases (Supplementary
Table 13). The CCS prediction function provides a visualized interface for users to
predict CCS values with the inputted SMILES structures. The metabolite annota-
tion provides a feature match function to search the AllCCS database with
experimental m/z and CCS values. In addition, it also provides a candidate rank
function to perform multi-dimensional annotation by integrating the annotation
results from in-silico MS/MS prediction tools. The tutorial of AllCCS is available
on the website.

CCS match, MS/MS match, and multi-dimensional match. A trapezoidal score
function was developed to measure the CCS match. First, it removed the candidates
with CCS values exceeding the maximum tolerance, then calculated the CCS match
score (Sccs) using a trapezoidal function as Eq. 3:

Sccs ¼
1; ΔrelaTOLmin

1� Δrela�TOLminð Þ
TOLmax�TOLmin

; TOLmin ≤Δrela ≤TOLmax

0; Δrela >TOLmax

8
><

>:
ð3Þ

where TOLmin and TOLmax are minimum and maximum tolerances, respectively.
The default values for TOLmin and TOLmax are 2% and 4%, respectively. The Δrela is
relative CCS error calculated as Eq. 4.

Δrela ¼
CCSPr ed � CCSExp

���
���

CCSExp
´ 100 ð4Þ

The experimental MS/MS spectra and their possible candidates were imported
into in-silico MS/MS tools to perform MS/MS match. Three in-silico MS/MS
prediction tools, such as MetFrag44, CFM-ID43, and MS-FINDER45 were used in
this work. The format of imported data was modified according to the
requirements of each tool. The brief procedures are described as follows: (1)
MetFrag: the command line version MetFragCL (version 2.4.5-CL) was
downloaded from https://ipb-halle.github.io/MetFrag/, and the parameter file was
generated via R package ReSOLUTION [https://github.com/schymane/
ReSOLUTION]; (2) CFM-ID: the software version 2.4 was downloaded from
https://sourceforge.net/projects/cfm-id/files/. The pre-trained model
params_se_cfm and the parameter file param_output0.log were used. The
predicted MS/MS spectra were provided as MSP format in Supplementary Data 5.
(3) MS-FINDER: the software version 3.24 was downloaded from http://prime.psc.
riken.jp/Metabolomics_Software/MS-FINDER/index.html, and run with the
console. The detail parameters of each tool were provided in Supplementary
Table 14. The experimental MS/MS spectral library was downloaded from GNPS
with a total of 13,499 compounds (https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp;
accessed on May 23th, 2020). The spectral match utilized reverse dot-product
scores, and its parameters were kept same with our previous publication32.

Multi-dimensional match was performed by integrating the CCS match score
and MS/MS match score as Eq. 5:

Sintegrated ¼ Wccs ´ Sccs þWMS=MS ´ SMS=MS ð5Þ

where SCCS and SMS/MS are CCS and MS/MS match scores, respectively. Here,
SMS/MS is the similarity between experimental MS/MS and in-silico MS/MS, which
is obtained from different in-silico MS/MS tools with different scoring methods.
The SMS/MS is rescaled to 0–1 before integration. The Wccs and WMS/MS are weights
for the CCS and MS/MS match scores, respectively. The Wccs and WMS/MS were
optimized as 0.3 and 0.7, respectively (Supplementary Fig. 22).

Chemicals. LC–MS grade methanol (MeOH) and water (H2O) were purchased
from Honeywell (Muskegon, MI, USA). LC–MS grade acetonitrile (ACN) was
purchased from Merck (Darmstadt, Germany). LC–MS grade methylene dichloride
(CH2Cl2) was purchased from Fisher Scientific (Morris Plains, NJ, USA).
Ammonium hydroxide (NH4OH) and ammonium acetate (NH4OAc) were pur-
chased from Sigma (St. Louis, MO, USA). The chemical standard succinoadenosine
was purchased from J&K (Shanghai, China), while other chemical standards were
purchased from TopScience (Shanghai, China).

Sample preparation. Aging mouse liver tissues (c57BL-6J; 36-week vs. 104-week;
n= 10 for each group) were dissected, frozen with liquid nitrogen, and stored at
−80 °C. The mouse tissue studies were approved by Animal Ethics and Welfare
Management Committee of Interdisciplinary Research Center on Biology and
Chemistry, Chinese Academy of Sciences (Shanghai, China). Metabolite extraction
followed our published protocol10. In brief, 10 mg of mouse liver tissues was firstly
homogenized with 200 μL of H2O and 20 ceramic beads (diameter, 0.1 mm) using a
homogenizer (Precellys 24, Bertin Technologies) at the low-temperature condition.
The protein concentration of the homogenized solution was measured with the
Pierce BCA Protein Assay Kit (Catalog No. 23225, Thermo Fisher) for normal-
ization. One-hundred microliters of homogenized solution was used for metabolite
extraction. A total of 100 μL of H2O and 800 μL of solvent mixture of ACN:MeOH
(1:1, v/v) was added, and vortexed for 30 s, and sonicated for 10 min at 4 °C water
bath. After incubation for 1 h at −20 °C, the sample was further centrifuged for 15
min at 16,200 × g and 4 °C. The supernatant was collected and evaporated to
dryness at 4 °C. The dry extracts were then reconstituted into 100 μL of ACN:H2O
(1:1, v/v), followed by sonication at 4 °C for 10 min, and centrifuged at 16,200 × g
and 4 °C for 5 min to remove the insoluble debris before LC–IM–MS/MS analysis.

Other biological samples were prepared as follows. For plasma, 100 μL of
human plasma (Catalog No. HPH-0500, Equitech-Bio. Inc, USA) was extracted
using 400 μL of solvent mixture of MeOH:ACN (1:1, v/v) in the centrifuge tube,
and then the mixture was vortexed for 30 s and sonicated for 10 min at 4 °C water
bath. The rest of the procedure was the same as described for mouse liver tissue
sample. For cell samples, RIPK1-/- mouse embryonic fibroblasts (MEFs) cell line
(generated from RIPK1 KO mice) were provided from Prof. Junying Yuan’s Lab
(Chinese Academy of Sciences, Shanghai). One milliliter of MeOH:ACN:H2O
(2:2:1, v/v/v) solvent mixture was added to the samples, followed by vortex for 30 s
and sonication for 10 min at 4 °C water bath. Then the samples were incubated in
liquid nitrogen for 1 min, thawed on ice, and sonicated for 10 min at 4 °C water
bath. The above vortex–freeze–thaw cycle was repeated three times. The rest of the
procedure was the same as described for mouse liver tissue sample. For fruit fly
head samples, the sample collection and extraction followed our previous
publication10.

LC–IM–MS/MS analysis. A UHPLC system (Agilent 1290 series) coupled to a
quadruple time-of-flight mass spectrometer equipped with an ion mobility drift
tube (Agilent DTIM-QTOF-MS 6560, Agilent Technologies, USA) was used for
LC–IM–MS/MS data acquisition. The LC separation was performed on a Waters
BEH Amide column (particle size, 1.7 μm; 100mm (length) × 2.1 mm (i.d.))
maintained at 25 °C. The solvent A was 100% H2O with 25 mM NH4OAc and 25
mM NH4OH, and solvent B was 100% ACN. The flow rate was 0.3 mL/min, and
the gradient was described as follows: 0–1 min: 95% B, 1–14 min: 95% B to 65% B,
14–16 min: 65% B to 40% B, 16–18 min: 40% B, 18–18.1 min: 40% B to 95% B and
18.1–23 min: 95% B. The sample injection volume was 2 μL.

The data acquisition was operated in IM-Q-TOF mode. The source parameters
were set as follows: sheath gas temperature, 325 or 275 °C in positive or negative
modes; dry gas temperature, 300 °C; sheath gas flow, 11 L/min; dry gas flow,
8 L/min; capillary voltage, 4000 V or −3000 V in positive or negative modes,
respectively; and nebulizer pressure, 20 or 25 psi in positive or negative modes,
respectively. The TOF mass range was set as m/z 50–1700 Da. For ion mobility
parameters, the nitrogen (N2) was used for the drift gas. Other related IM
parameters were set as follows: entrance and exit voltages of drift tube, 1600 and
250 V; trap filling and trap release times, 20,000 and 150 μs. The pressure of drift
tube was set at 3.95 Torr. The MS/MS spectra were acquired in the “Alternating
frames” mode, and the collision energy was fixed at 20 V in frame 2. The CCS
values were calculated with single electric field method. All data acquisitions were
carried out using MassHunter Workstation Data Acquisition Software (Version
B.08.00, Agilent Technologies, USA).
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Chemical standards were first dissolved at 0.01 mg/mL in either H2O, MeOH,
CH2Cl2, DMSO, or their mixture with different proportions depending on
compound polarity and solubility, and subject to measurements of CCS values and
MS/MS spectra. The CCS values were independently measured three times across
2 months using a single-field approach on Agilent DTIM-QTOF-MS 6560
instrument according to our previous publication27. The MS/MS spectra were
acquired using targeted MS/MS method with three different collision energy levels
(10, 20, and 40 V).

Data processing and metabolite annotation. Raw MS data files (.d) were first
recalibrated using IM–MS Reprocessor (Version B.08.00, Agilent Technologies).
Then, the smoothing and saturation repair were performed using PNNL Pre-
Processor (Version 2018.06.02). The CCS calibration was performed by IM–MS
Browser software (Version B.08.01, Agilent Technologies). The pre-processed data
files were submitted for feature finding, alignment, and MS/MS spectra extraction
using Mass Profiler (Version 10.0, Agilent Technologies). Finally, the peak table
and MS/MS spectra (CEF format) files were exported for metabolite annotation.
One MS/MS spectrum with highest intensity was selected for each feature, similar
to the protocol in LipidIMMS Analyzer32. The detail parameters of data processing
tools were provided in Supplementary Table 15. The metabolites were annotated
using multi-dimensional match as we described before. The m/z tolerance was set
at 25 ppm, and only [M+H]+ and [M-H]- adducts were considered for positive
and negative modes, respectively. The MS-FINDER was used for in-silico MS/MS
match, and kept chemical structures within top 3 formulas for unknown metabolite
annotation. The known metabolite database (KEGG and HMDB) and the extended
database were used for known and unknown metabolite annotation, respectively.

Generation of unknown metabolites. Unknown metabolites were generated
based on in-silico enzymatic reaction via BioTransformer46 (version 1.0.8). The
command line tool was used and downloaded from [https://bitbucket.org/
djoumbou/biotransformer/src/master/]. The SMILES structures of KEGG com-
pounds were used for in-silico reaction, and the “EC-based transformation” was
used for metabolic transformation. The reaction step was set as 2. All generated
metabolites were merged by InChIKey, and their SMILES structures were con-
verted via Open Babel58. Finally, a total of 100,404 unknowns were finally gener-
ated and included in the extended database (Supplementary Data 6). These
compounds and their predicted CCS values were also provided in AllCCS
webserver.

Metabolic pathway and structure enrichment analysis. For the analysis of aging
mice samples, the peak intensity table from Mass Profiler was first normalized to
the protein concentration from BCA. Then, zero imputation with KNN algorithm
was performed. Student’s t-test was used for calculating p-value. The metabolic
pathway and chemical structure enrichment analyses were performed via hyper-
geometric test59 and Kolmogorov–Smirnov (KS) test60, respectively. All chemical
classes of unknowns were obtained using ClassyFire. The quantitative analysis
followed our previous publication10, and the z-scale normalization of peak inten-
sities was used in this work.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw data files can be accessed at MetaboLights (MTBLS1622 and MTBLS1693). The
annotation results for all metabolomics datasets were provided in the Supplementary
Data 7 and 8. The unified CCS database can be accessed in AllCCS webserver with free
registration. Source data are provided with this paper.

Code availability
The source code of AllCCS prediction was provided in Github [https://github.com/
ZhuMetLab/AllCCS]. All functions (database search, CCS prediction and annotation) are
also provided in the AllCCS webserver [http://allccs.zhulab.cn/] via a free account.
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